

Computers, Materials & Continua CMC, vol.60, no.2, pp.599-613, 2019

CMC. doi:10.32604/cmc.2019.05928 www.techscience.com/cmc

Satellite Cloud-Derived Wind Inversion Algorithm Using GPU

Lili He1, 2, Hongtao Bai1, 2, Dantong Ouyang1, 2, Changshuai Wang1, 2, Chong
Wang1, 2, 3 and Yu Jiang1, 2, *

Abstract: Cloud-derived wind refers to the wind field data product reversely derived
through satellite remote sensing cloud images. Satellite cloud-derived wind inversion has
the characteristics of large scale, computationally intensive and long time. The most
widely used cloud-derived serial--tracer cloud tracking method is the maximum cross-
correlation coefficient (MCC) method. In order to overcome the efficiency bottleneck of
the cloud-derived serial MCC algorithm, we proposed a parallel cloud-derived wind
inversion algorithm based on GPU framework in this paper, according to the
characteristics of independence between each wind vector calculation. In this algorithm,
each iteration is considered as a thread of GPU cores, and each thread block array of
GPU allocates n*32 threads, and the many thread blocks are allocated to the thread grid.
The parameters of the algorithm are passed from CPU to GPU global memory and the
storage spaces are previously created on the GPU device before the functions of
algorithm are executed. The test results of multiple sets of different inversion models on
the NVIDIA Geforce GT and the 4-core 8-thread Core i7-3770 CPU show that the
algorithm significantly improves the inversion efficiency. The acceleration ratio is up to
112, and the parallel experiment acceleration ratio is also impressive.

Keywords: Correlation coefficient method, cloud-derived wind, GPU, cross-correlation
coefficient, satellite cloud image.

1 Introduction
Cloud-derived wind refers to the wind field data product reversely derived through
satellite remote sensing cloud images. A large number of satellite remote sensing image
data and terrestrial meteorological information data are needed in the study of global
weather and disaster prediction, which can play a positive role in global meteorological
disaster forecast as well as protection of personal property [Ouyang (2018); He, Ouyang,
Wang et al. (2018); Lompar, Ćurić and Romanic (2017)]. Among them, wind field data is
a very important meteorological data in the meteorological field and the acquisition of it
has a very important impact on the forecast of aerospace activities and severe weather

1 College of Computer Science and Technology, Jilin University, Changchun, 130012, China.
2 Key Laboratory of Symbolic Computation and Knowledge Engineering, Jilin University, Changchun,

130012, China.
3 Department of Engineering Mechanics, State Marine Technical University of St. Petersburg, St. Petersburg,

190008, Russia.
* Corresponding Author: Yu Jiang. Email: jiangyu2011@jlu.edu.cn.

