
 
 
 
Computers, Materials & Continua                            CMC, vol.61, no.1, pp.155-169, 2019 

CMC. doi:10.32604/cmc.2019.05901                                                                        www.techscience.com/cmc 

 
 

Multi-Label Learning Based on Transfer Learning and Label 
Correlation 

 
Kehua Yang1, *, Chaowei She1, Wei Zhang1, Jiqing Yao2 and Shaosong Long1  

 

 
Abstract: In recent years, multi-label learning has received a lot of attention. However, 
most of the existing methods only consider global label correlation or local label 
correlation. In fact, on the one hand, both global and local label correlations can appear in 
real-world situation at same time. On the other hand, we should not be limited to pairwise 
labels while ignoring the high-order label correlation. In this paper, we propose a novel 
and effective method called GLLCBN for multi-label learning. Firstly, we obtain the 
global label correlation by exploiting label semantic similarity. Then, we analyze the 
pairwise labels in the label space of the data set to acquire the local correlation. Next, we 
build the original version of the label dependency model by global and local label 
correlations. After that, we use graph theory, probability theory and Bayesian networks to 
eliminate redundant dependency structure in the initial version model, so as to get the 
optimal label dependent model. Finally, we obtain the feature extraction model by 
adjusting the Inception V3 model of convolution neural network and combine it with the 
GLLCBN model to achieve the multi-label learning. The experimental results show that 
our proposed model has better performance than other multi-label learning methods in 
performance evaluating. 
 
Keywords: Bayesian networks, multi-label learning, global and local label correlations, 
transfer learning. 

1 Introduction 
Nowadays, we live in an information age. An instance cannot be labeled with just single 
label, so the instance is often associated with more than one class label. For example, an 
image can be annotated with several labels [Su, Chou, Lin et al. (2011)], a piece of music 
can belong to many types [Turnbull, Barrington, Torres et al. (2008)], a text can reflect 
different themes [Ueda and Saito (2002)]. Therefore, multi-label classification attracts 
more and more researchers to research. 
There are two categories in multi-label learning algorithms [Zhang and Zhou (2007)]: 
problem transformation and algorithm adaption. Problem transformation is a 
straightforward method. The main idea is to convert multi-label problem as one or more 
traditional single label problems. Algorithms include Binary Relevance (BR) [Boutell, 
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Luo, Shen et al. (2004)], Pruned Problem Transformation (PPT) [Read, Pfahringer and 
Holmes (2009)] and so on. Algorithm adaptation is an adaptive method. The main idea is 
to use single-label classification algorithm to adapt to multi-label classification. Classic 
algorithms include C4.5 Decision Tree [Quinlan (1992)], Multi-label Dimensionality 
reduction via Dependence Maximization (MDDM) [Zhang and Zhou (2010)], Multi-label 
Informed Latent Semantic Indexing (MLSL) [Yu, Yu and Tresp (2005)] and so on. 
Label correlation can provide important information for multi-label classification. For 
example, “blue sky” and “white cloud” are highly symbiotic labels, while “sunny” and 
“black clouds” are highly exclusive labels. “ocean” and “sailboat” appear at the same 
time, it is highly likely that the “fish” label will be included, while the “desert” label will 
not appear. However, most of the existing methods mainly focus on the sharing 
characteristics of global label and ignore the label correlation of local data sets. For 
example, “Jack Ma” is associated with “Alibaba” in the IT company data set [Liu, Peng 
and Wang (2018)], but it is weakly related to global label correlation. Therefore, 
according to the above analysis, it is more practical and comprehensive to consider the 
global and local label correlations in multi-label classification. 
Each instance has characteristics of multi-dimensional label in multi-label learning. If the 
label of instance is annotated simply by manual labeling, human may sometimes ignore 
labels that they do not know or of little interest, or follow the guide by some algorithm to 
reduce labeling costs [Huang, Chen and Zhou (2015)]. Some labels may be missing from 
the training set, which is a kind of weakly supervised learning. So subjectivity factors are 
unavoidable in the labels. As a result, some labels may be missing from the data set, 
resulting in label imbalance, which makes it more difficult and potentially negatively 
impacting performance to estimate label correlations.  
In this paper, we propose a novel and effective method called “Bayesian Networks with 
Global and Local Label Correlation” (GLLCBN). The main idea of GLLCBN is to use 
the global label semantics correlation and local label correlation of data set to balance 
label correlation and reduce the impact of label noise on data set. First of all, the 
probability of each individual label is obtained by analyzing the data set. Similarly, we 
get the probability between pairwise labels by using the data set. And then, the global 
label correlation matrix is constructed by label semantic similarity. After that, according 
to the relevant probability information received in the first to three steps, the initial 
Bayesian networks topology is constructed to obtain the high-order label correlation. In 
addition, redundant edge (label correlation) in the network structure are optimized by 
graph theory and probability theory. Subsequently, GLLCBN model is constructed. 
Finally, the initial prediction label is obtained by using transfer learning to adjust and 
train the Inception V3 model, and then, the prediction result is combined with GLLCBN 
to achieve multi-label classification. 
The remainder of this paper is organized as follows. Section 2 introduces the related work 
of multi-label learning. Section 3 presents our proposed algorithm in detail. We 
experimented to verify the performance of our proposed method in Section 4. Finally, 
conclusions and future work are given in Section 5. 
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2 Related work 
In recent years, multi-label learning has been extensively studied and many methods have 
been proposed [Zhang and Zhou (2007)]. In addition, the role of label correlation has 
gradually become the focus of researchers. Methods can be divided into three categories 
according to the degree of label correlation [Zhang and Zhang (2010)]. 
First-order method is to convert a multi-label classification into multiple one-dimensional 
independent classifiers. For example, the classic BR [Boutell, Luo, Shen et al. (2004)] 
trained a corresponding classifier for each label independently. Obviously, the advantage of 
this approach is its simplicity, but it ignores label correlation. Second-order method refers 
to the correlation between pairs of labels. For example, the CLR [Brinker (2008)] achieved 
conversion of multi-label classification problems by analyzing the correlation of pairwise 
labels and establishing label rankings. Although the advantage of this method is that it 
considers the internal pairwise label correlations, which has a certain efficiency 
improvement. However, multi-label learning generally has high dimensions, we should not 
be limited only to consider the existence of pairwise labels. Therefore, higher-order 
methods are proposed. High-order method refers to analyzing the correlation between the 
high-dimensional of the labels and is not limited to the pairwise labels. For example, ML-
LRC [Huang and Zhou (2012)] solves multi-label classification problem by using 
characteristics of the matrix rank. Obviously, the advantage of high-order method is to 
extract the intrinsic connection of label and strengthen the dependency of labels, but label 
correlation analysis is more difficult and the label correlation structure is more complicated. 
Labeling of an instance may result in label imbalance due to subjectivity factors. For 
example, the actual label for this image should contain “bull”, “mountain” and “road” in 
Fig. 1. By manual labeling, on the one hand, the picture on the left can be marked in the 
order of “cattle”, “mountain”, “road”. On the other hand, the picture on the right may be 
marked as “mountain”, “road”, “bull”. Sometimes the label of “bull” even be lost by 
visual effects. GLOCAL [Zhu, Kwok and Zhou (2017)] indicated that missing label and 
label order are influential factors for multi-label classification. 

