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Abstract: In recent years, extreme weather events accompanying the global warming 
have occurred frequently, which brought significant impact on national economic and 
social development. The ocean is an important member of the climate system and plays 
an important role in the occurrence of climate anomalies. With continuous improvement 
of sensor technology, we use sensors to acquire the ocean data for the study on resource 
detection and disaster prevention, etc. However, the data acquired by the sensor is not 
enough to be used directly by researchers, so we use the Generative Adversarial Network 
(GAN) to enhance the ocean data. We use GAN to process WOA13 dataset and use 
ResNet to determine if there is a thermocline layer in a sea area. We compare the 
classification results of the enhanced datasets of different orders of magnitude with the 
classification results of the original datasets. The experimental result shows that the 
dataset processed by GAN has a higher accuracy. GAN has a certain enhancement effect 
to marine data. Gan increased the accuracy of the WOA dataset from 0.91 to 0.93. At the 
same time, the experimental results also show that too much data cannot continue to 
enhance the accuracy of WOA in ResNet. 
 
Keywords: Generative adversarial networks (GAN), WOA13, few-shot learning, 
residual network, convolutional neural network. 

1 Introduction 
In recent years, extreme weather events accompanying the global warming have occurred 
frequently, which brought significant impact on national economic and social 
development. The ocean is an important member of the climate system and plays an 
important role in the occurrence of climate anomalies. The climate anomalies in the 
coastal zone are closely related to the variation of ocean thermal conditions. Existing 
studies have shown that the SST anomalies in the oceans will have an impact on the 
Chinese climate. Therefore, deeply understanding the changing characteristics of the 
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global ocean and analyzing the data anomalies at the time of disaster generation are an 
important basis for oceanography and play an important role in climate prediction. 
WOA13 data is the latest marine climatology dataset product [Boyer and Mishonov 
(2014)] of the NOAA National Ocean Data Center Marine Meteorological Laboratory, 
which includes global ocean temperature, salinity, dissolved oxygen, phosphate, silicate 
and other marine element data, and is an integrated data product with a variety of 
measured data [Jiang, Zhao, Hu et al. (2018)]. The data types are divided into annual 
average data, monthly average data, and seasonal average data; there are three spatial 
resolutions: 5°, 1°, and 0.25°. The data can provide 3D information on the marine 
environment [Jie, Liu and Hong (2016)]; the interpolation method is used on depth, i.e. it 
is divided into 102 layers from the surface layer to a maximum depth of 5,500 m. 
Compared with the annual data and quarterly data, the monthly data more accurately 
reflects the overall change in the global ocean [Deng, Zhou, Liu et al. (2016)]. The 
monthly average data is a complex dataset. We make a grid map of global ocean data. 
Use ResNet to determine whether there is a thermocline layer in each square. However, 
ResNet requires a large dataset. Therefore, we adopt a generative adversarial network to 
increase the samples WOA data. 
The structure of the article is as follows: the research and evaluation criteria of WOA13 
will be introduced in Section 2. Neural networks, residual networks and Generative 
Adversarial Networks will be introduced in Section 3. In Section 4, a comparison is made 
between the enhanced data of the Generative Adversarial Networks and source data 
residual network. The last part gives the corresponding conclusions. 

2 Preliminaries 
Currently it is lack of ResNet research on WOA13 data and the current research on WOA 
data mainly focuses on the distribution and prediction of ocean temperature and salinity. 
In 2016, Huang et al. [Huang, Lu, Wang et al. (2016)] proposed a model. This model can 
effectively compensate for the inherent defects of XBT such as lack of measured salinity 
support and insufficient in detection depth. The difference between the estimation value 
of full depth sound velocity and the measured value of multiple acoustic profile stations 
is only -0.2~0.35 m/s. In the same year, Dang et al. [Deng, Zhou, Liu, et al. (2016)] 
studied the characteristics of the Kuroshio temperature front in the East China Sea, and 
concluded that WOA13 data has a good effect on the extraction of the temperature front 
information of the East China Sea Kuroshio main-axis, and the flow core structure in 
winter and spring is most obvious on the PN section. In 2017, Liu Peng et al. [Liu, Zhang 
and Liu (2017)] concluded by conducting a corresponding study on the temporal and 
spatial distribution characteristics of the temperature front in the equatorial Atlantic 
Ocean that in the sea where there is a northern front, summer and autumn seasons with 
strong front have different effect on the sound velocity profile from winter and spring 
seasons with small front, while the southern front has a depth at the front. The change 
rate is consistent along with the depth in each season. The existing research is based on 
the original data of WOA13. However, the raw data of WOA13 has problems such as 
excessive data volume and loud noise data [Yuan and Zhao (2017); Cao, Zhang, Zhang et 
al. (2018)], which brings more troubles to researchers. This paper uses the Generative 
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Adversarial Networks to carry out the feature learning for WOA13 data, collation and 
data enhancement processing.  
In this paper, the traditional thermocline discrimination method and the information 
entropy-based thermocline discrimination method are adopted. 
 The traditional thermocline method adopts the pure numerical calculation method. Those 
of the temperature gradient exceeding 0.2°/m for shallow seas less than 200 m and the 
temperature gradient of exceeding 0.05°/m for shallow seas greater than 200 m are the 
thermoclines. Specifically, the vertical gradient method will cause the discontinuity 
between the two critical points of shallow water and deep water. Information entropy: an 
indicator to measure the purity of the collective samples. This paper combines the 
‘information entropy method’ [Jiang, Zhang, Gou et al. (2018)] in machine learning with 
the traditional method for more precise determination Suppose that the proportion of the 
first k classes in the dataset is D, and kp ( 1, 2,3,...,k y=  )  is the sample. 
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( ) log
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k k
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The entropy values increase as the uncertainty of the variables increases. 