600 CMC, vol.60, no.2, pp.599-613, 2019

such as typhoon storms. Therefore, it is significant to obtain wind field data [Chen, Chen,
Luo et al. (2018); Cervantes, Casanova, Gout et al. (2016)]. In recent years, with the
constant improvement of the network of land wind field observation stations, it has
become easier for researchers to obtain data on land wind fields. However, compared
with the approach of acquiring land wind field data, wind fields in the vast sea, barren
and ridiculous high-altitude areas and hot deserts are much poorer. Wind fields are
relatively difficult to obtain in these areas. The meteorological satellites operate in the
high-altitude orbit around the earth, so it is convenient to collect wind field data in the
extreme areas where wind field data is difficult to obtain on the land. The wind can be
calculated as long as there is a cloud. Inversion of wind field information in the air based
on meteorological satellite remote sensing images has become a very effective means of
obtaining short-time interval and high-resolution wind fields, which can compensate for
the lack of stations in some environmentally harsh areas at sea and on land [Susanne,
Andrey and Miguel (2012); Rich, Frelich, Reich et al. (2016)]. Satheesh Kumar et al.
[Satheesh Kumar, Narayana Rao and Taori (2015)] have explored the possibility of
implementing an advanced photogrammetric technique, generally employed for satellite
measurements, on airglow imager and a very good correspondence was seen between
these two wind measurements, both showing similar wind variation. Though the cloud
drift wind (CDW) has displayed its good application perspective in numerical weather
prediction (NWP), up to the present the CDW data are not actually applied to the daily
operation of NWP. Li et al. [Li, Wang, Xue et al. (2008)] have explored the systematic
error character of FY-2C CDW and its effects on the initial fields and forecast results of
NWP model so as to promote the application of CDW data in operational NWP. Long et
al. [Long, Shi and Huang (2000)] has used numerical differentiation, which is developed
in recent years to calculate gray gradient, and then realized the inverse cloud motion wind
by regularization. At last, through simulation and practical experiments, they compared
the wind inverse results between the algorithms with or without gray gradient information
when the cloud images include perturbation. The experimental results show that the new
algorithm with gradient information can reduce the influence of image disturbance
effectively, and also increase the precision of cloud motion winds. We are in a position
to find a new way to cloud motion wind inversion.
However, since the satellite remote sensing technology is developing rapidly, the
definition of satellite remote sensing cloud images as well as the corresponding resolution
is getting much higher. A cloud image contains pixels of millions or even tens of millions.
Furthermore, the real-time requirements of products in the meteorological field are
getting higher and higher, and the rate of satellite cloud maps is getting faster and faster.
If the traditional serial algorithm is used, in most case, the next cloud image is issued
before the last cloud image has been processed, and the computational efficiency
bottleneck of the cloud-derived wind is gradually revealed. It is getting harder for single
machine and single thread to meet current needs of executing the inversion calculation
task. In general, the shorter the cloud image time interval, the more tracer clouds used for
inversion, the higher compute density of the wind vector, also the higher wind field data
quality of the cloud-derived wind, but all of these pose a challenge to the efficiency of the
cloud-derived wind inversion algorithm. Although some scholars have proposed a simple
algorithm for the cloud-derived wind inversion algorithm, it is difficult to meet the

Satellite Cloud-Derived Wind Inversion Algorithm Using GPU 601

efficiency requirement of the wind field calculation which is increasingly required for
real-time performance. Therefore, in addition to studying the cloud-derived wind
inversion algorithm with lower computational cost, the architecture of the multi-core
CPU [Jongerius, Anghel, Dittmann et al. (2018)], GPU [Wang, Pan, Davidson et al.
(2017)] and cluster [Hulse (2018)] of modern computer is fully utilized to study the
parallel cloud-derived wind inversion algorithm, which is also one of the effective ways
to improve actual operational efficiency of the inversion algorithm. Wang et al. [Wang,
He, Ouyang et al. (2016)] have studied the parallel inversion algorithm of cloud-derived
wind based on multi-core CPU and achieved better efficiency improvement, but the
number of CPU cores is small, and the performance gain caused by pure multi-core CPU
is limited. This paper explores the cloud-derived wind inversion algorithm based on
multi-core CPU in order to obtain better performance gain.

2 Basic theory
At present, cloud-derived wind inversion based on satellite cloud image is generally
applied to estimate the wind speed and direction by tracking the movement of image
blocks in three consecutive time clouds. The height of wind is specified by the height of
the corresponding position cloud in cloud map. In actual calculation, cloud-derived wind
inversion mainly includes four steps: data preprocessing, tracer cloud tracking, altitude
designation and quality control.
The maximum cross-correlation coefficient (MCC) method [Wang, Jia and Cheng (2002)]
is the most widely used tracer cloud tracking method, as shown in Fig. 1. The principle
can be expressed as: selecting a trace cloud A in the cloud image, and then moving the
cloud block A (for the N×N pixel image block) in the target search area S (which is M×
M) containing A. Next, calculating all the correlation coefficients of tracking cloud
blocks as well as the tracking cloud block A in M. Finally the tracking cloud block B
corresponding to the maximum correlation coefficient is the target cloud block.
The cross correlation coefficient R(Δx, Δy) is calculated as follows:

