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Abstract: Social organizations can be represented by social network because it can 
mathematically quantify and represent complex interrelated organizational behavior. 
Exploring the change in dynamic social network is essential for the situation awareness of 
the corresponding social organization. Social network usually evolves gradually and 
slightly, which is hard to be noticed. The statistical process control techniques in industry 
field have been used to distinguish the statistically significant change of social network. 
But the original method is narrowed due to some limitation on measures. This paper 
presents a generic framework to address the change detection problem in dynamic social 
network and introduces a distribution-free multivariate control charts to supervise the 
changing of social network. Three groups of network parameters are integrated together in 
order to achieve a comprehensive view of the dynamic tendency. The proposed approaches 
handle the non-Gaussian data based on categorizing and ranking. Experiments indicate that 
nonparametric multivariate procedure is promising to be applied to social network analysis. 
 
Keywords: Dynamic social network analysis, statistical process control, email network, 
categorization, rank. 

1 Introduction 
Social organizations can be represented with different networks, such as communication 
network, resources sharing network, and so on. Social Network Analysis (SNA) is a usual 
approach for studying and analyzing groups of actors and their ties. 
Organizations are not static. Their structure, composition, and patterns of communication may 
change over time. These changes may occur quickly, such as when a corporation restructures, 
but they often happen gradually, as individual roles expand or contract. These tendentious 
changes often reflect the gradual evolution of an organization. However, the trend change is 
easily confused with the normal fluctuation. In the normal operation of an organization, there 
will be a certain degree of fluctuation, which reflects the normal daily changes. 
However, most techniques in social network analysis focus on static relationships between 
actors in social organizations. As the organizations are developing, their corresponding 
social networks are fluctuating overtime. Researches on dynamics of social network are 
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significant for understanding the behaviors of organization. Drastic changes are obvious, 
but the network may experience gradually changes which are too subtle to notice at most 
of the time. At present, network change detection technology has been widely used in social 
network analysis, industrial control network [Wan, Yao, Jing et al. (2018)] and other fields. 
McCulloh et al. [McCulloh and Carley (2008)] originated a new area of researching named 
social network change detection (SNCD), which combined the theories of Social Network 
Analysis with the techniques of Statistical Process Control (SPC) to rapidly detect 
statistically significant changes in dynamic social network. However, this approach has 
some limitation. On one hand, the effectiveness of the approach is sensitive to missing 
information. On the other hand, this approach assumes that network measures are normally 
distributed. As a matter of fact, complete information is hard to achieve because of the 
limitation of privacy, encryption, and inaccurate operations and so on. The strict 
assumption limits the selection of measures and the using of approach.  
Our research attaches importance to the issues above, we put forward three groups of 
parameters for measuring communication network, and adopt another SPC procedure 
proposed by Qiu [Qiu (2018)] to explore the trend of dynamic network. The approach is 
tested on Enron Email dataset and proves that it can be applied in analyzing dynamic 
tendency in social networks well with careful adjustments. 

2 Related work 
The methods based on graph is the general technique for analyzing the dynamitic of 
network. Related work is classified as bellow. 

2.1 Distance measure applied to dynamic network anomaly detection 
One common dynamic network anomaly detection method is to use network distance 
metrics to find time slices that are extremely different from the network in the previous 
time step. The metrics measured in graphs are typically structural features, Once the 
summary metrics are found for each graph, the difference or similarity, which are inversely 
related, can be calculated. The variation in the algorithms lies in the metrics chosen to 
extract and compare, and the methods they use to determine the anomalous values and 
corresponding graphs. Hamming distance is often used in binary networks to measure the 
distance between two networks. Euclidean distance is similarly used for weighted networks. 
Jaccard coefficient and graph edit distance are used to measure the number of same actors 
and edges between two graphs. Another examples of network distance metrics include 
[Akoglu, Tong and Koutra (2015); Koutra, Shah, Vogelstein et al. (2016); Berlingerio, 
Koutra and Faloutsos (2013)]. 
While these methods may be effective at quantifying difference among static networks, they 
lack an underlying statistical distribution. This is a constraint on identifying a statistically 
significant change, as opposed to normal and spurious fluctuations in the network. 

2.2 Probabilistic models applied to dynamic network anomaly detection 
With a foundation in probability theory, distributions, and scan statistics, these methods 
typically construct a model of what is considered ‘normal’ or expected, and flag deviations 
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from this model as anomalous.  
Some of the most popular models for hypothesis testing are the exponential random graph 
models (ERGM) family. An example is dynamic ERGM variant for hypothesis testing in 
a network stream [Desmarais and Cranmer (2012); Snijders, van de Bunt and Steglich 
(2010)]. A dynamic ERGM model can be used with likelihood ratio testing to perform 
anomaly detection. But the model is limited because it is not suitable for a network of nodes 
larger than ten thousand. 
Scan statistics are often called ‘moving window analysis’ [Ranshous, Shen, Koutra et al. 
(2015)], where the local maximum or minimum of a measured statistic is found in specific 
regions of the data. In a graph, a scan statistic can be considered as the maximum of a graph 
invariant feature. Wan et al. [Wan, Milios, Kalyaniwalla et al. (2009)] proposed a link-
based event detection method that clusters vertices with similar communication patterns 
together and then, considers deviations from each vertex's individual profile, as well as its 
cluster profile. 
The methods of scan statistics have advantages at detailed network statistics. As a result, it 
could be used to locate the change area of the large network. However, the high cost of 
computation for each window should be considered when these algorithms are applied to 
really application. 

