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A Novel Improved Bat Algorithm in UAV Path Planning 

Na Lin1, Jiacheng Tang1, Xianwei Li2, 3 and Liang Zhao1, * 

Abstract: Path planning algorithm is the key point to UAV path planning scenario. Many 
traditional path planning methods still suffer from low convergence rate and insufficient 
robustness. In this paper, three main methods are contributed to solving these problems. 
First, the improved artificial potential field (APF) method is adopted to accelerate the 
convergence process of the bat’s position update. Second, the optimal success rate strategy 
is proposed to improve the adaptive inertia weight of bat algorithm. Third chaos strategy 
is proposed to avoid falling into a local optimum. Compared with standard APF and chaos 
strategy in UAV path planning scenarios, the improved algorithm CPFIBA (The improved 
artificial potential field method combined with chaotic bat algorithm, CPFIBA) 
significantly increases the success rate of finding suitable planning path and decrease the 
convergence time. Simulation results show that the proposed algorithm also has great 
robustness for processing with path planning problems. Meanwhile, it overcomes the 
shortcomings of the traditional meta-heuristic algorithms, as their convergence process is 
the potential to fall into a local optimum. From the simulation, we can see also obverse that 
the proposed CPFIBA provides better performance than BA and DEBA in problems of 
UAV path planning. 

Keywords: UAV path planning, bat algorithm, the optimal success rate strategy, the APF 
method, chaos strategy. 

1 Introduction 
For the last few decades, UAV (unmanned aerial vehicles) has been widely used in 
commercial [Adarsh, Raghunathan, Jayabarathi et al. (2016)], military [Anderson, Beard and 
McLain (2005)], delivery [Dorling, Heinrichs, Messier et al. (2016)], etc. The main 
advantages of UAV [Kulkarni and Venayagamoorthy (2010)] can be summarized as its small 
size, light weight, low fuel cost, and the strong suitability to the environment. The UAV path 
planning problem [Pehlivanoglu, Baysal and Hacioglu (2007)] directly determines the 
efficiency and QoS (Quality of Service) of the mission that UAV carries out [Al-Dubai, Zhao, 
Zomaya et al. (2015)]. As to reduce fuel consumption and subside the mission execution time, 
it is with significant demand to design an adaptable UAV flight path. 
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The problem of UAV path planning generally refers to the process to search a flight path 
track from the starting point to the target point, which satisfies with the UAV performance 
criteria under certain constraints [Jiang and Liang (2018)]. Obstacle avoidance [Wu, Li, 
Zuo et al. (2018)] is a considerable process in path planning. Obstacle avoidance is divided 
into static obstacle avoidance [Conde, Alejo, Cobano et al. (2012); Razzaq, Xydeas, Everett 
et al. (2018)] and dynamic obstacle avoidance [Alejo, Cobano, Heredia et al. (2014); Chen, 
Chang and Agate (2013)]. Static obstacle avoidance mainly targets on terrain and non-
flyable area. Dynamic obstacle avoidance deal with the mobile threat and other moving 
UAVs in the mission. Path planning algorithm is a key part of the UAV path planning 
problem. The original path planning algorithms are followed as Dubins path [Shanmugavel, 
Tsourdos, White et al. (2010)], reactive path selection [Hall and Anderson (2011)] and 
vision-based navigation [Courbon, Mezouar, Guénard et al. (2010)], etc. These methods 
require terrain information fully and usually cannot get the optimal path to guarantee 
convergence of the path planning algorithm. To overcome these shortcomings, the heuristic 
algorithm is proposed. The representative heuristic algorithms are followed as A* 
algorithm [Fan, Liang, Lee et al. (2014)], RRT algorithm [Tahir, Qureshi, Ayaz et al. 
(2018)] and simulated annealing algorithm [Zhao, Zeng and Liu (2018)]. These heuristic 
algorithms still have shortcomings in the execution efficiency and stability. With the 
progress of random search theory, meta-heuristic algorithm [Portas, Torre, Moreno et al. 
(2018)] is proposed to make up the disadvantages of standard heuristic algorithms. By 
proposing randomization strategy and biological intelligence, swarm intelligence 
algorithm [Osaba, Yang, Diaz et al. (2016)] is proposed to solve optimization problems 
under certain constraints. The swarm intelligence algorithms highly fit the problems of 
UAV path planning. The representative applications of meta-heuristic algorithm for UAV 
path planning are Particle Swarm Optimization (PSO) [Tang, Gao, Kurths et al. (2012)], 
Artificial Bee Colony Algorithm (ABC) [Yan (2018)], Ant Colony Optimization (ACO) 
[Shang, Karungaru, Feng et al. (2014)], Genetic Algorithm (GA) [Kuroki, Young and 
Haupt (2010)], Bat Algorithm (BA) [Tharakeshwar, Seetharamu and Prasad (2017)], Grey 
Wolf Algorithm (GWA) [Zhou, Li and Pan (2016)], etc. Meta-heuristic algorithms utilize 
the valid information in search space. Also, the convergence rate and solution stability 
improve a lot than previous heuristic algorithms. However, it has been proved that most 
meta-heuristic algorithms focus on problems of UAV path planning still have performance 
shortcomings, which mainly reflected on solution accuracy [Fu, Ding, Zhou et al. (2013)], 
path track smoothing [Ghosh, Panigrahi and Parhi (2017)] and occasionally falling into 
local optimum. The standard meta-heuristic algorithms commonly have particle velocity 
update equation to control the swarm movements. The velocity in the next generation is 
related to the velocity in the last generation and several special velocity-changing strategies. 
The velocity of swarm influences the global search and local search process. To balance 
the global search and the local search, the inertia weight is added into the particle velocity 
update equation. Higher inertia weight focuses on global search, allowing the particle to 
traverse the whole searching space to move closer to the global optimum. Lower inertia 
weight focuses on local search while particles search around the optimal solution to 
accurately locate the global optimum and calculate the fitness value. Inertia weight has 
many forms as fixed value weight [Portas, Torre, Moreno et al. (2018)], linear-increasing 
weight [Duan, Luo, Shi et al. (2013)], linear-decreasing weight [Huang, Wang, Hu et al. 
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(2011)], roulette strategy-based weight [Zhai, Jia and Wang (2018)], etc. These inertia 
weight strategies improve the search efficiency but cannot precisely discriminate the 
boundary conditions of the global search process and local search process so that it may 
fall into local optimum and get lower convergence accuracy and lower proceeding rate. To 
overcome these shortcomings, the adaptive inertia weight is raised to make the particle 
velocity related to the solution success rate during the whole search process. Adaptive 
inertia weight based on the solution success rate effectively balances the global search 
process and the local search process, which makes the swarm get much higher solution 
speed and maximally avoid falling into a local minimum.  
In the UAV path planning problem, to make full use of the terrain information and the 
UAV flight parameter is with great significance. By applying chaos method and potential 
field strategy, we choose chaos strategy [Li, Wu, Yu et al. (2016)] and the APF method 
[Wang, Zhu, Wang et al. (2016)] to improve our path planning algorithm. Meanwhile, the 
improved swarm intelligence algorithms satisfy the planned flight path, confirming the 
terrain constraints and the UAV flight characteristics. We can conclude an appropriate 
method solving the UAV path planning problem and improve the solution speed and 
accuracy is to combine chaos strategy and APF method with the improved swarm 
intelligence algorithm. Inspired by these previous studies, this paper proposes an improved 
bat algorithm CPFIBA (The improved artificial potential field method combined with 
chaotic bat algorithm) to generate a better solution performance in problems of UAV path 
planning. This paper also compares the proposed combined algorithm with the standard bat 
algorithm (BA) and the bat algorithm based on differential evolution (DEBA). The 
experimental results demonstrate that the proposed algorithm CPFIBA produce a more 
feasible solution in 2D and 3D problems of UAV path planning than BA and DEBA in 
various considerations under the same constraints. 
The main contributions of this paper are proposed as follows: 
1) The improved artificial potential field (APF) method is adopted to accelerate the 