3 Methodology 
ResNet is a deep learning model that can achieve high accuracy in areas such as image 
recognition. ResNet needs a lot of samples, so we use Convolutional neural network as 
the core of Generative Adversarial Networks to solve the problem for limited samples. 

3.1 Convolutional neural network 
The convolutional neural network is built by simulating the visual perception mechanism 
of the creature, and can realize the supervised learning and unsupervised learning. The 
convolution kernel parameter sharing and the sparseness of the inter-layer connection in 
the hidden layer can make the convolutional neural network study the grid features (such 
as pixels and audio) with relatively small calculation amount, possessing a stable effect 
without any additional feature engineering requirements to the data. Structure of the 
convolutional neural network includes an input layer, a hidden layer and an output layer 
[Ren, He, Girshick et al. (2017)]. The hidden layer in turn contains a convolutional layer, 
a pooled layer, and a fully connected layer [Chua and Roska (1993)]. The fully connected 
layer is a pre-feedback neural network, whose structure is shown in Fig. 1. 
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Figure 1: Model diagram of neural network 

A simple three-layer neural network is shown in Fig. 1 (left), each consisting of several 
neurons. The first layer is the input layer, and the corresponding neuron is also called the 
input neuron; the second layer is the hidden layer, and the corresponding neuron is called 
the hidden neuron; the third layer is the output layer, and the corresponding neuron is 
called the output neuron. Each neuron is connected to all neurons in its previous layer, 
therefore such a neural network is also called the fully connected feedforward neural 
network. A more complex neural network is a complex network consisting of more 
hidden layers and more neurons. 
As shown in Fig. 1 (right), it is the structure of the neuron; the neuron is responsible for 
receiving and summarizing the information from the previous layer to decide whether to 
activate accordingly. Assuming the activation signal of No. k neuron in the No. l layer is 

l
ka , and its calculation process can be divided into following two steps: (1) summarizing 

the information; assuming that the signal sent from the No. n  neuron of previous layer, 
i.e., No. l-1 layer is 1 1 1

1 ,... ,...l l l
i na a a− − −< > , and the neuron obtains the summary information 

by summing, i.e., 1
0

n l
i ii

w a −
=∑ , where 1

0 0la − =  represents the offset corresponding to the 
neuron, corresponding symbol +1; such representation facilitates the vector operations 
and matrix operations. (2) The determination is made based on the summary information 
whether to activate, i.e. the summary information is input into the activation function f, 
which determines whether to generate an activation signal to the next layer of the 
network and calculate the activation signal strength according to the input signal strength.  
The neural unit is activated only when the signal strength reaches a certain fixed domain 
value τ. 
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In summary, the operation of one neuron can be induced as Eq. (1); and so forth, the 
output signals of all neurons in the No. l layer and the output signals of all neural units in 
the neural network can be calculated. 
Function of the convolutional layer is to extract the feature from the input data, and 
contains multiple convolution kernels inside it. Each element composing the convolution 
kernel corresponds to a weight coefficient and a bias vector, similar to the neuron of a 
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feed-forward neural network. Each neuron in the convolutional layer is connected with 
several neurons in areas close to the previous layer, and the size of the area depends on 
the size of the convolution kernel. The convolution kernel will regularly sweep through 
the input features during the working, and perform the matrix element multiplication 
summation for the input feature in the receptive field and superimpose the deviation, as 
shown in the following formula: 