2.3 Statistical process control applied to dynamic network anomaly detection 
SNCD was discussed by McCulloh et al. using social network analysis techniques and 
statistical process control to identify small changes via monitoring network measures 
independently [McCulloh and Carley (2008)].  By taking measures of a network over time, 
a control chart can be used to signal when significant changes occur in the network. 
CUSUM chart was recommended for longitudinal social network analysis. Azarnoush et 
al. [Azarnoush, Paynabar, Bekki et al. (2016)] also proposed a statistical method to monitor 
Enron Email formation mechanism via network attributes. Ebrahim Mazrae Farahani et al. 
[Ebrahim, Reza, Rassoul et al. (2017)] used multivariate exponentially weighted moving 
average (MEWMA) and multivariate cumulative sum (MCUSUM) control charts to 
monitor the network formation process. 
However, these approaches assume that network measures are normally distributed. 
Gaussian distribution plays an important role in SPC, the observed measurements are 
required to follow the normal distribution when applying traditional CUSUM control chart. 
However, the condition is very strict in applications, especially when we consider the 
measures of dynamic network. Usually, people transform the original data into Gaussian 
data in order to use the control chart, but it is extremely difficult for the transformation of 
multivariate data, because of the requirement that all its lower-dimensional marginal 
distribution must be normally distributed. 

3 Dynamic network change analysis based on distribution-free multivariate process 
control 
Equations and mathematical expressions must be inserted into the main text. Two different 
types of styles can be used for equations and mathematical expressions. They are: in-line 
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style, and display style. 

3.1 Problem definitions 
In this subsection, social network modeling and notation are discussed. Firstly, the notation and 
definitions used to formulate the model and method are presented. A social network can be provided 
in the form of network relationships matrices. The notation to characterize a social network is 
presented by the following equations: 

𝑔𝑔(𝑡𝑡) = �𝑉𝑉(𝑡𝑡),𝐸𝐸(𝑡𝑡)�; 𝑡𝑡 = 1, … ,𝑛𝑛                   (1) 

𝑉𝑉(𝑡𝑡) = {𝑣𝑣1,𝑣𝑣2, … 𝑣𝑣𝑖𝑖, …𝑣𝑣𝑚𝑚}                 (2) 

𝐸𝐸(𝑡𝑡) = {𝑒𝑒1, 𝑒𝑒2, … 𝑒𝑒𝑗𝑗, … 𝑒𝑒𝑙𝑙}                (3) 

where 𝑉𝑉(𝑡𝑡)  and 𝐸𝐸(𝑡𝑡)  represent nodes and edges in time period t, respectively. A 
relationship may be defined as any possible communications such as Email, phone calls, 
SMS, Telegram messages, etc. 
A social dynamic network  𝐺𝐺 is presented by the following equation: 

𝐺𝐺 = {𝐺𝐺𝑡𝑡 , 𝑡𝑡 = 1, … ,𝑛𝑛}               (4) 
where 𝐺𝐺𝑡𝑡 represents a slice network, which is a snapshot of the social network during the 
given period. Sometimes 𝐺𝐺𝑡𝑡 =  𝑔𝑔(𝑡𝑡) if the network is split without any operation. 
Considering the actual situation, it is impossible for social communication relationship to 
completely coincide with social relationship. Many factors can lead to interference, which 
makes it impossible to accurately reflect the corresponding actual social relationship in the 
dynamic network through simple split operation. The time slice network only inspects the 
social communication in this period, which has great uncertainty. By referring to the 
historical data, increasing the period of investigation and using the historical data to correct 
the current data, the revised connection relationship can be more stable and accurate. In 
this paper, 𝐺𝐺𝑡𝑡 is superimposed by the first t time slices network. 

𝐺𝐺𝑡𝑡 = 𝑔𝑔1 ∪ 𝑔𝑔2 ∪. . .∪ 𝑔𝑔𝑡𝑡            (5) 
The superposition of time slice networks can be specific by the following equation: 

𝐺𝐺𝑡𝑡 = 𝜃𝜃1𝑔𝑔1 ∪⊕ 𝜃𝜃2𝑔𝑔2 ∪⊕. . .∪
⊕
𝜃𝜃𝑡𝑡𝑔𝑔𝑡𝑡               (6) 

where ∪
⊕

 represents network superposition operation. The proportion of each time slice 
network is satisfied 𝜃𝜃𝑖𝑖 ≥ 0 and ∑𝜃𝜃𝑖𝑖 = 1. Normally, the longer the distance, the smaller the 
impact of time slice network on the current situation, so the proportion of 𝜃𝜃𝑖𝑖  should 
increase with i. The exponential smoothing method can be used to select the proportion of 
each time slice network, and then the slice network 𝐺𝐺𝑡𝑡 can be defined recursively: 

𝐺𝐺𝑡𝑡 = 𝜃𝜃𝐺𝐺𝑡𝑡−1 ∪⊕ (1 − 𝜃𝜃)𝑔𝑔𝑡𝑡 , 1 > 𝜃𝜃 ≥ 0               (7) 
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If 𝜃𝜃  =0, the impact of history is not considered, the current network snapshot is used 
directly as a slice network for this period, then 𝐺𝐺𝑡𝑡 = 𝑔𝑔𝑡𝑡. If 𝜃𝜃 >0, as time series t increases, 
the influence of time slice network 𝑔𝑔𝑡𝑡 on 𝐺𝐺𝑡𝑡 increases. 
In order to avoid the excessive number of edges, the minimum edge weight of the network 
is stipulated. When the edge weight is less than ε, its weight is regarded as 0 and is deleted. 
Deleting edges with weights less than ε may result in some nodes having no connections 
in the network and becoming isolated nodes. The isolated node is not valid for the linked 
relationship, so it is deleted. 
The task of dynamic network change detection is to analyze the trend of network evolution 
from these overlapped networks and find abnormal changes. 