R(𝛥𝛥x,𝛥𝛥y)=
∑ ∑ �𝐴𝐴(𝑖𝑖, 𝑗𝑗)-𝐴𝐴��𝐵𝐵(𝛥𝛥𝛥𝛥 + 𝑖𝑖,𝛥𝛥𝛥𝛥 + 𝑗𝑗)-𝐵𝐵�N

j
N
i

�∑ ∑ �𝐴𝐴(𝑖𝑖, 𝑗𝑗)-𝐴𝐴�
2N

j
N
i ∙ �∑ ∑ �𝐵𝐵(𝛥𝛥𝛥𝛥 + 𝑖𝑖,𝛥𝛥𝛥𝛥 + 𝑗𝑗)-𝐵𝐵�

2N
j

N
i

where Δx,Δy ∈ �−M−N
2

,M−N
2
�, i, j ∈ [1, N], Δx,Δy are the number of rows and columns of

the tracking block deviating from the tracing cloud block respectively. i, j are the index
values of the tracing cloud block. A(i, j) and B(i, j) are respectively the pixel gray values
of the tracing clouds and the tracking block. A and B are the average gray levels of the
tracking cloud block and the tracking block respectively.

602 CMC, vol.60, no.2, pp.599-613, 2019

Figure 1: Maximum correlation coefficient method

After obtaining the maximum correlation coefficient, the distances of the tracking cloud
block B in the target search area relative to the tracking cloud block A in the x, y
directions are Δx and Δy respectively. The latitude and longitude of the center point of
the trace cloud block A is (x1, y1) and the latitude and longitude of the center point of the
tracking cloud block B is (x2, y2). The earth model (shown in Fig. 2) can be established
to calculate the distance d of the target cloud block B relative to the tracking cloud block
A. The speed of the wind vector can be obtained by dividing d by the observation time
interval t of the two images. The derivation process is as follows:

Figure 2: Schematic diagram of wind speed derivation

Wind speed

v = d
t
 (1)

The distance between two points A and B (RE is the radius of the Earth)
d = RE × γ (2)
The spherical angle formed by the two points A and B and the center of the sphere can be
calculated by the product of the space vector

cos(γ) = OA������⃑ ⋅OB������⃑

|OA������⃑ |⋅|OB������⃑ |
 (3)

Satellite Cloud-Derived Wind Inversion Algorithm Using GPU 603

Let vector OA�����⃑ be (a1, b1, c1) and vector OB�����⃑ be (a2, b2, c2), then
a1 = RE ⋅ cos(x1) ⋅ cos(y1) (4)
b1 = RE ⋅ sin(x1) ⋅ cos(y1) (5)
c1 = RE ⋅ sin(y1) (6)
The same reason
a2 = RE ⋅ cos(x2) ⋅ cos(y2) (7)
b2 = RE ⋅ sin(x2) ⋅ cos(y2) (8)
c2 = RE ⋅ sin(y2) (9)
By substituting the formulas (4) to (9) into (3) we can obtain the size of the spherical
center angle γ. Then substituting the obtained γ into (2) to obtain the distance d between
the two points A and B, and finally substituting (1) with d, the velocity v of the wind
vector can be obtained.
The direction of wind vector is calculated using the spherical triangle cosine theorem. As
shown in Fig. 3, the plane AED is tangent to the earth spherical surface ABC at point A.
A, B are the start and end points of the wind vector respectively.

Figure 3: Wind direction derivation

The triangular cosine theorem is applied to the triangle ODE.

cos(α) = OE2+OD2−DE2

2OE⋅OD
 (10)

Since the triangle OAE and the triangle OAD are both right triangles, there are
OE2 = OA2 + AE2 (11)
OD2 = OA2 + AD2 (12)
Substituting (11) (12) into (10) and applying the triangular cosine theorem
cos(α) = cos(β) ⋅ cos(γ) + sin(β) ⋅ sin(γ) ⋅ cos(θ) (13)
Among them
α = x2 − x1 (14)
β = y2 − y1 (15)

604 CMC, vol.60, no.2, pp.599-613, 2019

Substituting (14) and (15) and γ obtained above into (13), the magnitude of θ can be
obtained by an inverse sine function. If point A is in the area north of the equator, the
wind direction angle is θ. If x2 < x1, the wind direction angle is 2π-θ. If point A is in the
south of the equator, the wind direction angle is π-θ, and if x2 < x1, the wind direction
angle is π+θ.
The height of the wind vector can be specified by the brightness temperature values of
the infrared and water vapor channels at the position of the wind vector.
After the wind vector is calculated, the wind speed and direction check are required to
eliminate the wind speed and direction deviation in the preliminary calculation results.
The cloud maps that define three consecutive time observations are C1, C2, and C3. It is
assumed that the wind speed and wind direction of the wind vector V1 calculated by C1
and C2 are v1 and θ1 respectively, and the wind speed and wind direction of the wind
vector V2 are calculated as V2 and θ2 by C2 and C3 respectively. The wind direction
difference θ′ = |θ1 − θ2| and the relative difference of wind speed v′ = | 2(v1−v2)

v1+v2
| .