( ) ( ) ( )1 1
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1 1 1
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l l l l l

k k
k x y

Z i j Z w i j b Z s i x s j y w x y b+ +
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The summation in the above formula is equivalent to solving a cross-correlation. b is the 
deviation value, lZ  and 1lZ +  represent the convolution input and output of layer l+1, also 
known as the feature map, 1lL +  is the size of 1lZ + ; here assuming that the feature map has 
the same length and width. K is the number of feature map channels, corresponding to the 
pixels of the feature map; f, s0 and p are convolution layer parameters, corresponding to 
the convolution kernel size, the convolution step size and the number of filling layers. 
The process of one-dimensional convolution and two-dimensional convolution is shown 
in Fig. 2. 
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Figure 2: One-dimensional convolution and two-dimensional convolution 
For the upper one-dimensional convolution in Fig. 2, the step size 1 and the convolution 
kernel is 3. For the lower two-dimensional convolution kernel shown in Fig. 2 the step 
size is 1 and the convolution kernel is 3*3. The convolution layer contains an excitation 
function helping to express the complex features. For example, the value of each point in 
the image cannot be negative, and adding the excitation function can effectively eliminate 
the data outliers. The activation function adopts the following formula form. 

, , , ,( )l l
i j k i j kA f Z b= +              (4) 

The pooling is required after the valid value is acquired by processing the activation 
function. After the feature is extracted in the convolutional layer, the output feature map 
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will be passed to the pooling layer for feature selection and information filtering. The 
pooling layer contains the preset pooling function whose function is to replace the result 
of a single point in the feature map with the statistic of the feature map in its neighboring 
area. The procedure of the pooling layer selecting the pooling area is the same as the 
convolution kernel scanning the feature map, and is controlled by the pooling size, step 
size, and filling. The pooling layer sort the n*n point set into 1 point, effectively scaling 
the image in n times. Thus, the features of the image are further extracted. 

3.2 Residual network 
The accuracy of the model will continue to increase along with the increasing of the 
network layer. When the network layer increases to a certain number, both the training 
accuracy and the test accuracy will decrease rapidly. This shows that when the network is 
quite deepened, the deep network becomes more and more difficult in training [Wu, Shen 
and Hengel (2016)]. Assuming that a relatively shallow network has reached the 
saturation accuracy, then several constant mapping layers are added following it (i.e., y=x, 
the output is equal to the input); thereby depth of the network will increase. and yet the 
minimum error will not increase, that is, the deeper network shall not bring an increase in 
the error of the training set. The idea of directly passing the output of the previous layer 
to the next one is the source of inspiration for the famous deep residual network. 
The residual network borrows the idea of cross-layer linking of the Highway Network 
[Veit, Wilber and Belongie (2016)], but is improved. Provided that the input of a certain 
neural network is x, and the expected output is H(x), i.e., H(x) is the expected complex 
potential mapping. The training will be more difficult if such a model will be learnt [Yu, 
Chen, Dou et al (2017)]; if the accuracy of greater saturation has been learnt (or when the 
error of the lower layer is found to be larger), the next learning goal will be transformed 
into learnt the identity mapping, that is, let the input x approximate to the output H(x), for 
the purpose of ensuring there is no degradation in accuracy of the following layers. The 
shortcut link method is often used to pass the output value. 

weight layer

weight layer

+

relu

relu

relu

x

F(x)

H(x)=F(x)+x

identity
x

shortcut connections 

 

Figure 3: Shortcut connections 

As shown in Fig. 3, the input x is directly passed to the output as the initial result through 
the shortcut connection method, and the output result is H(x)=F(x)+x. When F(x)=0, H 
(x) = x, i.e., the identity mapping mentioned above. Therefore, ResNet is equivalent to 
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changing the learning target, i.e., the target is the difference between the target value H(X) 
and x (i.e., so-called residual F(x):=H(x)-x) instead of the complete output. Therefore, the 
following training goal is to approximate the residual result to 0, so that the accuracy will 
not decrease as the network deepens. 
This kind of residual jump structure breaks the convention that the output of the 
traditional neural network Layer n-1 can only be passed to Layer n as an input, therefore 
the output of a certain layer can be taken as the input of the following certain layer by 
directly crossing several layers. The meaning is that it provides a new solution for the 
challenge of increasing the error rate of the whole learning model by superimposing multi 
layers of network. Therefore, the number of the neural network layers can exceed the 
previous constraints, reaching dozens, hundreds or even thousands of layers, providing a 
feasibility for high-level semantic feature extraction and accurate classification. We use 
the residual network to accurately identify the existence of a thermocline in a marine area. 