3.2 Dynamic network change analysis framework 
In this section, the dynamic network analysis framework is introduced systematically. The 
relationship among the organization is viewed as dynamic in our work. If we use graph to 
express the communication network, some edges appear during one period and some 
disappear during another. The analysis framework is shown in Fig. 1. 
First, the time span of the dynamic network is split into disjoint time intervals (e.g., one 
week). Within each time interval 𝑡𝑡, a static graph 𝑔𝑔(𝑡𝑡) is built to summarize the dynamic 
network. In other words, all the edges that ever appeared during this time interval are kept 
in the static graph. For each 𝑔𝑔(𝑡𝑡), three groups of network parameters are measured. Stable 
and continuous time interval is selected and trained [Bush, Chongfuangprinya, Chen et al.  
(2010).]. Then the parameters of the subsequent time interval are compared with the trained 
result. If the parameters show one-way growth trend, then some clues may be found out 
for early warning detection.  

 

Figure 1: Dynamic network change analysis framework 

As for social network, which is not a strict industrial process, parameters have two 
characteristics. First, many parameters’ distribution is unknown in social network. Second, 
network properties are reflected by various parameters, among which the correlation is 
unknown, and as a result, independently testing on some parameters may cause one-sided 
mistakes. 
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According to the two characteristics above, our improvement lies in 1) analyzing various 
parameters synthetically and 2) overcoming the restrictions of the normal distribution on 
parameters.  
For 1), we select three groups of network parameters in order to study the network change 
behavior from different perspective as introduced in section 5. The parameters could be 
analyzed by multivariate statistical analysis.  
For 2), most existing multivariate SPC procedures assume that the in-control distribution 
of the multivariate process measurement is known and it is a Gaussian distribution. In 
applications, however, the measurement distribution is usually unknown and it needs to be 
estimated from data. Furthermore, multivariate measurements often do not follow a Gaussian 
distribution (e.g., cases when some measurement components are discrete). Existing statistical 
tools for describing multivariate non-Gaussian data or, transforming the multivariate non-
Gaussian data to multivariate Gaussian data are limited, making appropriate multivariate SPC 
difficult especially in high dimensional data. Qiu2 suggested a methodology for estimating 
the in-control multivariate measurement distribution when a set of in-control data is available, 
which is based on log-linear modeling and which takes into account the association structure 
among the measurement components. As described by his method, data were categorized, and 
the in-control distribution is estimated by log-linear model. We supervise dynamic network 
measures according to this procedure as follows. 

3.3 Three groups of network parameters 
In order to fully understand the network changes behavior, it is needed to study the 
characteristics of various dedicated network changes. The network parameters can quantify 
the characteristics of the network from different perspective, which are divided into three 
categories in this paper.  

3.3.1 Scale parameters 
Being faced with the target network which is corresponding to an organization, our 
interesting focus on what change will be triggered when some events happen. The 
occurrence of event will affect the number of records collected and results in the change of 
the network scale. In this section, we select three parameters to measure the network scale. 
Edge Count. Edge count denotes how many times the communication is happened during 
the given period. We use 𝐸𝐸𝐸𝐸(𝐺𝐺) to marker edge count of the network, which is defined as 

𝐸𝐸𝐸𝐸(𝐺𝐺) = |𝐸𝐸|               (8) 
Node Count. Node count denotes how many actors who are take part in the communication. 
We use 𝑁𝑁𝑁𝑁(𝐺𝐺) to marker node count of the network, which is defined as  

𝑁𝑁𝑁𝑁(𝐺𝐺) = |𝑉𝑉|            (9) 
Weight Sum. The relationship between the two actors is viewed as different. More frequent 
communication means higher score of weight. Weight sum is the sum of all the relationship, 
namely 
𝑊𝑊𝑊𝑊(𝐺𝐺) = ∑ 𝑤𝑤(𝑒𝑒)𝑒𝑒∈𝐸𝐸                    (10) 

app:ds:synthetically
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3.3.2 Connectivity parameters  
Connectivity refers to the connected features between the actors in the network. Stronger 
connectivity implies easier communication among the social entities and more fluency of 
information transfer. Three parameters are used to quantify the connectivity of a network. 
Average Distance. Average Distance reflects the average number of sending and receiving 
messages between any social members. Given a directed network, let the average distance 
is the average distance between any two actors, namely  

𝐴𝐴𝐴𝐴(𝐺𝐺) =
∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗∈𝑉𝑉,𝑖𝑖≠𝑗𝑗

|𝑉𝑉|(|𝑉𝑉|−1)
           (11) 

where 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 denote two actors in the network and 𝑑𝑑𝑖𝑖𝑖𝑖 denotes the number of edges of 
the shortest path from 𝑣𝑣𝑖𝑖 to 𝑣𝑣𝑗𝑗. If there is no shortest path, then 𝑑𝑑𝑖𝑖𝑖𝑖 equals to the number of 
nodes in the network. 
Reciprocal Link Counts. With symmetric dyadic data, two actors are connected to each 
other. Reciprocal link counts of a network reflect how many proportions the number of the 
bidirectional relationship accounts for, namely 