 

 Figure 1: Image annotation 
In summary, for the study of multi-label classification, not only global label correlation 
should be considered, but also local label correlation. Therefore, a more balanced and 
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comprehensive label correlation can be received. 

3 The proposed approach 
In this section, details of the proposed approach GLLCBN will be presented. Firstly, we 
perform predefined of model and analysis global and local label correlation to obtain 
GLLCBN model. Secondly, we combine the optimized Inception V3 [Szegedy, 
Vanhoucke, Ioffe et al. (2016)] model by transfer learning with GLLCBN to achieve 
multi-label classification. 

3.1 Preliminaries 
Since multi-label classification has high-dimensional features, this is the difference 
between multi-label classification and single-label classification, we have following 
predefined processing. Let nRD = be n-dimensional sample space and },...,,{ 21 mi lllL = , 
where m is the number of  labels in dataset. On the one hand, the correspondence between 
the data set instance and the sample label is defined as },...,2,1|,{ niMNQ ii == ）（ , 
where n represents the total number of data set and DNi ∈ is an n-dimensional feature 

vector. So we define ],...,,[ 21 n
iiii NNNN =  to represent the feature vector of a sample 

instance. On the other hand, we denote mn
21 {-1,1}],...,,[ ×∈= T

nMMMM as sample 

label matrix, where ],...,,[ 21 m
iiii lllM =  is the label vector of instance associated with iN . 

In addition, we denote }1,1{,...,, 21 −∈m
iii lll  as each element 1=j

il  if the i-th instance has 

j-th label, otherwise 1-=j
il . 