When the wind direction difference or wind speed difference is greater than a given
threshold, the wind vector is removed.

3 Parallel algorithm
3.1 Serial algorithm analysis
Satellite cloud-derived wind algorithm process is mainly divided into the following stages:
1) Data preprocessing
2) Tracer cloud tracking
3) Height specification
4) Quality control
5) Data storage
The satellite data decompression step is to first decompress the satellite cloud image to
obtain the data of each channel; the data preprocessing step generally trans-forms the
image into a Mercator projection for wind vector inversion, and then image enhancement
is needed in order to obtain satellite cloud image data with less noise; At the core of the
tracer cloud tracking algorithm, the algorithm uses the maximum correlation coefficient
method to perform pixel matching on the center 32*32 area of each block on the cloud
image to calculate the size and angle of the wind vector; the height designation part
mainly calculates the height of the wind vector. Generally, the calculation method is to
obtain temperature based on the gray value of the coordinates of the wind vector, and
then the height is derived from the temperature. If the original cloud image is given a
temperature calibration table, the height is converted according to the temperature
calibration table; the quality control is to check quality according to the wind vectors
calculated by the last two of the three consecutive cloud images. The wind vectors with
excessive wind speed difference and angle deviation will be removed; the last step is to
write the reversed wind to disk using a certain rule.
The serial cloud-derived wind inversion algorithm divides the cloud image of size
Width×Height pixels into ((Width×Height)) ⁄ρ blocks (ρ is the density of the wind vector),

Satellite Cloud-Derived Wind Inversion Algorithm Using GPU 605

and uses the wind vector calculation method for each block of the cloud image
respectively to calculate wind vectors. In the calculation of each wind vector, the time
required to use the MCC method to match the target cloud block is the highest in the
calculation time, and the size of the traced image block is mentioned in the related
literature [10]. National Satellite Meteorological Center and EUM ETSAT are set to
32×32. If the trace cloud size is used by this standard (i.e., 32×32) and the search area
size is set to 64×64, we need 33×33 traces of clouds and the correlation coefficient
between the cloud blocks to find the location of the target cloud block. But currently a
complete satellite cloud image taken by the meteorological satellite is generally larger (up
to megapixel level), which reduces the inversion of all winds.
It can be seen from the above analysis that the main reason for the long wind in-version
time in the cloud image in the serial cloud-derived wind inversion algorithm is that it
has more iterations than the single iteration time, so the single iteration parallelizes this
fine. Granular parallelism is not suitable for cloud-derived wind inversion. Since the
calculations of the wind vectors in the cloud map are completely independent, the wind
map can be selected for coarse-grained parallelism.

3.2 Parallel algorithm analysis
Using NVIDIA’s CUDA architecture, thread is the basic unit of stream processor
execution in the GPU, and blocks containing multiple threads are the basic unit of
processor scheduling. Multiple threads in the same block use the same memory space,
which means they can share access to each other. Since the above block is a basic
scheduling unit, it is possible to launch a GPU that has multiple processors, and it is
possible to execute more blocks faster, that is, using such a GPU is computationally
efficient. The following diagram illustrates that more processors are used, more efficient
they perform, as shown in Fig. 4.