3.3 Basic operation of GAN 
The core of GAN consists of two convolutional neural networks [Tang, Tan, Li et al 
(2017)]. For general calculations of neural networks and convolutional neural networks, 
please refer to the previous introduction. Here two special operations are introduced, i.e. 
fractional strided convolution (FSC) [Dosovitskiy, Springenberg and Brox (2015)] and 
batch normalization [Zeng, Dai, Li et al. (2018)]. 

3.3.1 Fractional strided convolution 
Fractional strided convolution, also known as Transpose Convolution or Deconvolution. 
Generally the convolutional neural network operates in the order of convolution 
operation first and then pooling operation; while the fractional strided convolution can be 
regarded as the inverse process of above operations, i.e., the inverse pooling operation 
first and then the convolution operation. Let the stride of each dimension be s, input 

[ ],  ,  x x xX w h c= , input [ ],  ,  z z zZ w h c= . The process of the inverse pooling operation can 
be described as first mapping each element in the input matrix as a block s s∗ ; the upper 
left corner of this block stores the corresponding element in the original input and the 
other positions are complemented by 0, thus, x xw h∗  blocks of size s s∗  can be obtained. 
These blocks are spliced to obtain the output Z, which is easy to obtain z xw w s= ∗ , 

z xh h s= ∗ , and z xc c=  the output scale is expanded by s times compared to the input scale. 
The role of pooling is to reduce the dimension, while the role of unpooling is to increase 
the dimension. 

3.3.2 Batch normalization 
The batch normalization is a normalization operation for a small batch of samples for 
each training. The advantage is that it can make the training simpler and more efficient, 
and can use a larger learning rate as the initial value, so that the model is less sensitive to 
the initial value. It can be used as a normalized operation to avoid using the dropout and 
accelerate the convergence speed to some extent. The process is as shown in the 
following formula: 
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In the above formula, for each small batch input, the sample mean is calculated by Eq. (6) 
and the sample standard deviation is calculated by Eq. (7), then the input is normalized by 
Eq. (8), and finally the return value is calculated by Eq. (9). 

3.4 Generator and discriminator of GAN 
GAN’s training process is a game between Generator and Discriminator, and the iterative 
update is made based on gradient descent and backpropagation algorithms [Yi and Babyn 
(2018)]. The Generator aims to generate more realistic samples, i.e., to maximize the 
output probability of the generated samples in the discriminator; the discriminator aims to 
correctly distinguish the true and false samples, i.e., to maximize the output probability of 
the real samples while minimize the output probability of generated samples. The 
Generator and discriminator are shown in Fig. 4. 
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Figure 4: Generator and Discriminator 

The structure of GAN’s Generator is shown on the left side of Fig. 4. The input is a 
randomly generated one-dimensional noise vector z with a length of 0.7∗n, where n 
represents the length of the samples in the real dataset (the number of sampling points). 
First, the input is converted into a 3D matrix by deformation or mapping operation, and 
then the final output is obtained through a 4-layer fractional convolution operation. The 
output is a generated sample of length n. Where each fractional strided convolution 
operation performs the batch normalization operation. The activation function of the 
hidden layer is ReLU, and the output layer is a linear unit. The convolution kernel is 
unified to 1*5 scale and the stride is unified to 2. Each fractional strided convolution 
operation achieves 2 times of the dimension raising. The discriminator of GAN is shown  
on the right side of Fig. 4. For a sample with an input length of n, a one-dimensional 
feature vector is obtained via a 4-layer convolution layer and then a flatten operation. 
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Finally, Sigmoid is used as an output layer to implement a two-category. The output is 
the probability that the sample is true. No pooling operation is used in the network, and 
dimensionality reduction is achieved by the convolution operations without padding 
operations. All hidden layers use LeakyReLU as the activation function and the batch 
normalization is performed after the convolution operation. The convolution kernel is 
unified to 1*5 scale and the stride is unified to 2. Each convolution operation achieves 2 
times of the dimension reduction. 