𝑅𝑅𝑅𝑅(𝐺𝐺) = |{𝑒𝑒𝑖𝑖𝑖𝑖∈𝐸𝐸|𝑒𝑒𝑗𝑗𝑗𝑗∈𝐸𝐸}|
|𝐸𝐸|

           (12) 

where 𝑒𝑒𝑖𝑖𝑖𝑖 denotes an edge from 𝑣𝑣𝑖𝑖 to 𝑣𝑣𝑗𝑗. 
Transitivity. We are interested in the proportion of triads that are “transitive” (that is, 
display a type of balance where, if A directs a tie to B, and B directs a tie to C, then A also 
directs a tie to C). Transitivity of the communication network is defined as how many 
proportions the number of transitive triads accounts for, namely 

𝑇𝑇(𝐺𝐺) = |{(𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗,𝑣𝑣𝑘𝑘)∈𝑉𝑉3}|𝑒𝑒𝑖𝑖𝑖𝑖,𝑒𝑒𝑗𝑗𝑗𝑗,𝑒𝑒𝑖𝑖𝑖𝑖∈𝐸𝐸|
|{(𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗,𝑣𝑣𝑘𝑘)∈𝑉𝑉3}|𝑒𝑒𝑖𝑖𝑖𝑖,𝑒𝑒𝑗𝑗𝑗𝑗∈𝐸𝐸|

           (13) 

3.3.3 Compactness parameters  
If we take into account a network that describes the social relationship, compactness 
reflects to what extent the network has a closely structure as a whole. More compact the 
network means more frequent communication and as a result, more closely relationship. 
Density and Centralization are two kinds of parameters which are usually used to weight 
the compactness of a network.  
Density. Density of the communication network implies the cohesion level. It is defined as the 
actual number of network edges versus the maximum possible edges for a network N, namely  

𝐷𝐷(𝐺𝐺) = |𝐸𝐸|
|𝑉𝑉|(|𝑉𝑉|−1)

           (14) 

Network Closeness Centralization. Closeness centrality approaches emphasize the distance 
of an actor to all others in the network by focusing on the distance from each actor to all 
others. Loosely, closeness is the inverse of the average distance in the network between the 
node and all other nodes. 
Let 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∑ 𝑑𝑑𝐺𝐺(𝑣𝑣𝑖𝑖, 𝑗𝑗)𝑗𝑗∈𝑉𝑉  , if every node is reachable from 𝑣𝑣𝑖𝑖, 
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then closeness centrality of node 𝑣𝑣𝑖𝑖 is defined as 

𝐶𝐶𝐶𝐶𝑖𝑖 = (|𝑉𝑉| − 1)/𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = |𝑉𝑉|−1
∑ 𝑑𝑑𝐺𝐺(𝑣𝑣𝑖𝑖,𝑗𝑗)𝑗𝑗∈𝑉𝑉

           (15) 

If some node is not reachable from v then the closeness centrality of v is |𝑉𝑉|. 
Network closeness centralization based on the closeness centrality of each node in a square 
network. Let 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = max {𝐶𝐶𝐶𝐶𝑖𝑖|1 ≤ 𝑖𝑖 ≤ |𝑉𝑉|} , the network closeness centralization is 
defined as  

𝐶𝐶𝐶𝐶(𝐺𝐺) =
∑ (𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚−𝐶𝐶𝐶𝐶𝑖𝑖𝑣𝑣𝑖𝑖∈𝑉𝑉

)
(|𝑉𝑉|−2)(|𝑉𝑉|−1)

(2|𝑉𝑉|−3)

           (16) 

Network betweenness centralization. With binary data, betweenness centrality views an 
actor as being in a favored position to the extent that the actor falls on the geodesic paths 
between other pairs of actors in the network. That is, the more people depend on the actor 
to make connections with other people, the more power it has. The betweenness centrality 
of node v in a network is defined as: across all node pairs that have a shortest path 
containing v, the percentage that passes through v. Let 𝑔𝑔𝑗𝑗𝑗𝑗  represents the number of 
shortest path from 𝑣𝑣𝑗𝑗 to 𝑣𝑣𝑘𝑘, and 𝑔𝑔𝑗𝑗𝑗𝑗(𝑣𝑣𝑖𝑖) represents the number of shortest path from 𝑣𝑣𝑗𝑗 to 
𝑣𝑣𝑘𝑘  and 𝑣𝑣𝑖𝑖 exists in the nodes set in the path, then the betweenness centrality of node 𝑣𝑣𝑖𝑖 is 
defined as 

𝐵𝐵𝐶𝐶𝑖𝑖 =
∑

𝑔𝑔𝑗𝑗𝑗𝑗(𝑣𝑣𝑖𝑖)
𝑔𝑔𝑗𝑗𝑗𝑗

𝑗𝑗<𝑘𝑘

(|𝑉𝑉|−1)(|𝑉𝑉|−2)
           (17) 

Network centralization based on the betweenness score for each node in a square network.  
Let 𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  represents the greatest degree of mediation of all nodes, the network 
betweenness centralization is defined as 

𝐵𝐵𝐵𝐵(𝐺𝐺) =
∑ (𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚−𝐵𝐵𝐶𝐶𝑖𝑖)𝑣𝑣𝑖𝑖∈𝑉𝑉

𝑛𝑛−1
           (18) 

3.4 Nonparametric multivariate procedures 
In this section, we adopt nonparametric multivariate process control procedures to supervise 
the measures of dynamic network as developments of SNCD. The goal of the improvements 
is to explore the trend of social network more comprehensively and more precisely. 
It is addressed that we focused on the trend of the dynamic network in this research, not the 
particular change, so the control limit (a constant value denoted ℎ in a common control chart) 
will be ignored. Thus, there are some modifications in our methods differentiate from original 
SPC procedures. The purpose is to be convenient to understand the trend of statistics. 