3.2 Label correlation 
Label correlation contains potentially important information for multi-label classification 
problem, so label correlation is an essential part of our analysis [Punera, Rajan and Ghosh 
(2005)]. However, there are certain difficulties in the analysis of this aspect, then how to 
solve this problem has become a new research direction. In order to analyze label 
correlation more reasonably and comprehensively, we deal with local correlation of the 
data set and global correlation of the label semantics. 

3.2.1 Local label correlation 
We consider local label correlation from the data set. Since data in the data set is random, 
the probability of different labels is inconsistent. According to this feature, we denote 

])(,...,)(,)([ 1 mi lplplpP = as the probability of each label occurrence, where m 
represents the total number of sample labels and )( ilp  indicate the probability of the i-th 
label in the data set. Since label correlation is at least second-order, we need to calculate 
the probability of pairwise labels. The local label correlation is defined as: 
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where ji  , are a single label in the label set and mji ∈ , . We denote )(
jlNT as the 

number of sample instances with the label jl . However , to avoid anomalous expressions, 

if )(
jlNT value is equal to 0, it means that )|( ji llp is also equal to 0. Similarly, 

)( | ji llNT represents the number of sample instances that simultaneously have both labels 

il  and jl . In addition, we denote )|( ji llp  and )|( ji llX as the probability of pairwise label 
correlations. It is important to note that pairwise label correlations is not a symmetric 
equivalent relationship, which is defined as: 

)|()|( ijji llpllp ≠                     (2) 

For example, there is a data set as shown in Tab. 1: 

Table 1:  Data set 

Instance order of data set Label of data set(A,B,C,D,E) 
1 1，-1，-1，1，-1 
2 1，1，1，-1，-1 
3 -1，1，1，1，-1 
4 1，1，-1，-1，1 
5 1，-1，1，-1，-1 

 

According to the above table, 
3
2)|( =BA llp , and 

2
1

4
2)|( ==AB llp , there is ≠)|( BA llp  

)|( AB llp  , so Eq. (2) is correct. 

3.2.2 Global label correlation 
We obtain global correlation by analyzing the word similarity. At present, the correlation 
between words mainly uses context semantics of words, the word vector is used to judge 
correlation between two words and Word2vec [Mikolov, Chen, Corrado et al. (2013)] is a 
classic algorithm. For example, words “man” and “woman” are highly relevant to “man” 
and “beautiful”, because they are used in a similar context. For example the word “man” 
can be used in the position of the sentence and the word “woman” can be replaced. 
Therefore, we define mmT

mWWWW ×∈= ]1,0[],...,,[ 21 as word matrix, where 
)]|(),...,|(),|([ 121111 mllwllwllwW =  is a vector of pairwise words correlation and 

)|( ji llw  is the  word correlation probability between labels i and j. The process is 
defined as: 
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As shown in Eq. (3), each label is perfectly correlated with itself, so the value is 1 and a 
small value means that the label correlation is low, otherwise the opposite. 

3.3 GLLCBN model 
According to the analysis in Section 3.2, we have dealt with global and local label 
correlations. The relationship between them is defined as Eq. (4): 

)|()|()|( 21 jijiji llwllpllE λλ +=                                            (4) 

where ji  , are pairwise labels, and 1]1,0[ , 2121 =+∈ λλλλ ，  are trade-off parameters 
for controlling the weight between global and local label correlations. Then that, 

)|( ji llE  is the comprehensive label correlation. 

It is not enough to finally acquire pairwise label correlations through the )|( ji llE , 
because according to the global and local label correlation, this will result in a cyclic 
relationship between pairwise labels, the labels il  and jl  have a relationship between 

)|( ji llE  and )|( ij llE . When a symmetrical relationship occurs, it becomes ambiguous 
because it is impossible to determine which side of the pairwise labels is strongly 
dependent on the other. Therefore, in order to solve this problem, it is necessary to 
eliminate the ambiguous dependencies of pairwise labels, so that the definition can be 
defined as Eq. (5): 

))|(),|(max()|(
21 ijjixx llEllEllE =                                       (5) 

where ji ll  ,  are pairwise labels, and 
21

| xx ll  is finalized label dependency.  

For example, there is a structure in Fig. 2, where a circle represents a label (e.g., A, B) 
and the edges between the circles represent the probability of pairwise label correlations 
(e.g., )|( AB llE , )|( BA llE ). 

 
Figure 2: Correlation between label A and B 

According to the description of the Eq. (5), since correlation follow the principle of 
maximum value, correlation between label A and label B should be such that the 
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structure of Fig. 2 should be optimized to the structure of Fig. 3. Therefore, this shows 
that label A is more dependent on label B. 