convergence of the bat’s position update process. 
2) The optimal success rate strategy is proposed to improve the adaptive inertia weight 

of bat algorithm. It also balances the global search and the local search and makes the 
algorithm with great robustness. 

3) The chaos strategy is adopted in the initial contribution of bat swarms. It makes the 
search process avoid from local optimum and updates the convergence rate. 

The remainder of the paper is organized as follows. In Section 2, the related work about 
the research area is detailed. Section 3 mainly analyzes the modelling and constraints 
setting of UAV path planning tasks. Section 4 is about the details of CPFIBA. Section 5 is 
the experimental results and analysis. In Section 6 we conclude this research and give a 
vision for future work. 

2 Related works 
The meta-heuristic algorithm is widely used by researchers to solve the UAV path planning 
problem. Previous research focuses on performance on comparing the performance of 
different meta-heuristic algorithms at standard test functions. As the optimal process aims 
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to find the global minimum of standard test functions which have the same property 
compared with the problems of UAV path planning after flight cost function modelling and 
constraints setting. The capability of the specific meta-heuristic algorithm is the prime 
factor in choosing a kernel algorithm in UAV path planning process. According to these 
theories, it is essential to select a good performance meta-heuristic algorithm to be the 
kernel algorithm in our proposed method. 
BA is firstly proposed by Yang [Yang (2010)]. Yang proves that BA performs much better 
than PSO and GA regarding to their convergence accuracy and proceeding efficiency. BA 
also has the advantage of faster execution speed, less operating parameters and more 
potential to combine with other swarm intelligence algorithm dealing with 
multidimensional optimal search problems. BA and its enhanced algorithms have been 
widely applied in problems of UAV path planning.  
Wang et al. [Wang, Chu and Mirjalili (2016)] proposes a combined algorithm the bat 
algorithm based on differential evolution (DEBA). The mutation process of DE is used to 
improve the original bat swarm distribution with a probability 1-r originally by using 
random walk strategy. By applying these strategies, the population information of the bat 
population is fully exploited, and the exploration ability is relatively raised. In Wang’s 
research, a mathematical model of UAV path planning task is proposed. This model makes 
equivalent conversion between flight cost and fitness function under constraints. The 2D 
and 3D simulating environment experiments certificate that the proposed DEBA is more 
effective and feasible in UAV path planning tasks than other swarm intelligence algorithms 
such as ACO [Shang, Karungaru, Feng et al. (2014)], BBO [Osaba, Yang, Diaz et al. 
(2016)], DE [Kuroki, Young and Haupt (2010)], ES [Fan, Liang, Lee et al. (2014)] and 
PSO [Tang, Gao, Kurths et al. (2012)]. DEBA is a quite effective path planning method 
compared with BA and other standard swarm intelligence algorithms. DEBA has great 
performance on multi-objective optimization problems, while UAV path planning problem 
is one of the multi-objective optimization problems. Hence after extensive research, we 
choose DEBA (Differential Evolution Bat Algorithm) as our kernel algorithm in our 
proposed combined algorithm CPFIBA. However, the success rate of completing the path 
planning mission is not high enough. The detailed orographic environment information is 
not fully used. The standard BA should be proved, while the efficient search strategy of 
path planning should be combined for further algorithm performance improvement. 
Based on the studies above, this paper proposes the success rate inspired by Chakri et al. 
[Chakri, Khelif, Benouaret et al. (2017)] to change the velocity updating equation of bat 
individuals. Meanwhile, chaos strategy [Li, Wu, Yu et al. (2016)] is used to initialize the 
distribution of bat individuals in the search space, and the APF method [George and Ghose 
(2012)] is used to accelerate the swarm individual’s movements and raise the convergence 
rate of the global search process. The starting point initiates the gravitational field while 
terrain and obstacles initiate the repulsion field. Finally, an improved bat algorithm based 
on APF method and chaos strategy (CPFIBA) is proposed to solve and improve the 2D and 
3D problems of UAV path planning under certain flight constraints. The standard BA and 
DEBA are used for comparative analysis, in order to verify the excellent performance of 
our proposed combined algorithm CPFIBA. 
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3 The problem modeling of UAV path planning 
UAV path planning is defined as the process of finding a path from the start point to the 
end point while meeting with the performance requirements of the UAV under some 
specific UAV flight constraints. It aims to search the extreme value of multi-objective 
function under the condition of multiple constraints. The mathematical model of the UAV 
path planning problem is proposed as follows. 

3.1 Flight cost function 
The cost function [Wan, Wang, Ye et al. (2016)] in problems of UAV path planning can 
be divided into three parts: the path length cost, the threat cost, and the fuel consumption 
cost. The total cost function is denoted by 𝐽𝐽. The minimization objective function 𝐽𝐽 is 
defined in Eq. (1). 
𝑚𝑚𝑚𝑚𝑚𝑚 𝐽𝐽 = 𝑘𝑘1𝐽𝐽𝐿𝐿 + 𝑘𝑘2𝐽𝐽𝑇𝑇 + (1 − 𝑘𝑘1 − 𝑘𝑘2)𝐽𝐽𝐹𝐹 (1) 
𝐽𝐽𝐿𝐿 refers to the length of the flight path cost, 𝐽𝐽𝑇𝑇 refers to the threat cost, 𝐽𝐽𝐹𝐹 refers to the 
cost of fuel consumption to keep UAV’s height. 𝑘𝑘1, 𝑘𝑘2 are positive and meet with the 
following formula 0 ≤ 𝑘𝑘1 ≤ 1,0 ≤ 𝑘𝑘2 ≤ 1. 