3.4.1 Categorization method 
Phrase I SPC.  
First, the time span of the whole observed dynamic network is split into disjoint time 
intervals. Each time interval is called a slice. Take a steady time-period of the dynamic 
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network as the in-control period when the network seems stable. Let 𝑛𝑛0 represents the 
length of in-control network snapshots. Three groups of network parameters are selected 
for investigation. Let 𝑟𝑟 parameters are measured, and the in-control data can be denoted by 
{𝑋𝑋(𝑖𝑖) = (𝑋𝑋1(𝑖𝑖),𝑋𝑋2(𝑖𝑖), . . . ,𝑋𝑋𝑟𝑟(𝑖𝑖))′, 𝑖𝑖 = 1,2, . . . ,𝑛𝑛𝑜𝑜}.  
Then calculate the median 𝑚𝑚𝑗𝑗  of𝑋𝑋𝑗𝑗(𝑖𝑖)  from the in-control data. Let 𝑌𝑌𝑗𝑗(𝑖𝑖) = 𝐼𝐼(𝑋𝑋𝑗𝑗(𝑖𝑖) >
𝑚𝑚𝑗𝑗), 𝑗𝑗 = 1,2, . . . , 𝑟𝑟 , where 𝐼𝐼(𝑥𝑥) is an indicator function which equals 1 if x is “true”, and 0 
otherwise. Thus, the 𝑟𝑟  components are converted to a r-dimensional vector: 𝑌𝑌(𝑖𝑖) =
(𝑌𝑌1(𝑖𝑖),𝑌𝑌2(𝑖𝑖), . . . ,𝑌𝑌𝑟𝑟(𝑖𝑖))′ . It is rational to use the categorized data for detection, because the 
changes of network measures make the median vector altered that will also change the 
distribution of Y(i) . Therefore, we are able to detect shifts in such a location parameter 
vector (e.g., the median vector (m1, m2, … , mr)′). 
In statistics, a contingency table (also referred to as cross tabulation or cross tab) is a type of 
table in a matrix format that displays the (multivariate) frequency distribution of the variables. 
It is often used to record and analyze the relation between two or more categorical variables. 
A r-dimensional contingency table of the in-control data can be easily formed from these 
binary variables 𝑌𝑌(𝑖𝑖). Let  Oj1,j2,…,jr be the observed cell count of the (j1, j2, … , jr)-th cell in 
the table. Estimate expected count Ej1,j2,…,jr of each cell in the contingency table using log-
linear model, so we have an estimator {Ej1,j2,…,jr

n0
, j1, j2, … , jr = 0,1} for the joint distribution 

of  𝐘𝐘(i) , denoted as  {dj1,j2,…,jr , j1, j2, … , jr = 0,1}  , in which  dj1,j2,…,jr =
Ej1,j2,…,jr

n0
, j1, j2, … , jr = 0,1. So far, we calculated the distribution of in-control period. 

Phrase II SPC.  
In this section, distribution-free, multivariate CUSUM is used for detecting shifts in the 
joint distribution of  𝐘𝐘(i). Network measures of successive slices are calculated as the same 
way in Phrase I. The binary vector 𝐘𝐘(i) is re-calculated and transformed on the new data 
set involved the new network of the successive slice one by one. And the contingency table 
is recount by adding the new vector on it at each step.  
Assume that the in-control joint distribution of 𝐘𝐘(i) is {dj1,j2,…,jr

0 , j1, j2, … , jr = 0,1}, which 
can be estimated by the log-linear modeling procedure discussed in Phrase I. In the 
statistical literature, the Pearson’s 𝜒𝜒2 test is well-known for testing whether or not the 
distribution of a random vector equals a given distribution. Let 𝑔𝑔𝑗𝑗1,...,𝑗𝑗𝑟𝑟(𝑖𝑖) = 𝐼𝐼(𝑌𝑌1(𝑖𝑖) =
𝑗𝑗1, . . . ,𝑌𝑌𝑟𝑟(𝑖𝑖) = 𝑗𝑗𝑟𝑟),  where 𝑗𝑗1, . . . , 𝑗𝑗𝑟𝑟 = 0 or 1 . Then 𝑔𝑔𝑗𝑗1,𝑗𝑗2,...,𝑗𝑗𝑟𝑟

𝑛𝑛 = ∑ 𝑔𝑔𝑗𝑗1,...,𝑗𝑗𝑟𝑟(𝑖𝑖)𝑛𝑛
𝑖𝑖  is the 

observed count of the (𝑗𝑗1, . . . , 𝑗𝑗𝑟𝑟) − 𝑡𝑡ℎ cell as of time point 𝑛𝑛. The conventional Pearson’s 
𝜒𝜒2 statistic is defined by  