 
Figure 3: Optimized label A and B correlation 

As shown in Fig. 4, it is worth noting that if there are multiple reachable paths for one 
label to another. As shown in the Eq. (6), it is used to determine label dependencies of 
multiple reachable edges.  

 

Figure 4: Multiple reachable paths between label 

))|...||(),|(max()|( 21 ikkjjiji llllEllEllE =                                   (6) 

Eq. (6) can be equivalent to the form as shown in the Eq. (7): 
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where ... , 2 , 1 kk  are the middle label node on the path from label i to j. Then that, 1Q = 

ji llw
jN
jiN

|21 )(
),( λλ + and 2Q = ))|(,...,)|()|(

)...,,( N
),...,,(

1212
21

1
1 nkikkjk llwllwllw

jkk
jkiN

×××+ （λλ . The 

specific proof of the Eq. (7) is as follows: 
Proof. First, we are based on Fig. 4. On the one hand, N(A), N(B), N(C), N(A,B), 
N(A,C), N(B,C), N(A,B,C) are the number of sample instances. On the other hand, 

)|( AC llp , )|( AB llp , )|( BC llp  are the probability of pairwise local label correlations. 
Then, )|( AB llw , )|( AC llw , )|( BC llw  are the probability of label semantic correlation. 
Moreover, their values are known according to the analysis from Eq. (1) to Eq. (5).  
Second, according to graph theory and probability theory, we have the following defines: 
 )|()|()|( 21 ACACAC llwllpllE λλ +=                   (8) 

)|()|())|(),|(( 21 ABABCABABCBCAB llwllpllEllE λλ += .             (9) 

If we have to prove ))|(),|(()|( BCABAC llEllEllE ≥ ，according to Eq. (8) and Eq. (9), 
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we only need to prove ≥+ )|(
)(

),(
21 AC llw

AN
CAN λλ )|(

)(
)(

21 ABABC llw
ABN

ABCN λλ + . 

We observe that the data set can be able to guarantee ),,(),( CBANCAN ≥ , because 
both of them belong to the inclusion relationship, and the former has a larger scope. By 
the same logic, we know that ),()( BANAN ≥  and the values of  1λ  and  2λ  on both 
sides of the equation are the same, so it does not require additional consideration. In 
addition, )()|()|()|( CBCABABABC lllwllwllw ××= , where )( Clw is equal 1, thus, 

)|()|()|( BCABABABC llwllwllw ×= .   

According to the above analysis, we know that only if the sample data set satisfies the 

value of )|(
)(

),(
21 AC llw

AN
CAN λλ + ≥ ))|()|((

)(
)(

21 BCAB llwllw
ABN

ABCN
×+ λλ , 

then ))|( ,)|(()|( BCABAC llEllEllE ≥  can be obtained, otherwise, the opposite is true. 
Therefore，we prove that Eq. (7) is true. 
According to the Eq. (7), the reachable path for eliminating the dependency of the label 
correlation can be performed, but the following two cases require special handling. 
Case 1. )|...||()|( 21 jkkiji llllEllE =  
According to the principle of maximum label correlation, Fig. 4 is optimized as shown in 
Fig. 5. 

 
Figure 5: Optimized GLLCBN model 

Case 2. )|()|( jiji llEllE =   

Fig. 4 does not need to be changed. Because there may be pairwise label correlations, the 
intermediate nodes in them cannot be eliminated, and the correlation structure of each 
intermediate node should be retained. 
In summary, directed graph model of GLLCBN can be constructed by analyzing label 
correlation and Bayesian networks [Friedman, Linial, Nachman et al. (2000)]. The 
GLLCBN model can be used to optimize the label correlation and facilitate the extraction 
of potential association information between labels, and reduce the impact of label 
imbalances in the sample data set. 