4 Experimental setup 
4.1 Data preprocessing and model training 
In this paper the dataset selects WOA13 monthly dataset with a resolution of 0.25°. The 
experimental platform selects ubuntu 16.04, tensorflow 1.11, and sklearn 0.19. We grid 
the global data in WOA13. A small square of 2° longitude, 1.25° wide (latitude), and the 
0-600m depth is selected, and it contains 8*5*40 data points. An 8*5*40 3D image is 
converted to a 40*40 2D image to perform the Generative Adversarial Networks training 
and the residual network training. All illegal data in the data set will be directly converted 
to 0. The land area is also marked as 0. In this paper, the Adam gradient descent 
algorithm is used. The initial learning rate of both the generator and the discriminator is 
0.0002, and the number of training iterations is 2000. The size of source samples is 23940 
samples of randomly selected sea areas. The dataset contains a total of 7,815 thermocline 
areas and 16,125 non-thermocline layer areas. Resnet-50 is selected as Resnet Algorithm. 
The process of gradient descent algorithm training GAN is shown in Algorithm 1: 

Algorithm 1. GAN training based on a stochastic gradient descent algorithm  
Data: update count of generator gk, update count of discriminator dk, iteration count of training epoch 

for i=0; i<epoch; i++ do 
 for j=0; j<dk; j++ do 

 Sub-sample a priori { }(1) ( ),... mz z  from ( )gP z ; 

 Sample { }(1) ( ),... mx x  from real sample ( )dataP x ; 

 Update the Discriminator based on the gradient descent algorithm: 

 ( )( )
1

1 log( ( )) log(1 ( ( )))
d

m ii
i

D x D G z
mθ =

 ∇ − + − ∑  

 end 
 for j=0; j<gk; j++ do 

  Sub-sample a priori { }(1) ( ),... mz z  from ( )gP z ; 

 Update the Generator based on the gradient descent algorithm: 
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 End 
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The epoch is the total number of learning cycles in Algorithm 1. The second “for-end” with dk 
is the training process of the Discriminator. The third “for-end” with gk the training process of 
the Generator. Due to the determination of the existence of the thermocline layer, binary 
classification cross entropy is selected as the evaluation criteria. 
loss( , ) [ log (1 ) log(1 )]i i i i i ix y y x y y= − + − −              (7) 
i is only subscript; xi represents the probability that the first sample is predicted as a 
positive example, and yi represents the label of the i sample, and wi represents the weight 
of the item. The lower the loss value, the more accurate the classification result we get. 

4.2 Experimental results 
The loss value of the Generator and the Discriminator varies with epoch as shown in Fig. 
5, Fig. 6 and Fig. 7. 

 
Figure 5: The loss of Discriminator in real data 

 
Figure 6: The loss of Discriminator in real data 
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Figure 7: The Loss of Discriminator in generators 

As shown in Fig. 5, the loss of real data is gradually reduced before 250 epochs, 
indicating that the Generator cannot generate enough “true” data. After 250 epochs, it is 
explained that the data generated by the Generator is less different from the real data, and 
the Discriminator is treated. The loss of the Discriminator is stable at 0.693. As shown in 
Fig. 6, the loss of fake data in the Discriminator is in different fluctuations, after 250 
epochs gradually in stability. Loss of fake data of Discriminator stabilized at 0.693. As 
shown in Fig. 7, the loss value of the Generator is also constantly fluctuating, indicating 
that the generator is learning the official data and finally stabilizing at 0. 693. 
We then add the generated data to the original data, test set 1 as 30 percent of the original 
dataset, and test set 2 as 30 percent of the original dataset with 30 percent of the 
generated dataset.  

Table 1: The result of resnet  
 source 5000 10000 15000 20000 25000 
Acc1 0.9113 0.9175 0.9233 0.9314 0.9371 0.9369 
Loss1 0.2081 0.1974 0.1858 0.1740 0.1620 0.1638 
Acc2 - 0.9201 0.9289 0.9304 0.9393 0.9454 
Loss2 - 0.1978 0.1786 0.1684 0.1503 0.1480 

 
The results are taken 10 times on average as shown in Tab. 1, Acc1 and Loss1 are the 
accuracy and loss of test set one, and Acc2 and Loss2 represent for the accuracy and loss 
of test set two. The accuracy of original training set can achieve more than 0.9. With the 
increase of training set, the accuracy is also increasing. The accuracy and loss of the 
training set at 20000 and 25000 won’t change significantly. The accuracy of 25000 on 
test set 2 is higher than 20000, which indicates that there is a difference between the fake 
samples and the source samples, and that increasing too many generations samples make 
no effect on the accuracy of whether there is a thermocline. 
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5 Conclusion 
With the enhancement of Generative Adversarial Networks, the classification results of 
ResNet are stronger than the original data results. When accuracy peaked, continued 
increases in fake data did not continue to increase accuracy. There are some unusual samples 
in the Woa13 dataset, such as ocean storms, and increasing the sample does not increase the 
accuracy of such data. In the next work, we will adjust the structure of GAN, while 
expanding the ResNet-50 to resnet100. We will also explore what kinds of data are 
incorrectly classified, and whether increasing the sample of these data can improve accuracy. 
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