∑
(
𝑔𝑔𝑗𝑗1,𝑗𝑗2,...,𝑗𝑗𝑟𝑟
𝑛𝑛

𝑛𝑛 −𝑑𝑑𝑗𝑗1,𝑗𝑗2,...,𝑗𝑗𝑟𝑟)2

𝑑𝑑𝑗𝑗1,𝑗𝑗2,...,𝑗𝑗𝑟𝑟
𝑗𝑗1,𝑗𝑗2,...,𝑗𝑗𝑟𝑟=0,1                (19) 

In order to measure the deviation between the observed value and the expected value and 
accumulate the statistics. An existed CUSUM procedure [Liu, Liu and Luo (2011)] is used 
for detecting possible shifts in a location parameter vector, of which following steps are: 
For each observation, define 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Cross_tabulation
http://en.wikipedia.org/wiki/Table
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Frequency_distribution
http://en.wikipedia.org/wiki/Categorical_variable
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𝑍𝑍𝑛𝑛 =  [�S𝑛𝑛−1𝑜𝑜𝑜𝑜𝑜𝑜 − S𝑛𝑛−1
𝑒𝑒𝑒𝑒𝑒𝑒 � + �g(𝑛𝑛)

𝑛𝑛
− 𝑑𝑑�]′�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�S𝑛𝑛−1

𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑑𝑑��−1  [(�S𝑛𝑛−1𝑜𝑜𝑜𝑜𝑜𝑜 − S𝑛𝑛−1
𝑒𝑒𝑒𝑒𝑒𝑒 � + �g(𝑛𝑛)

𝑛𝑛
− 𝑑𝑑�]       (20) 

where 𝑑𝑑is a vector of all (𝑑𝑑𝑗𝑗1,𝑗𝑗2,...,𝑗𝑗𝑟𝑟) values, 𝑔𝑔(𝑛𝑛) is a vector of all (𝑔𝑔𝑗𝑗1,𝑗𝑗2,...,𝑗𝑗𝑟𝑟
𝑛𝑛 ) values, and 

𝑔𝑔(𝑛𝑛)
𝑛𝑛

 is the observed frequency vector, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) denotes a diagonal matrix of vector 𝑥𝑥 , 

𝑆𝑆0𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑆𝑆0
𝑒𝑒𝑒𝑒𝑒𝑒, and if  𝑍𝑍𝑛𝑛 ≤ 𝑘𝑘, �𝑆𝑆𝑛𝑛

𝑜𝑜𝑜𝑜𝑜𝑜 = 0
𝑆𝑆𝑛𝑛
𝑒𝑒𝑒𝑒𝑒𝑒 = 0

,  if 𝑍𝑍𝑛𝑛 > 𝑘𝑘, �
𝑆𝑆𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 =

(𝑆𝑆𝑛𝑛−1𝑜𝑜𝑜𝑜𝑜𝑜 +𝑔𝑔(𝑛𝑛)
𝑛𝑛 )(𝑍𝑍𝑛𝑛−𝑘𝑘)

𝑍𝑍𝑛𝑛

𝑆𝑆𝑛𝑛
𝑒𝑒𝑒𝑒𝑒𝑒 = (𝑆𝑆𝑛𝑛−1

𝑒𝑒𝑒𝑒𝑒𝑒+𝑑𝑑)(𝑍𝑍𝑛𝑛−𝑘𝑘)
𝑍𝑍𝑛𝑛

, in which, 

constant 𝑘𝑘 is the reference value used in CUSUM procedures depending on the magnitude 
of a target shift. And we can calculate the cumulative statistic finally: 

𝐶𝐶𝑛𝑛 = ��S𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 − S𝑛𝑛
𝑒𝑒𝑒𝑒𝑒𝑒��′[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�S𝑛𝑛

exp�]−1[�S𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 − S𝑛𝑛
𝑒𝑒𝑒𝑒𝑒𝑒�]          (21) 

In a typical SPC procedure, the constant 𝑘𝑘 and ℎare commonly decided by the Average 
Run Length (ARL) which is a criterion of the control chart. And the original search of  𝑘𝑘 
is to simulate a detect process by adjusting the reference value to achieve an ideal ARL 
value. However, the value of  𝑘𝑘 cannot be inferred from ARL here because of the absence 
of ℎ. In another way, we consider that the fluctuation of in-control distribution is under the 
range of target shift, so we simulate an in-control data set to evaluate the average 
discrepancy from the expect value. A series of random vectors is generated from the 
multinomial distribution with probability parameters{𝑑𝑑𝑗𝑗1,𝑗𝑗2,...,𝑗𝑗𝑟𝑟 , 𝑗𝑗1, 𝑗𝑗2, . . . , 𝑗𝑗𝑟𝑟 = 0,1} , and 
calculate the average conventional Pearson’s χ2 statistic between the expect frequency and 
random vectors as the value of 𝑘𝑘: 

𝑘𝑘 = ∑
(
𝑔𝑔𝑗𝑗1,𝑗𝑗2,...,𝑗𝑗𝑟𝑟
𝐿𝐿

𝐿𝐿 −𝑑𝑑𝑗𝑗1,𝑗𝑗2,...,𝑗𝑗𝑟𝑟)2

𝑑𝑑𝑗𝑗1,𝑗𝑗2,...,𝑗𝑗𝑟𝑟
𝑗𝑗1,𝑗𝑗2,...,𝑗𝑗𝑟𝑟=0,1            (22) 

where 𝑔𝑔𝑗𝑗1,𝑗𝑗2,...,𝑗𝑗𝑟𝑟
𝐿𝐿 is each random vector, assuming there are 𝐿𝐿 vectors total. 