3.4 Adjustment of Inception V3 model 
Convolutional Neural Network (CNN) plays a very important role in the research of 
image classification [Song, Hong, Mcloughlin et al. (2017)]. There are many excellent 
models of CNN, such as AlexNet [Krizhevsky, Sutskever and Hinton (2012)], VGGNet 
[Russakovsky, Deng, Su et al. (2015)], ResNet [He, Zhang, Ren et al. (2015)] and 
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GoogleNet [Szegedy, Liu, Jia et al. (2014)]. Among them, Inception V3 [Szegedy, 
Vanhoucke, Ioffe et al. (2016)] created by Google is a very portable and highly usable 
model. Therefore, we use transfer learning approach to make related adjustments for the 
Inception V3 model to improve the performance of the multi-label classification problem. 
In order to adjust the Inception V3 model, we need to make some adjustments. First of all, 
since the Inception V3 model was initially trained for single classification, but our images 
are multi-label attributes, we need to treat the label storage of the input data as multi- 
dimensional, rather than only as single label. Secondly, in order to achieve applicability, 
it is generally necessary to remove the top-level structure and then add some new various 
layers of customization. Therefore, we add a fully connected layer of 1024 nodes for 
association with the last pooling layer. Finally, since the softmax in Inception V3 outputs 
1000 nodes (the ImageNet [Deng, Dong, Socher et al. (2009)] data set has 1000 
categories), we need to modify the last layer of the network and convert it to the number 
of nodes (it equivalent to the label type in the data set) so that label classification is 
achieved through our model. 

4 Experiments 
In this section, to evaluate the performance of GLLCBN, a description of the multi-label 
data set used in the experiments, the performance evaluation of multi-label classification 
and comparative algorithm with GLLCBN model are explained. Finally, the experimental 
results and analysis are presented. 

4.1 Data sets 
In order to verify the performance of GLLCBN, we chose the open source data set 
collected by Nanjing University. The download link for the data set is  
http://lamda.nju.edu.cn/files/miml-image-data.rar. The data set contains 2,000 landscape 
images and five labels (desert, ocean, sunset, mountains, trees). In addition, each instance 
has an average of two labels. It is worth noting that the original data set archive contains 
a file called miml_data with a .mat suffix (Matlab file format). It contains three files: 
bags.mat, targets.mat and class_name.mat. The first file can be ignored directly because it 
has no special effect. The second file is the label definition for each image, which means 
a matrix of 5×2000, each column represents label for an instance image, and the value 1 
indicates the presence of the label, and -1 means that there is no corresponding label, and 
the label order is the same as the class_name.mat file. In addition, we need to deal with 
label format content and convert the matrix into a .txt format file in order to facilitate 
follow-up training of Inception V3 model. The last file shows all possible label names for 
the data set. 

4.2 Performance evaluation 
Since an instance has multiple label attributes in the multi-label classification, prediction 
label may belong to a subset of the actual label, which is represented as actualprediction LL ∈ . 
To evaluate the performance of GLLCBN model, we select five widely-used evaluation 
metrics [Gibaja and Ventura (2015)]. 
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Hamming Loss expresses the degree of inconsistency between the prediction label and 
the actual label. Eq. (10) shows the expression of the Hamming Loss.  
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Coverage evaluates how far it is needed, on average, to go down the ranked list of labels 
in order to cover all ground true labels. Eq. (11) shows the expression of the Coverage. 
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Ranking Loss evaluates the average fraction of mis-ordered label pairs. Ranking Loss is 
defined as follows： 
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Average Precision represents the average accuracy of the predicted instance label set, just 
like Eq. (13).  
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            (13) 

Average Predicted Time expresses the average time to predict each instance and it time 
unit is second, which is expressed as follows: 

N
TTTimeedictedverage n 0   Pr    A −

=
                                      

(14) 

It is worth noting that in the above five performance evaluation, Hamming Loss, Ranking 
Loss, Coverage, Ranking Loss and Average Predicted Time, the smaller value means the 
better performance. But for Average Precision, the larger value means better performance. 

4.3 Comparative algorithms 
In order to validate the validity of GLLCBN model, we compare GLLCBN to the 
following most advanced multi-label learning algorithms: 
1. Binary Relevance (BR) [Boutell, Luo, Shen et al. (2004)] is first-order method. The 

main idea is to train a binary linear SVM classifier independently for each label. 
2. Calibarated Label Ranking (CLR) [Brinker (2008)] is second-order method. The 

main idea is to establish a label ranking by analyzing the pairwise labels. 
3. Multi-label Learning Using Local Correlation (ML-LOC) [Huang and Zhou (2012)] 

is high-order method. The main idea is to analyze the local label correlation by 
encoding instance features. 

4. Random K-Labelsets (RAKEL) [Tsoumakas, Katakis and Vlahavas (2011)] is high- 
order method. The main idea is to transform the multi-label classification problem 
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into several multi-class learning problems by exploiting high-order global label 
correlation. 

All compared algorithms are summarized in Tab. 2. 