𝑚𝑚𝑚𝑚𝑚𝑚 𝐽𝐽𝐿𝐿 = � 𝑑𝑑𝑑𝑑
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The path length cost 𝐽𝐽𝐿𝐿 is defined in Eq. (2). 𝐿𝐿 is the length of the total flight path and 
𝑑𝑑𝑖𝑖𝑖𝑖 is the length of the track segments. 
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The threat cost 𝐽𝐽𝑇𝑇 are defined in Eq. (3). 𝑡𝑡𝑘𝑘 is the threat factor. It is also a measure of 
threat level between threat source and the UAV node. 𝑁𝑁𝑡𝑡 represents for the total number 
of threat sources, and the coordinate of UAV is (𝑥𝑥,𝑦𝑦, 𝑧𝑧). The coordinate of the threat 
source center is (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑧𝑧𝑘𝑘). 
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The definition of fuel consumption cost 𝐽𝐽𝐹𝐹 is defined in Eq. (4). 𝐾𝐾 represents for the cost 
of fuel consumption that UAV travels per unit length during the flight mission. 𝐻𝐻 is the 
altitude of the UAV flight safety loop and, the flight altitude of a UAV should not exceed 
this height. 𝑊𝑊0 indicates the energy cost of UAV to maintain in the certain altitude, where 
ℎ is the current height of UAV and 𝐻𝐻 is the height of flight safety circle. 

3.2 UAV flight constraints 
UAV needs to obey its dynamic constraints during the flight mission, so the planning path 
should meet with several constraints [Wang, Chu and Mirjalili (2016)]. In order to explain 
these constraints intuitively, we select some standard waypoints as a model to illustrate the 
flight constraints. We assume 𝐴𝐴(𝑥𝑥𝑖𝑖−1,𝑦𝑦𝑖𝑖−1, 𝑧𝑧𝑖𝑖−1) as the previous waypoint and 𝐵𝐵(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) 
as the current waypoint. 𝐶𝐶(𝑥𝑥𝑖𝑖+1,𝑦𝑦𝑖𝑖+1, 𝑧𝑧𝑖𝑖+1)  is the forward waypoint, and �⃗�𝑎 = [𝑥𝑥𝑖𝑖 −
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𝑥𝑥𝑖𝑖−1,𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖−1]𝑇𝑇 is recorded as the track point migration vector. 
|𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖−1|

|�⃗�𝑎𝑖𝑖|
≤ 𝑡𝑡𝑎𝑎𝑚𝑚(𝜃𝜃) , 𝑚𝑚 = 1,2 … (5) 

UAV need to climb or dive across terrain and obstacles. This paper assumes that the 
maximum climb or dive angle is 𝜃𝜃, then the climb or dive angle constraint of UAV is defined 
in Eq. (5). When UAV try to avoid terrain and obstacles, its flight characteristics should be 
satisfied. And the planning path should be under the turning radius constraints to guarantee 
the planning path able to fly. The minimum turning radius is proposed in Fig. 1. 

 
Figure 1: Turn radius constraints 

Path angle 𝜙𝜙 = 2𝜑𝜑. The minimum corner can be defined in Eq. (6). 𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛 in the formula 
is the radius of the minimum turning circle while 𝑟𝑟𝑑𝑑 is the shortest distance between the 
turning node 𝑉𝑉𝑖𝑖 and the edge point B of the obstacle. Flight height constraint depends on 
the specific characteristics of the UAV flight mission. 

𝜑𝜑 ≥ 𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 �
𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛

𝑟𝑟𝑑𝑑 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛
� (6) 

In order to reduce fuel consumption and ensure the planning path is flexible as much as 
possible, there should be a maximum height limit ℎ ≤ 𝐻𝐻. In this formula, ℎ is the absolute 
height that UAV to the ground while 𝐻𝐻 is the height the off-light safety circle. In order to 
make promptly feedback to the terrain changes, the relative height of the terrain surface 
should satisfy ℎ ≥ ℎ𝑚𝑚𝑖𝑖𝑛𝑛, while ℎ𝑚𝑚𝑖𝑖𝑛𝑛 is the current terrain altitude and ℎ is the absolute 
height that UAV to the ground. 

3.3 Obstacle detection and avoidance 
UAV uses its sensors to detect stationary obstacles and dynamic obstacles [Jiang and Liang 
(2018)]. After obstacles are identified, the obstacle avoidance mechanism is one of the key 
factors that affect the effectiveness of the path planning route. The schematic diagram of 
UAV obstacle avoidance is proposed in Fig. 2. 
In order to satisfy the constraints of UAV flight direction and yaw angle limits, this paper 
use path track of motions in a Polar coordinate to illustrate the obstacle avoidance 
mechanism. In Fig. 2, 𝑂𝑂 is the starting point of the track and 𝐺𝐺 is the ending point of the 
track. The track segment between 𝐿𝐿1  and 𝐿𝐿𝑘𝑘  is participated into several adjacent 
segments. The starting point of each sub-track segment is marked with square nodes. 
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Figure 2: UAV obstacles avoidance 

The mechanism of measuring and avoiding threats between every two track points is 
visualized in Fig. 3. Sub-path 𝑑𝑑𝑖𝑖𝑖𝑖 will be further segmented to calculate the threat cost 
𝑤𝑤𝑡𝑡,𝐿𝐿𝑖𝑖𝑖𝑖 according to the number of threat sources. Generally, the threat cost is expressed in 
Eq. (7). 

𝑤𝑤𝑡𝑡,𝐿𝐿𝑖𝑖𝑖𝑖 =
1
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𝑁𝑁𝑇𝑇
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1

𝑑𝑑𝑘𝑘4(𝑚𝑚, 𝑗𝑗)
𝑘𝑘∈𝐾𝐾

 (7) 

𝑁𝑁𝑇𝑇  represents for the number of the threat sources. 𝑡𝑡𝑖𝑖 represents for the threat weight 
factor. 𝑑𝑑𝑘𝑘(𝑚𝑚, 𝑗𝑗) represents for the straight-line distance between the start points 𝑚𝑚 and the 
end point 𝑗𝑗 of the k-th sub-path segment. 