3.4.2 Ranking method  
Based on the sorting multi-variable non-parametric control chart [Bush, Chongfuangprinya, 
Chen et al. (2010)], the data of the test set are added to the training set for sorting, and the 
degree of the test data deviating from the training set is examined according to the sorting value. 
It is assumed that each inspection data contains r network parameters. The training set 
consists of 𝑛𝑛0 samples. {𝑋𝑋(𝑖𝑖) = (𝑋𝑋1(𝑖𝑖),𝑋𝑋2(𝑖𝑖), . . . ,𝑋𝑋𝑟𝑟(𝑖𝑖))′, 𝑖𝑖 = 1,2, . . . , 𝑛𝑛0}. The test set is 
represented by a data pool. Each time a vector 𝑋𝑋(𝑖𝑖) is added to the training set, the data 
pool capacity is 𝑛𝑛0 + 1. The vectors in the pool are sorted to a sequence. First, we compute 
the median vector of the data pool as the first vector of the sequence. Then the distance is 
calculated between the data in the pool and the data in the sequence. The distance between 
two vectors is measured by Mahalanobis distance [Maesschalck, Jouan-Rimbaud and 
Massart (2000)]: 

𝑑𝑑𝑖𝑖𝑖𝑖 = (X(𝑖𝑖) − X(𝑗𝑗))′V−1(X(𝑖𝑖) − X(𝑗𝑗))           (23) 
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where 𝑉𝑉 represents the covariance matrix of training set samples. The distance 𝐷𝐷𝑖𝑖 between 
each data and sequence is computed by K nearest neighbor method. That is, the distance 
between the nearest k data in the sequence is used as the distance between the current data 
and the sequence. 

𝐷𝐷𝑖𝑖 = 1
𝑘𝑘
∑ 𝑑𝑑𝑖𝑖(ℎ)𝑘𝑘
ℎ=1            (24) 

where 𝑑𝑑𝑖𝑖(ℎ) represents the small ℎ value of the distance between the vector and all the 
vectors in the sequence. Finally, all 𝑛𝑛0 + 1 data are added to the sequence, the sort 𝑅𝑅𝑛𝑛 of  
𝑋𝑋(𝑛𝑛) in the data pool is got, which is converted to sort statistics 𝑢𝑢𝑛𝑛 = 𝑅𝑅𝑛𝑛/(𝑛𝑛0 + 1). The 
range of 𝑢𝑢𝑛𝑛 is [1/(n0+1),1]. After each sorting gets 𝑢𝑢𝑛𝑛, 𝑋𝑋(𝑛𝑛)  is deleted from the data pool. 
Then the next vector 𝑋𝑋(𝑛𝑛 + 1) in the test set is added to reorder the data in the data pool 
until statistics of all data in the test set are obtained sequentially. 
The larger the 𝑢𝑢𝑛𝑛, the farther the distance between  𝑋𝑋(𝑛𝑛) and the training set is, that is, the 
larger the N time slice network changes. The network changes relatively sharply when the 
ranking statistics value is relatively large. However, the maximum value of 𝑢𝑢𝑛𝑛 can only be 
obtained by 1. If the ranking statistics of a time slice network have reached 1 but continue 
to increase, it is impossible to know the specific details from the results. This is the defect 
of this sort-based method. Therefore, we use both methods to make up for each other's 
defect and give full play to its advantages. 

4 Experiments 
This section evaluates the effectiveness of the proposed methods based on Enron dataset. 

4.1 Dataset 
Our methods are applied on the Enron Email dataset. The whole time-period is partitioned 
weekly, and a direct network in which node represents Email address and arc represents 
Email communication is exacted from each week. The scales of the weekly networks are 
very small before 2000, so we delete them. According to the previous result [Crosier 
(1988)], we select the weeks from the 40-th week in 2000 to 17-th in 2001 as the stable 
period. The 31 weeks is regarded as the in-control data, named 2000.w40~2001.w17. Then 
the next 47 weeks are selected as testing data for dynamic tendency analysis.  

4.2 Plot of values vs. cumulative statistic of values  
As described in Section 3, the behavior of network is measured by three groups of 
parameters, which are scale parameters, connectivity parameters and compactness 
parameters. Then, we select three parameters from each group to test their distribution. Fig. 
2~Fig. 4 shows that our method is superior to the simple plotting value in terms of the 
sensitive on highlighting network dynamic tendency. 
The (a) of the three figures plot the values of the given 9 parameters from week 1 to week 
78. Values are fluctuating, but the fluctuation could not reveal some dynamic character of 
the network. If we make a careful study on the right part (b) and (c) of the four figures, we 
can draw a conclusion that there are some changes happened during the period from week 
48 (2001.08.26~2001.09.01) to week 60 (2001.11.18~2001.11.24). 