Table 2: Compared methods 

Method Label Correlation Degree of label correlation 
BR NO First-order 

CLR YES Second-order 
ML-LOC YES High-order 
RAKEL YES High-order 

GLLCBN YES High-order 

4.4 Experimental results 
In our experiments, we randomly use 30%, 50% and 70% of the data in data set as the 
training set, and the rest of data as test data set. Experimental results are shown from Tab.  
3 to Tab. 5. In addition, all of our experimental methods are studied by using the Python 
or Matlab environment. 

Table 3: Performance evaluation of different algorithms for randomly marking 30% data 
sets as training data sets: mean± std(rank) 

Algorithms Hamming 
Loss 

Cove rage Ranking 
Loss 

Average 
Precision 

Average 
Predicted Time 

BR 0.1624±0.0
124(1) 

0.2925±0.02
13(1) 

0.2905±0.02
02(1) 

0.6724±0.02
11(1) 

0.5292±0.0123(1
) 

CLR 0.1763±0.0
154(2) 

0.3634±0.02
01(3) 

0.3129±0.02
97(2) 

0.5781±0.02
15(3) 

0.6914±0.0105(3
) 

ML-LOC 0.1846±0.0
136(4) 

0.3683±0.01
98(4) 

0.3356±0.02
68(4) 

0.5221±0.02
98(4) 

0.7117±0.0113(4
) 

RAKEL 0.1835±0.0
145(3) 

0.3612±0.02
14(2) 

0.3149±0.01
91(3) 

0.6138±0.02
56(2) 

0.6721±0.0121(2
) 

GLLCBN 0.1958±0.0
187(5) 

0.3968±0.02
87(5) 

0.3905±0.02
08(5) 

0.4923±0.02
49(5) 

1.0302±0.0103(5
) 
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Table 4: Performance evaluation of different algorithms for randomly marking 50% data 
sets as training data sets: mean± std(rank) 

Algorithms Hamming 
Loss 

Cove rage Ranking 
Loss 

Average 
Precision 

Average 
Predicted Time 

BR 0.1678±0.00
76(1) 

0.2698±0.01
81(5) 

0.2791±0.01
59(5) 

0.6902±0.01
45(5) 

0.5131±0.0116(
1) 

CLR 0.1698±0.01
68(2) 

0.2431±0.01
24(4) 

0.2324±0.01
88(4) 

0.7171±0.01
92(4) 

0.7105±0.0122(
3) 

ML-LOC 0.1741±0.01
21(3) 

0.2312±0.01
19(2) 

0.2223±0.01
09(2) 

0.7328±0.01
76(1) 

0.7141±0.0109(
4) 

RAKEL 0.1824±0.01
19(4) 

0.2223±0.01
02(1) 

0.2149±0.01
45 (1) 

0.7323±0.01
25（2） 

0.6924±0.0117(
2) 

GLLCBN 0.1867±0.01
21(5) 

0.2401±0.01
23(3) 

0.2305±0.01
57(3) 

0.7309±0.01
18(3) 

1.1165±0.0149(
5) 

Table 5: Performance evaluation of different algorithms for randomly marking 70% data 
sets as training data sets: mean± std(rank) 

Algorithms Hamming 
Loss 

Cove rage Ranking 
Loss 

Average 
Precision 

Average 
Predicted Time 

BR 0.1692±0.13
28(3) 

0.2608±0.01
79(5) 

0.2705±0.02
18(5) 

0.6988±0.02
12(5) 

0.5023±0.0169 
(1) 

CLR 0.1663±0.01
54(1) 

0.2125±0.01
88(4) 

0.1926±0.01
96(4) 

0.7303±0.01
86(4) 

0.6924±0.0122(
2) 

ML-LOC 0.1725±0.01
26(4) 

0.1983±0.01
42(2) 

0.1723±0.01
23(2) 

0.7784±0.00
98(2) 

0.7212±0.0143(
4) 

RAKEL 0.1752±0.00
98(5) 

0.2012±0.01
08(3) 

0.1749±0.01
23(3) 

0.7693±0.01
23(3) 

0.6935±0.0153
（3） 

GLLCBN 0.1689±0.00
69(2) 

0.1943±0.01
14(1) 

0.1705±0.01
62(1) 

0.7909±0.01
04(1) 

1.1102±0.0121(
5) 

4.5 Experimental analysis 
According to experimental results in Section 4.4, we get the following summary: 
1. When the training data set is 30% of the data set, BR algorithm has some advantages 

in the performance evaluation of Hamming Loss, Coverage, Ranking Loss, Average 
Precision and Average Prediction Time. Global label correlation algorithm is 
superior to local label correlation algorithm. 