 
Figure 3: Threat cost calculation 

The obstacle avoidance process is aimed to avoid collisions between the flying UAV and 
obstacles. The minimization of the threat cost under limited conditions is a proper way to 
ensure the UAV away from the obstacles. 
By using the proposed algorithm CPFIBA to solve the obstacle avoidance problems, the 
planned flight path can effectively avoid the static obstacle in search space. For the 
avoidance of dynamic obstacles, it needs the sensors of UAV to recognize and urgently 
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evade the dynamic obstacles. After these processes, UAV returns to the flight path which 
is also called path follow-up operation. 

3.4 Flight path smooth strategy 
The result of the planning path needs to be tested for the flying ability under the flight 
constraints. The planned flight path has the feature of the Levy flight track with irregular turning. 
Therefore, an effective path smoothing method is needed for flight path smooth strategy. 
In this paper, we use the b-spline curves method [Nikolas, Valavanis, Tsourveloudis et al. 
(2003)] for the flight path smooth process. Suppose the flight path curve needed to be 
smoothed a line segment from A to B to C in the Cartesian system, as shown in Fig. 4. 

 
Figure 4: The b-spline curves smooth 

After b-spline curves smooth process, the line segment 𝐴𝐴𝐵𝐵𝐶𝐶 with an arc-segment will be 
replaced by the smooth curve 𝐴𝐴𝐵𝐵𝐶𝐶�  which can be directly used as a flight planning path. 
This path smooth strategy effectively solves the path smoothing problem. 

4 The improved artificial potential field method combined with chaotic bat algorithm 
(CPFIBA) 
4.1 Introduce to bat algorithm 
The bat algorithm is inspired by bats in nature avoiding natural enemies and capture prey by 
echolocation. For a virtual bat in the d-dimensional search space, the updating formula for 
the location 𝑥𝑥𝑖𝑖 and the velocity 𝑣𝑣𝑖𝑖 of the bat individual at time node 𝑡𝑡 is shown as follows. 
𝑓𝑓𝑖𝑖 = 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + (𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛) × 𝛽𝛽 (8) 
𝑣𝑣𝑖𝑖𝑡𝑡 = 𝑣𝑣𝑖𝑖𝑡𝑡−1 + (𝑥𝑥𝑖𝑖𝑡𝑡−1 − 𝑥𝑥∗) × 𝑓𝑓 (9) 
𝑥𝑥𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑖𝑖𝑡𝑡−1 + 𝑣𝑣𝑖𝑖𝑡𝑡 (10) 
For the update of the vocal frequency of Eq. (8), 𝛽𝛽  follows a uniformly distributed 
variable and satisfies 𝛽𝛽 ∈ [0,1]. fmax and fmin are the maximum and minimum values 
for the initial setting for bat vocalize frequency. 𝑥𝑥∗ in Eq. (9) is the current global optimal 
solution, this solution is the optimal fitness value of all individuals in the bat population. 
The individual bat measures its acceleration to the optimal solution according to its 
proximity location 𝑥𝑥𝑖𝑖𝑡𝑡−1 to the global optimal solution 𝑥𝑥∗. The speed of the bat individual 
in the next moment is related with its approximation to the global optimal solution. In 
addition to the acceleration process, the bat individual inertia is also taken into 
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consideration. The speed at the next moment is 𝑣𝑣𝑖𝑖𝑡𝑡, which is affected by the speed of the 
previous moment 𝑣𝑣𝑖𝑖𝑡𝑡−1. Eq. (10) describes the process of how the bat swarms migrate as 
their position and velocity changed (See line 5 in Algorithm 1). 
The above is the iterative process that bats population follows in the global search, while 
the bat individual near the optimal global solution uses the random walking rule to generate 
a partial new solution as shown in Eq. (11). In Eq. (11), 𝜀𝜀 ∈ [−1,1] is a random number 
while 𝐴𝐴𝑡𝑡 = ⟨𝐴𝐴𝑖𝑖𝑡𝑡⟩ is the average volume of bats population at time node 𝑡𝑡. 
𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑑𝑑 + 𝜀𝜀𝐴𝐴𝑡𝑡 (11) 
𝐴𝐴𝑖𝑖𝑡𝑡+1 = 𝛼𝛼𝐴𝐴𝑖𝑖𝑡𝑡 (12) 
𝑟𝑟𝑖𝑖𝑡𝑡+1 = 𝑟𝑟𝑖𝑖0[1 − 𝑒𝑒𝑥𝑥𝑒𝑒( − 𝛾𝛾𝑡𝑡)] (13) 
The updating formula of the vocalize frequency and loudness at this time node is described 
in Eqs. (12) to (13). 𝛼𝛼 and 𝛾𝛾 are both constants real numbers and are usually set as 𝛼𝛼 =
𝛾𝛾 = 0.9 (See line 13-15 in Algorithm 1). From the equation, we can see that while the bat 
approaches the optimal solution infinitely, the vocalization emission decays continuously 
and finally pauses. Meanwhile, the vocalize frequency asymptotically closes to the initial 
pulse frequency 𝑟𝑟𝑖𝑖0 with iteration gradually raising.  