 
 
1134                                                                        CMC, vol.60, no.3, pp.1123-1139, 2019 

 
(a) Value of Scale Parameters 

 
 (b) Cumulative Statistic                                                   (c) Ranking Statistic   

Figure 2: Plot of values vs. cumulative statistic of values on scale parameters 

According to Fig. 2(b), we can see the change trend of network scale characteristics. From 
35 weeks (2001.5.27-2001.6.2) to 40 weeks (2001.7.1-2001.7.7) the network scale has a 
small change, but from 41 weeks (2001.7.8-2001.7.14) to 48 weeks (2001.8.26-2001.9.1) 
it restores stability, and from 49 weeks (2001.9.2-2001.9.8) it occurs again. Significant 
changes, and gradually intensified, reached the maximum in 64 weeks (2001.12.16-
2001.12.22), and then gradually slows down. According to Fig. 2(c), it can be found that 
the scale characteristics of time slice network after training set has obvious changes, 
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especially after 45 weeks (2001.8.5-2001.8.11), almost all of them get the maximum of 
ranking statistics. 
Comparing the results of the two methods, the cumulative statistic changes of the end-time 
slice network (g70-g78) are slowed down, while the ranking statistics get the maximum, 
indicating that the network changes dramatically. This is because the extreme value of 
ranking statistics is limited, and the data that is seriously inconsistent with the distribution 
of training set data is added to the training set to rank at the end of the queue at best, so that 
the maximum statistics can only be taken as 1. Therefore, the understanding of the conflict 
between the two results is: in fact, the network changes are still dramatic at this time, but 
the more drastic changes have been mitigated compared with the previous ones, so the 
cumulative statistical scales show a gentle decline. 
According to Fig. 3(b), the characteristics of network connectivity begins from 42 weeks 
(2001.7.15-2001.7.21), and the changes gradually accumulat and rapidly increas, reaching 
the maximum value in 53 weeks (2001.9.30-2001.10.6). After that, the accumulation of 
changes begins to decline gradually, but do not drop to 0. The training set of comparison 
still remains different until 62 weeks (2001.12.2-2001.10.6). 1.12.8) maintaining relatively 
stable differences. According to Fig. 3(c), most of the time slice network connectivity 
characteristics after training set have obvious changes, especially from 52 weeks 
(2001.9.23-2001.9.29) to 62 weeks (2001.12.2-2001.12.8), and the ranking statistics reach 
the maximum. 

 
(a) Value of Connectivity Parameters                          
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(b) Cumulative Statistic                                                    (c) Ranking Statistic   

Figure 3: Plot of values vs. cumulative statistic of values on connectivity parameters 

 
(a) Value of Compactness Parameters 
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 (b) Cumulative Statistic                                                          (c) Ranking Statistic   

Figure 4: Plot of values vs. cumulative statistic of values on compactness parameters 

Fig. 4(b) shows that the compactness characteristics of time slice network accumulate with 
the change of time after stationary period. The larger the value of each point corresponding 
to the cumulative statistics of the time slice network data relative to the training set, the 
greater the change, and the continuous increase of the statistics indicates that the change is 
accumulating and increasing. From the graph, we can see that from 48 weeks (2001.8.26-
2001.9.1), the compactness of the network begins to change, and then the change continues 
to accumulate and increase. 
Fig. 4(c) shows how the compactness of the whole network varies over time (each 
difference is measured by a Mahalanobis distance). The values of each point in the graph 
indicate the ranking statistics of the network parameters relative to the training data. The 
larger the values, the greater the deviation from the training set. 0.8 and 0.9 are taken as 
reference lines. The blue dots represent the training set data, and the red triangles represent 
the subsequent network data. From the graph, we can see that the time slice network 
ranking statistics after the training set are significantly larger than the training set, 
especially after the fiftieth week (2001.9.9-2001.9.15), the sixtieth week (2001.11.18-
2001.11.24), and the seventy-two weeks (2002.2.3-2002.2.9). The statistics get the 
maximum value, which indicates the change of compactness parameters of the network in 
these periods is very intense. 
In order to validate our results, our detection result about network changes behavior is 
compared with the reality of organization behavior. Enron was rated the most innovative 
large company in America in Fortune magazine’s survey of Most Admired Companies. 
Yet within a year, Enron’s image was in tatters and its stock price had plummeted nearly 
to zero. [Healy and Palepu (2003)] lists some of the critical events for Enron between 
August and December 2001. The contrast above validates the effective of our method. 
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5 Conclusion 
It is an innovation of using SPC for social network analysis. But there are some inevitable 
shortcomings with this initiated approach. For some of these restricts, we introduce 
multivariate distribution-free procedures from industry field to evaluate the trend of social 
network. The developments lie in two main aspects, one is the integration of more 
parameters for measurement, and the other is overcome the limit of the Gaussian 
distribution assumption on the network parameters which can be hardly satisfied in many 
circumstances. And the results of our methods are in accordance with the real case of the 
evolvement in organization in Enron Email dataset. 
The distribution-free multivariate CUSUM procedure based on categorizing provides us 
very intuitive result, and after the original measures are transformed to binary data, the 
computational complexity is decreased greatly. And being good at discovering subtle shifts 
especially the gradual changes is the intrinsic advantage of CUSUM method. However, in-
control distribution is estimated by the log-linear model in this approach, which would 
become challenging when the number of in-control observations is relatively smaller or the 
number of measurement components is larger, that will lead the contingency table to 
become sparse.  
There are a lot of issues need to be addressed in our future work. The choice of observed 
measures and constants in control charts need more rigorous proof. And for the result, 
details about what the control charts indicate need a deep investigation. 
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