2. When the training data set is 50% of the data set, BR algorithm has better performance 
evaluation in Hamming Loss than the label correlation algorithm. In terms of 
Coverage, Ranking Loss, Average Precision and Average Prediction Time, the CLR, 
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ML-LOC and GLLCBN algorithms that consider local label correlation have a better 
advantage than the RAKEL algorithm that considers global label correlation. 

3. When the training data set is 70% of the data set, the advantages of BR are gradually 
replaced by other algorithms. CLR algorithm in Hamming Loss is higher than other 
algorithms. For the label correlation algorithm, GLLCBN has better performance 
evaluation in terms of Coverage, Ranking Loss and Average Precision than ML-
LOC and RAKEL algorithms, but it is longer in Average Prediction Time. 

4. By analyzing the above three points, we can know that when the training data set is 
gradually increased, the advantage of the label correlation algorithm in the 
performance evaluation is gradually reflected, indicating that the label correlation 
has a certain influence on the multi-label classification problem. 

5 Conclusion and future work  
For the study of multi-label classification, how to mine the potential label correlation 
information is still a worthy direction in the future. In this paper, we propose a novel and 
effective approach named GLLCBN for multi-label learning. In the GLLCBN model, the 
node represents label space, and edge represents global and local comprehensive label 
correlation. We firstly obtain a complex model by analyzing label, global semantic 
relevance and local label correlation of data set (This process is called building node 
association graph), and secondly by using probability theory, Bayesian networks and 
graph theory to optimize label dependency graph (This process is called eliminating 
redundant edges), thus we construct a label-dependent network called GLLCBN model. 
Finally, the multi-label classification is solved by combining the initial prediction results 
by the Inception V3 model with the GLLCBN model. In addition, experimental results 
show that our proposed approach has certain effectiveness in performance evaluation. 
In the future, we consider optimizing the performance of our proposed methods in large 
scale label space data sets and applying this approach to more different multi-label data sets. 
 
Acknowledgement: The authors gratefully acknowledge support from National Key 
R&D Program of China (No. 2018YFC0831800) and Innovation Base Project for 
Graduates (Research of Security Embedded System). 

References 
Boutell, M. R.; Luo, J.; Shen, X.; Brown, C. M. (2004): Learning multi-label scene 
classification. Pattern Recognition, vol. 37, no. 9, pp. 1757-1771. 
Brinker, K. (2008): Multilabel classification via calibrated label ranking. Machine 
Learning, vol. 73, no. 2, pp. 133-153. 
Friedman, N.; Linial, M.; Nachman, I.; Pe, D. (2000): Using bayesian networks to 
analyze expression data. Journal of Computational Biology, vol. 7, no. 3-4, pp. 601-620. 
Deng, J.; Dong, W.; Socher, R.; Li, L. J. (2009): Imagenet: a large-scale hierarchical image 
database. IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255. 
Gibaja, E.; Ventura, S. (2015): A tutorial on multilabel learning. ACM Computing 
Surveys, vol. 47, no. 3, pp. 1-38. 



 
 