Algorithm 1 An improved bat algorithm based on APF method and chaos strategy, CPFIBA 
1. Begin 
2.   Initialize 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 ,  𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 ,  𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 ,  𝑤𝑤𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑓𝑓(�⃗�𝑥𝑖𝑖), 𝐹𝐹𝑚𝑚(𝑥𝑥), 𝐹𝐹𝑟𝑟(𝑥𝑥), �⃗�𝑥𝑖𝑖(𝑚𝑚 = 1,2, . . . ,𝑚𝑚) and �⃗�𝑣𝑖𝑖(𝑚𝑚 =
1,2, . . . ,𝑚𝑚) 
3.   for 𝑚𝑚 = 1:𝑚𝑚 do 
4.      for t= 1:𝑁𝑁𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  do 
5.         generate initial solution by equation (8) to (10) 
6.         generate 𝐹𝐹𝑚𝑚(𝑥𝑥), 𝐹𝐹𝑟𝑟(𝑥𝑥) by equation (14) to (17) 
7.         𝑥𝑥𝑡𝑡 = 𝜇𝜇𝑥𝑥𝑡𝑡−1(1 − 𝑥𝑥𝑡𝑡−2) + 𝐹𝐹𝑚𝑚(𝑥𝑥𝑡𝑡−1) − 𝐹𝐹𝑟𝑟(𝑥𝑥𝑡𝑡−1) 
8.         if (𝑟𝑟𝑎𝑎𝑚𝑚𝑑𝑑 > 𝑟𝑟𝑖𝑖) then  
9.            calculate 𝑤𝑤 by equation (19) to (21) 
10.           𝑣𝑣𝑖𝑖𝑡𝑡 = 𝑤𝑤𝑣𝑣𝑖𝑖𝑡𝑡−1 + (𝑥𝑥𝑖𝑖𝑡𝑡−1 − 𝑥𝑥∗) × 𝑓𝑓 
11.           calculate �⃗�𝑥∗ 𝑎𝑎𝑚𝑚𝑑𝑑 𝑓𝑓(�⃗�𝑥𝑖𝑖) 
12.        end if 
13.        if (𝐴𝐴𝑖𝑖 > 𝑟𝑟𝑎𝑎𝑚𝑚𝑑𝑑 & 𝑓𝑓(�⃗�𝑥𝑖𝑖) < 𝑓𝑓(𝑥𝑥∗)) then  
14.           𝑟𝑟𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑖𝑖0[1 − 𝑒𝑒𝑥𝑥𝑒𝑒(𝛾𝛾 (1 − 𝑡𝑡))] 
15.           𝐴𝐴𝑖𝑖𝑡𝑡 = 𝛼𝛼𝐴𝐴𝑖𝑖𝑡𝑡−1 
16.        end if 
17.     end for 
18.   end for  
19. End 
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4.2 Details of the proposed algorithm 
The standard bat algorithm has the advantages of fast convergence speed, high robustness, 
easy to implement, etc. However, it is proved that the standard BA has defects of 
convergence accuracy and quickly falling into the local optimal. Under these 
considerations, we make three main improvements toward to the standard bat algorithm 
and combine the characteristics of the UAV path planning problem. The firstly is to 
combine the APF method in the global search process. The second is to update the inertia 
weight of the velocity iteration formula in the standard bat algorithm, in which the optimal 
success rate strategy is firstly proposed to control the inertia weight. This proposed strategy 
successfully balances the global search process and the local search process. Thirdly, chaos 
strategy is introduced to randomize the initial distribution of the bat’s population to 
accelerate the proceeding speed of the searching process. These three improvements are 
discussed in details in Sections 4.2.1 to 4.2.3. The pseudo code of CPFIBA is illustrated in 
detail in Algorithm 1. 

4.2.1 The improved APF method 
The APF method (Artificial Potential Field, APF) was first proposed by Khatib [Khatib 
(2003)] and applied in mobile robot path planning and obstacle avoidance problems. The 
APF method is inspired by the principle of the gravity force and the repulsive force. The 
gravity force is commonly generated by the heterogeneous charge with the different type 
of electrostatic charge between the target point and UAV. Moreover, the repulsive force is 
generated by the homogeneous charge between the barrier or obstacle and UAV. The stress 
analysis of UAV in the APF is proposed in Fig. 5. 

 
Figure 5: The stress analysis of UAV in the APF method 

In Fig. 5, 𝐹𝐹0���⃑  represents for the repulsive force and 𝐹𝐹𝑔𝑔���⃑  represents for the attractive force, 
which determine the composition force �⃑�𝐹 of UAV. And 𝜌𝜌 is the distance between the 
barrier and UAV while ρG is the distance between UAV and the target point G. 
The standard APF method has shortcomings as follows: First, when UAV is far from the 
target point, the attractive force will be far more than the repulsive force. Hence the UAV 
may neglect the barrier and produce a collision with the obstacle. Second, when UAV is 
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on some certain point where the attractive force and the repulsive force have the same value 
but the opposite direction, UAV will fall into shock and finally become static. To overcome 
these shortcomings, we propose the improved APF method. The attractive and the 
repulsive potential field function is redefined, and the attractive and the repulsive force 
function is calculated correspondingly as follows. 

𝑈𝑈𝐺𝐺(𝑚𝑚) = �

1
2
𝜀𝜀𝜌𝜌𝐺𝐺2                       ,𝜌𝜌𝐺𝐺 ≤ 𝑑𝑑𝑔𝑔𝑜𝑜𝑚𝑚𝑜𝑜               

𝜀𝜀𝑑𝑑𝑔𝑔𝑜𝑜𝑚𝑚𝑜𝑜𝜌𝜌𝐺𝐺 −
1
2
𝜀𝜀𝑑𝑑𝑔𝑔𝑜𝑜𝑚𝑚𝑜𝑜2           ,𝜌𝜌𝐺𝐺 > 𝑑𝑑𝑔𝑔𝑜𝑜𝑚𝑚𝑜𝑜               

 (14) 

𝑈𝑈𝑂𝑂(𝑚𝑚) = �
1
2
𝜎𝜎𝜌𝜌𝑂𝑂2 �

1
𝜌𝜌𝑂𝑂

−
1
𝑑𝑑𝑜𝑜𝑜𝑜

�
2

      ,𝜌𝜌𝑂𝑂 ≤ 𝑑𝑑𝑜𝑜𝑜𝑜                    

0              ,𝜌𝜌𝑂𝑂 > 𝑑𝑑𝑜𝑜𝑜𝑜  
 (15) 

According to the gradient descent strategy of APF method, the attractive potential field 
function 𝑈𝑈𝐺𝐺(𝑚𝑚) and the repulsive potential field function 𝑈𝑈𝑂𝑂(𝑚𝑚) can be expressed in Eqs. 
(14) and (15). 𝜌𝜌𝐺𝐺  is the distance between UAV and the target point while 𝜌𝜌𝑂𝑂  is the 
distance between UAV and the barrier. 𝑑𝑑𝑔𝑔𝑜𝑜𝑚𝑚𝑜𝑜  is the threshold value of the distance 
between UAV and the target point while 𝑑𝑑𝑜𝑜𝑜𝑜  is the threshold value of the distance 
between UAV and the barrier. 𝜀𝜀 is the scale factor of the attractive force potential function 
while 𝜎𝜎 is the scale factor of the repulsive force potential function. In our research, we set 
the scale factor as 𝜀𝜀 = 𝜎𝜎 = 0.2. 

𝐹𝐹𝐺𝐺(𝑚𝑚) = −𝛻𝛻𝑈𝑈𝐺𝐺(𝑚𝑚) = �
𝜀𝜀�𝜌𝜌𝐺𝐺 − 𝑑𝑑𝑔𝑔𝑜𝑜𝑚𝑚𝑜𝑜�        ,𝜌𝜌𝐺𝐺 ≤ 𝑑𝑑𝑔𝑔𝑜𝑜𝑚𝑚𝑜𝑜
𝜀𝜀𝜌𝜌𝐺𝐺𝑑𝑑𝑔𝑔𝑜𝑜𝑚𝑚𝑜𝑜
𝜌𝜌𝐺𝐺 − 𝑑𝑑𝑔𝑔𝑜𝑜𝑚𝑚𝑜𝑜

          ,𝜌𝜌𝐺𝐺 > 𝑑𝑑𝑔𝑔𝑜𝑜𝑚𝑚𝑜𝑜
 (16) 

𝐹𝐹𝑂𝑂(𝑚𝑚) = −𝛻𝛻𝑈𝑈𝑂𝑂(𝑚𝑚) = �
𝜌𝜌𝑜𝑜2 ∙ 𝜎𝜎2

2𝑑𝑑𝑜𝑜𝑜𝑜3
∙ (𝑑𝑑𝑜𝑜𝑜𝑜 − 𝜌𝜌0)       ,𝜌𝜌0 ≤ 𝑑𝑑𝑜𝑜𝑜𝑜                  

0                      ,𝜌𝜌0 > 𝑑𝑑𝑜𝑜𝑜𝑜                  
 (17) 

The attractive force function 𝐹𝐹𝐺𝐺(𝑚𝑚)  and the repulsive force function 𝐹𝐹𝑂𝑂(𝑚𝑚)  can be 
expressed in Eqs. (16) to (17) (See line 6 in Algorithm 1). The attractive force function is 
the derivative of the attractive potential field function to the distance. The repulsive force 
function is the derivative of the repulsive potential field function to the distance. 
In our research, the improved APF method accelerates the convergence rate of the path 
planning process. Compared with the standard APF method, we redefine the attractive 
potential field function and the repulsive potential field function. After the derivation 
process, we get the attractive force function and the repulsive force function, which mainly 
influence the movement of UAV in the potential field. The standard APF method has 
shortcomings as low robustness and easy to fall into local optimum. Our proposed APF 
method set the threshold value to modify the attractive force and the repulsive force, which 
makes the fight of UAV with high-efficiency and matching with reality. Hence the 
improved APF method that we propose overcome the shortcomings of the standard APF 
method and have advantages to applied in the UAV path planning problems. 
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4.2.2 Adaptive inertia weight based on the optimal success rate 
Similar with the exploration process and the exploit process in the standard heuristic search 
algorithm, the swarm intelligent algorithm has the process of global search, and local 
search in the whole optimize the process. Global search is aimed to determine the 
approximate range of the optimal solution, and local search is aimed to calculate the 
optimization fitness. 
The conversion opportunity between global search and local search directly influences the 
search process efficiency and the optimal accuracy. In order to control the global search 
process of bat individuals, adaptive inertia weight is introduced to update the bat individual 
velocity updating strategy in Eq. (9) as shown in the following Eq. (18). 
𝑣𝑣𝑖𝑖𝑡𝑡 = 𝑤𝑤𝑣𝑣𝑖𝑖𝑡𝑡−1 + (𝑥𝑥𝑖𝑖𝑡𝑡−1 − 𝑥𝑥∗) × 𝑓𝑓 (18) 
We propose the concept of the success rate (See line 10 in Algorithm 1) for the optimal 
search optimization, which makes the inertia weight related to the optimal success rate of 
the bat’s population. The adaptive inertia weight based on the optimal success rate is 
defined as follows: 

𝑤𝑤 = 𝑤𝑤𝑚𝑚𝑖𝑖𝑛𝑛 + (
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑤𝑤𝑚𝑚𝑖𝑖𝑛𝑛

𝑤𝑤𝑚𝑚𝑖𝑖𝑛𝑛
) × 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡  (19) 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡 =
∑ 𝑆𝑆𝑖𝑖𝑡𝑡𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (20) 

𝑆𝑆𝑖𝑖𝑡𝑡 = �
1, 𝑓𝑓𝑖𝑖𝑡𝑡 < 𝑓𝑓𝑖𝑖𝑡𝑡−1

0, 𝑓𝑓𝑖𝑖𝑡𝑡 ≥ 𝑓𝑓𝑖𝑖𝑡𝑡−1
 (21) 

In Eqs. (19) to (21), 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡  is the optimal success rate of the bat population. 𝑁𝑁 
represents for the number of bats population. 𝑆𝑆𝑖𝑖𝑡𝑡 means bat 𝑚𝑚 in the t-generation iterative 
process of the optimal results. If the fitness of t-generation is better than the previous t-1-
generation, then set 𝑆𝑆𝑖𝑖𝑡𝑡 = 1 and search for a better solution, if this situation is not satisfied 
then set 𝑆𝑆𝑖𝑖𝑡𝑡 = 0 (See line 9 in Algorithm 1). 
The optimal success rate strategy successfully balances the global optimal search and the 
local optimal search. 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡  is the precise measurement of the optimal value. Only if the 
optimal value of the t-generation is smaller than the t-1-generation, 𝑆𝑆𝑖𝑖𝑡𝑡 will be set as a 
non-zero constant. During a certain iteration process, the sum of the optimal value change 
of the whole bat population will be taken into consideration as the optimal success rate. 
Finally, the optimal success rate linearly influences the inertia weight. 
The adaptive inertia weight based on optimal success rate transform the occasion of global 
search and local search. It reflects on the development of a globally optimal solution. 
Compared with other linear inertia weight, our proposed method has great robustness. 
Simulation and experiment results will prove our views. 

4.2.3 Chaos strategy 
In order to traverse the solution space completely, it requires that the initial bat's population 
should be distributed randomly. Chaos strategy satisfies this demand and can be combined 
with the improved bat algorithms to reallocate the initial distribution of the bat’s population. 
Chaos strategy is a pseudo-random phenomenon with the feature of random distribution. 
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However, we can use the deterministic method to make the contribution truly random. We 
choose one of the deterministic methods called logistic mapping to be our chaos strategy 
used in our proposed algorithm CPFIBA. The logistic function formulation of logistic 
mapping is proposed in Eq. (22) as follows. 
𝑥𝑥𝑚𝑚+1 = 𝜇𝜇𝑥𝑥𝑚𝑚(1 − 𝑥𝑥𝑚𝑚−1), 𝑚𝑚 = 1,2, … (18) 
Logistic factor 𝜇𝜇 determines the contribution of variable 𝑥𝑥𝑚𝑚 in the interval. When 0 ≤
𝜇𝜇 ≤ 3 , the distribution of 𝑥𝑥𝑚𝑚  meets the linear relationship, which is a non-random 
distribution in the interval. When 3 ≤ 𝜇𝜇 ≤ 4, the distribution of 𝑥𝑥𝑚𝑚 changes greatly and 
gradually become a random distribution in the interval. We use the Logistic Mapping to 
illustrate the relationship between μ and 𝑥𝑥𝑚𝑚, as shown in Fig. 6. 