 
168                                                                             CMC, vol.61, no.1, pp. 155-169, 2019 

He, K.; Zhang, X.; Ren, S.; Sun, J. (2015): Deep residual learning for image 
recognition. IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778. 
Huang, S. J.; Chen, S.; Zhou, Z. H. (2015): Multi-label active learning: query type 
matters. International Conference on Artificial Intelligence, pp. 946-952. 
Huang, S. J.; Zhou, Z. H. (2012): Multi-label learning by exploiting label correlations 
locally. 26th AAAI Conference on Artificial Intelligence, pp. 949-955. 
Krizhevsky, A.; Sutskever, I.; Hinton, G. E. (2012): Imagenet classification with deep 
convolutional neural networks. International Conference on Neural Information 
Processing Systems, pp. 1097-1105. 
Liu, Y.; Peng, H.; Wang, J. (2018): Verifiable diversity ranking search over encrypted 
outsourced data. Computers, Materials & Continua, vol. 55, no. 1, pp. 37-57. 
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. (2013): Distributed 
representations of words and phrases and their compositionality. Advances in Neural 
Information Processing Systems, vol. 26, pp. 3111-3119. 
Punera, K.; Rajan, S.; Ghosh, J. (2005): Automatically learning document taxonomies 
for hierarchical classification. Special Interest Tracks and Posters of the International 
Conference on World Wide Web, pp. 1010-1011. 
Quinlan, J. R. (1992): C4.5: programs for machine learning. Morgan Kaufmann 
Publishers, vol. 1. 
Read, J.; Pfahringer, B.; Holmes, G. (2009): Multi-label classification using ensembles 
of pruned sets. IEEE International Conference on Data Mining, pp. 995-1000. 
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S. et al.  (2015): Imagenet 
large scale visual recognition challenge. International Journal of Computer Vision, vol. 
115, no. 3, pp. 211-252. 
Song, Y.; Hong, X.; Mcloughlin, I.; Dai, L. (2017): Image classification with cnn based 
fisher vector coding. IEEE Conference on Visual Communications and Image Processing, 
pp. 1-4. 
Su, J. H.; Chou, C. L.; Lin, C. Y.; Tseng, V. S. (2011): Effective semantic annotation 
by image-to-concept distribution model. IEEE Transactions on Multimedia, vol. 13, no. 3, 
pp. 530-538. 
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S. et al.  (2014): Going deeper with 
convolutions. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-9. 
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. (2016): Rethinking the 
inception architecture for computer vision. IEEE Conference on Computer Vision and 
Pattern Recognition, pp. 2818-2826. 
Tsoumakas, G.; Katakis, I.; Vlahavas, I. (2011): Random k-labelsets for multilabel 
classification. IEEE Transactions on Knowledge & Data Engineering, vol. 23, no. 7, pp. 
1079-1089. 
Turnbull, D.; Barrington, L.; Torres, D.; Lanckriet, G. (2008): Semantic annotation 
and retrieval of music and sound effects. IEEE Transactions on Audio Speech & 
Language Processing, vol. 16, no. 2, pp. 467-476. 



 
 
 
Multi-Label Learning Based on Transfer Learning and Label Correlation               169 

Ueda, N.; Saito, K. (2002): Parametric mixture models for multi-labeled text. 
International Conference on Neural Information Processing Systems, pp. 737-744. 
Yu, K.; Yu, S.; Tresp, V. (2005): Multi-label informed latent semantic indexing. 
International ACM Sigir Conference on Research & Development in Information 
Retrieval, pp. 258-265. 
Zhang, M. L.; Zhang, K. (2010): Multi-label learning by exploiting label dependency. 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 
999-1008. 
Zhang, M. L.; Zhou, Z. H. (2007): ML-KNN: a lazy learning approach to multi-label 
learning. Pattern Recognition, vol. 40, no. 7, pp. 2038-2048. 
Zhang, Y.; Zhou, Z. H. (2010): Multi-label dimensionality reduction via dependence 
maximization. ACM Transactions on Knowledge Discovery from Data, vol. 4, no. 3, pp. 
1-21. 
Zhu, Y.; Kwok, J. T.; Zhou, Z. H. (2017): Multi-label learning with global and local 
label correlation. IEEE Transactions on Knowledge & Data Engineering, vol. 1, no. 99, 
pp. 1. 


	Multi-Label Learning Based on Transfer Learning and Label Correlation
	Kehua Yang0F , *, Chaowei She1, Wei Zhang1, Jiqing Yao2 and Shaosong Long1

	Figure 1: Image annotation
	We consider local label correlation from the data set. Since data in the data set is random, the probability of different labels is inconsistent. According to this feature, we denote as the probability of each label occurrence, where m represents the ...
	whereare a single label in the label set and . We denote as the number of sample instances with the label . However , to avoid anomalous expressions, if value is equal to 0, it means that is also equal to 0. Similarly, represents the number of sample ...
	For example, there is a data set as shown in Tab. 1:
	Table 1:  Data set
	We obtain global correlation by analyzing the word similarity. At present, the correlation between words mainly uses context semantics of words, the word vector is used to judge correlation between two words and Word2vec [Mikolov, Chen, Corrado et al....
	where  are pairwise labels, and  is finalized label dependency.
	For example, there is a structure in Fig. 2, where a circle represents a label (e.g., A, B) and the edges between the circles represent the probability of pairwise label correlations (e.g., ,).
	Figure 2: Correlation between label A and B
	According to the description of the Eq. (5), since correlation follow the principle of maximum value, correlation between label A and label B should be such that the structure of Fig. 2 should be optimized to the structure of Fig. 3. Therefore, this s...
	As shown in Fig. 4, it is worth noting that if there are multiple reachable paths for one label to another. As shown in the Eq. (6), it is used to determine label dependencies of multiple reachable edges.
	References