 
Figure 6: Logistic mapping 

In particular, for the situation 𝜇𝜇 = 4, the logistic mapping (See line 7 in Algorithm 1) 
becomes a full distribution in the interval [0,1]. In our research, the Logistic mapping of 
chaos strategy is proposed to make the distribution of bat population randomly. Hence the 
bat individuals can make thorough exploitation of the solution space according to Eq. (9) 
and Eq. (22). The chaos strategy makes the bat algorithm getting rid of local minimum and 
having much higher solution speed under the circumstances. Hence, it is necessary to 
combine the chaos strategy with our proposed UAV path planning algorithm CPFIBA. 

5 Simulation experiment and results analyses 
We use a PC with 64-bit Windows 10 operating system for simulation experiments, and 
the processing parameters are Intel 3.35 GHz Core i5-3470 CPU 8 GB ROM. Simulation 
experiments for problems of UAV path planning in 2D and 3D environment are 
programmed in MATLAB R2016a [Zhao, Zeng and Liu (2018)]. 
This paper compares the proposed CPFIBA with DEBA and BA. The iteration formula 
parameters setting for DEBA are proposed as 𝑁𝑁𝑃𝑃 = 30,𝐴𝐴 = 0.95,𝑄𝑄 = 𝑟𝑟 = 𝐹𝐹 = 0.5 . 
Population size 𝑁𝑁 = 90 and iteration number 𝑁𝑁𝐶𝐶 = 30. The iteration formula parameter 
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settings for standard BA are proposed as 𝑟𝑟𝑖𝑖0 = 0.6,𝐴𝐴𝑖𝑖0 = 0.95,𝛽𝛽 = 0.9, population size 
𝑁𝑁 = 90 and number of iterations 𝑁𝑁𝐶𝐶 = 30. In the CPFIBA, iteration formula parameters 
setting of chaos strategy and the APF method parts are proposed as 𝜇𝜇 = 4，𝑘𝑘 = 1,𝑚𝑚 =
1,𝜌𝜌0 = 0.5. The other parameter settings [Wang, Guo, Hong et al. (2012)] of bat algorithm 
in DEBA and CPFIBA stay the same with the standard bat algorithm. 

5.1 2D environment simulation experiment and results analyses 
In the 2D environment simulation experiment, the 2D rectangular coordinates of the start 
point are (0,0), and the coordinates of the target point are (80,100). The parameters of each 
obstacle are illustrated in Tab. 1. 

Table 1: Threat source options in 2D simulation experiment 

Threat center Threat radius Threat factor 
(10, 50) 10 8 
(30, 80) 10 4 
(90, 80) 10 10 
(20, 20) 9 6 
(50, 55) 10 7 
(65, 38) 12 6 
(60, 80) 10 7 
(30, 42) 8 5 
(60, 10) 10 6 
(75, 65) 8 8 

In Tab. 1, two main factors are taken into consideration. The first factor is the threat source 
uniformly distributed in the 2D simulation environment. The second factor is the radius of 
threat source should be various and reasonable. Threat factor is the evaluation of the 
influence of barriers. We formulate these threat sources to simulate the problems of UAV 
path planning as realistic as possible. 
The simulation flight paths of BA, DEBA, and CPFIBA in 2D complex environment are 
shown in Fig. 7. From the simulation results of UAV path planning in a 2D environment, 
we can make some further analysis. The dotted line with hollow blue circle represents for 
planning path of BA. The dotted line with red symbol cross represents for planning path of 
DEBA. The dotted line with solid black circle represents for planning path of CPFIBA. All 
these three algorithms guarantee UAV avoid the collision and obstacle. The path length of 
BA is much longer than DEBA and CPFIBA. Under the consideration of flight path smooth, 
CPFIBA generates the smoothest planning path among these three algorithms. Meanwhile, 
DEBA ranks the second with several obtuse turning angles. BA generates an unsatisfied 
flight path with many sharp turn angles, which cannot be used directly as the UAV flight 
path. According to this analysis, an intuitive deduction is constructed that CPFIBA is with 
better performance than DEBA and BA on flight path simulation and path smoothing effect. 
The subsequent experiment data and results will prove our viewpoint in detail. 
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Figure 7: Simulation results of CPFIBA, DEBA, and BA in 2D environment 

 
Figure 8: Objective function convergence curve in 2D environment 

The objective function convergence curves of CPFIBA, DEBA, and BA in 2D environment 
is shown in Fig. 8. According to the objective function convergence curve, further analysis 
is proposed as follows. Like the path planning simulation, the black convergence line 
represents for the CPFIBA. Meanwhile, the red convergence line represents for the DEBA, 
and the blue convergence line represents for the BA. The slope of the convergence line 
determines the converging rate of a specific algorithm. It can be concluded that CPFIBA 
has the best convergence performance while DEBA ranks the second and BA takes the last 
place. Hence compared with DEBA and BA, CPFIBA has the highest convergence rate. 
After dozens of iteration operations, the flight objective function eventually converges at a 
relatively stable value. The final stable value is commonly used to examine the 
performance and convergence accuracy. After the same iteration process, CPFIBA has the 
lowest convergence fitness compared with DEBA and BA. The lowest convergence fitness 
value corresponds to the shortest flight path length and the least energy cost. CPFIBA is 
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more adaptable for problems of UAV path planning in a 2D environment. 
The evaluation index table of BA, DEBA, and CPFIBA in a 2D environment, including 
optimal path length, flight cost function values and algorithm execution time, is proposed 
in Tab. 2. 

Table 2: Evaluation index in 2D environment 

Algorithm Path length(m) Fitness value Convergence time(s) 
BA 265.73 230.14 2.63 

DEBA 212.89 141.76 1.93 
CPFIBA 197.35 77.83 1.34 

According to the evaluation index table, some further analysis can be proposed as follows. 
By numeral calculation, it can be inducted that CPFIBA gets 25.73% less than BA and 
7.30% less than DEBA on flight path length. For fitness value comparison, CPFIBA 
defeats other two algorithms with 66.18% less than BA and 45.10% less than DEBA on 
convergence fitness value. Considering the convergence time of each algorithm, CPFIBA 
executes 49.05% less than BA and 30.57% less than DEBA. The reason for CPFIBA 
having shorter convergence time is mainly the optimal success rate, fuzzy logistic operation, 
and the prerequisite of APF method. By taking less convergence time, we contributed 
drastically better path planning results so that it is trustworthy to utilize the proposed 
CPFIBA in the problems of UAV 2D flight path planning. 
From the experimental results, it can be concluded that CPFIBA is more suitable for 2D 
path planning problems than BA and DEBA. This conclusion can be concluded from the 
comparison of the planned path length and the obstacle avoidance effect. It also can be 
obtained by analyzing the flight cost function and the convergence curve to support our 
viewpoint. In different aspects, CPFIBA also shows better performance than BA and 
DEBA on the convergence accuracy and convergence speed, and the stability of the 
algorithm is also excellent. CPFIBA costs more execution time than DEBA and BA 
relatively but gets a significant increase in algorithm performance. In summary, the 
conclusion can be raised that the proposed improved algorithm CPFIBA performs better 
than DEBA and BA in 2D problems of UAV path planning. 

5.2 simulation experiments of 3D environments 
In the simulation of 3D environments, the start point coordinates are (0,0,100), and the 
target point coordinates are (100,100,100). The concept of flight safety circle is proposed 
to restrict the flight height of UAV. The altitude of the UAV in flight should not be higher 
than the flight safety circle. According to practical application problem, the safety circle is 
set to be parallel to the plane. 
For BA, DEBA and CPFIBA iteration formula parameter settings are consistent with 2D 
experiments in Section 5.1. These three algorithms are applied to the path planning 
problems in the 3D terrain space model respectively. The simulation results and the 
convergence curve of the cost function are obtained as follows. 
The algorithm BA, DEBA, and CPFIBA are applied to the UAV path planning problem in 
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3D terrain environment for performance tests. The path planning simulation results are 
shown in Fig. 9 as follows. 

 
Figure 9: Simulation results of CPFIBA, DEBA, and BA in 3D environment 

In the 3D UAV path planning simulation results, we stretch the observed perspective to the 
detailed effect of each algorithm. Among the simulation effect diagram, the black line with 
solid black dots represents for the planning path of CPFIBA while the blue line with solid 
blue dots represents for the planning path of DEBA and red line with solid red dots 
represent for the planning path of BA. It can be intuitively observed that the average 
altitude of CPFIBA planning path is lower than DEBA and BA. The lower altitude makes 
the UAV safer and consumes less fuel. Moreover, the length of CPFIBA planning path is 
shorter than DEBA and BA. CPFIBA guides UAV flying shorter flight length and lower 
altitude by finding the path along the valley of the mountain terrain. CPFIBA makes the 
best performance among these algorithms in 3D path planning problems. 
The problems of UAV path planning in the 3D environment are different from those in the 
2D environment. Besides the planning path length, average flight altitude is also the key 
factor to evaluate the algorithm planning performance. The flying height change takes 
much more energy than flying steadily in the plain with fixed altitude. The better planning 
path in mountain terrain is aimed at avoiding flying across the mountain surface but also 
finding the valley or low altitude place to fly through the terrain. These factors are 
considered in the fitness value of the objective function for further analysis. 

 
Figure 10: Objective function convergence curve in 3D environment 
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The objective function convergence curves of CPFIBA, DEBA, and BA in a 3D 
environment is shown in Fig. 10. The following analysis can be proposed according to the 
objective function convergence curve graph. Similar with convergence fitness value 
formulation in a 2D environment and analysis process, the black convergence line 
represents for CPFIBA. Meanwhile, the blue convergence line represents for DEBA, and 
the red convergence line represents for BA. The slope of the convergence curve determines 
the specific algorithm. It can be concluded that CPFIBA has the best convergence 
performance while DEBA ranks the second and BA takes the last place. Compared with 
DEBA and BA, CPFIBA has the highest convergence rate. After dozens of iteration 
operations, the objective function eventually converges at a relatively stable value. The 
final stable value is generally used for performance tests, which particularly focus on the 
convergence rate and solution accuracy. After the same iteration operation, CPFIBA has 
the lowest convergence fitness compared with DEBA and BA. The lower convergence 
fitness value corresponds to the shorter flight path length, the lower average flight height 
and the less fuel cost. The evaluation index table of BA, DEBA, and CPFIBA including 
optimal path length, the cost fitness function values and algorithm execution time in a 3D 
environment is proposed in Tab. 3. 

Table 3: Evaluation index table in 3D experiment 

Algorithm Path length (m) Fitness value Convergence time (s) 
BA 894.38 228.64 3.42 

DEBA 778.91 153.47 4.31 
CPFIBA 567.37 120.35 1.72 

According to the evaluation index table, some necessary analysis can be proposed as 
follows. By numeral calculation, it can be inducted that CPFIBA gets 36.56% less than BA 
and 27.16% less than DEBA in flight path length. For the convergence fitness value 
comparison, CPFIBA gets 45.10% less than BA and 21.58% less than DEBA on the 
convergence fitness value. Considering the convergence time of each algorithm, CPFIBA 
executes 49.71% less than BA and 60.09% less than DEBA. The reason for CPFIBA 
having shorter execution time is mainly the optimal success rate, fuzzy logistic operation 
and the prerequisite of APF method. By taking less execution time, CPFIBA drastically 
improves the path planning results so it is trustworthy to utilize the proposed CPFIBA in 
the problems of UAV 3D path planning. 
According to the relevant experimental results, we confirm that the proposed CPFIBA 
performs better than BA and DEBA in 3D UAV path planning. On the other hand, it 
illustrates the adaptability of CPFIBA in dealing with multidimensional problems and its 
extraordinary solution precision and convergence rate. Compared with other standard 
group intelligent algorithms, the proposed CPFIBA have significant advantages in solving 
multidimensional problems. 

6 Conclusion and future work 
In this paper, the improved APF method and chaos strategy are combined with our 
proposed algorithm. We originally proposed the success rate of adaptive inertia weight to 
improve the performance of standard bat algorithm. In summary, a new improved bat 
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algorithm is proposed based on the improved APF method and chaos strategy, named 
CPFIBA. The adaptive inertia weight controls the balance of the global search process and 
the local search process to avoid the algorithm from falling into the local minimum. 
Combined with the chaos strategy, the initial distribution of the bat population can be 
randomized and homogenized so that the solution space can be traversed thoroughly. The 
improved APF method satisfies with the characteristics of the UAV path planning 
problems, and it fully utilizes the information of topography, start-point, and end-point to 
a great extent. In our research, the new improved CPFIBA is applied to the 2D and 3D 
problems of UAV path planning. Through experimental results and objective analysis, it is 
concluded that in the 2D and 3D problems of UAV path planning, CPFIBA has better 
performance than BA, DEBA, which prove it more suitable for solving multi-objective 
optimal problems especially the UAV path planning problems. 
This paper introduces the detailed and accurate model of the 2D and 3D problems of UAV 
path planning on the flight cost function and UAV constraints. However, we do not 
consider the dynamic threat and obstacle within the threat cost. Future work should focus 
on the theory and experiment of UAV dynamic threat and obstacle avoidance strategy, 
making the path planning method with engineering application significance. 
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