Figure 4: The effect of the number of stream processors on efficiency

606 CMC, vol.60, no.2, pp.599-613, 2019

The function executed in the stream processor in GPU parallel computing is a kernel
function, such as the wind vector inversion task function executed in the stream
processing of the GPU, so the function is a kernel function. The kernel function is called
by kernel_function<<<M,N>>>(arguments), where M is the size of the thread grid. The
variable can be a one-dimensional, two-dimensional or three-dimensional variable, and N
represents each block. The number of threads can also use one-dimensional, two-
dimensional or three-dimensional variables. In actual use, variables of different
dimensions are used according to different scenarios.
Inside the kernel function, CUDA provides some built-in variables for accessing thread
indexes, thread blocks and thread grids, etc., such as the following variables:
(1) gridDim: Indicates the size of the grid, gridDim.x, gridDim.y, gridDim.z are the sizes

of the x-axis, y-axis, and z-axis respectively.
(2) blockIdx: Indicates the index value of the block in the grid. blockIdx.x and

blockIdx.y represent the x-axis index and the y-axis index of the block in the grid
respectively.

(3) blockDim: Indicates the size of the block, blockDIm.x and blockDIm.x are the
dimensions of the x-axis and the y-axis respectively.

(4) threadIdx: Represents the thread index in the block.
The GPU parallel technology is used to accelerate the cloud-derived wind inversion
algorithm, and the MN tasks are dynamically allocated to the GPU stream processors for
execution. For the sake of simplicity, the thread application is applied as a one-
dimensional variable blocksPerGrid. Each ThreadsPerBlock thread is opened in the
thread grid. In this paper, the number of threads on each block is 256, and the number of
blocks in the thread grid.
blocksPerGrid=(iMax+threadsPerBlock-1)/threadsPerBlock
The index of each wind vector inversion task to obtain the wind inversion is
windIndex=blockDim.x*blockIdx.x+threadIdx.x
Finally, dev_makeCloud<<<blocksPerGrid, threadsPerBlock>>>(arguments...) is called
to allocate and execute each wind inversion task. The threads in each block are executed
sequentially in a stream processor and will be reversed. The global wind vector array is
opened corresponding to the position of the windIndex.

#include <stdio.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "device_functions.h"
void main(){
//1. Serial part, data reading, preprocessing
//2. Open space for storing cloud image data, correlation coefficient matrix, wind vector array,
etc. on GPU devices
//3. GPU parallel part
int threadsPerBlock=N;
int blocksPerGrid=(iMax+threadsPerBlock-1)/threadsPerBlock;
dev_makeCloud<<<blocksPerGrid, threadsPerBlock>>>(Space pointer parameters developed

Satellite Cloud-Derived Wind Inversion Algorithm Using GPU 607

4 The experimental results
In this section, we compare the calculation results of the serial cloud-derived wind
inversion algorithm and parallel algorithm under different parameters, including the
calculation accuracy and computational efficiency of the results. The experimental
environment is for the CPU to be 4 cores and 8 threads Intel Core i7-3770 3.4 GHZ, GPU
NVIDIA Geforce GT650M, and 4G memory. The satellite cloud images used in the
experiment are three infrared-cloud images issued by Fengyun-2E satellite at Beijing
time on October 11, 2013 at 7:01, 7:31, and 8:01. The size of the cloud map is
2581×1399 pixels, the longitude range is 45° east longitude to 165° east longitude, and
the latitude range is 5° south latitude to 60° north latitude.

4.1 Algorithm precision comparison
(1) When the inversion parameters are 22×22 pixels, the tracking area is 44×44 pixels,
and the wind density is 2/degree. 10 consecutive wind vectors on the equator are selected
as comparison objects. The wind direction accuracy comparison between inversion serial
algorithm and parallel algorithm is shown in Tab. 1 (S indicates serial, T-64 represents 64
threads allocated in one thread block, T-128 represents 128 threads in a thread block, and
the number of blocks in the thread is the total number of tasks WN divided by the number
of threads in a block).

Table 1: Accuracy comparison-1

wind
num

longitude
(East)

latitude
(North)

S T-64 T-128

wind
direction
(degree)

wind
speed
(meter/
second)

wind
direction
(degree)

wind
speed
(meter/
second)

wind
direction
(degree)

wind
speed
(meter/
second)

1 56.50 0.00 122.60 4.00 122.60 4.01 122.60 3.98

2 66.50 0.00 114.72 8.59 114.72 8.57 114.72 8.60

3 67.00 0.00 115.75 8.27 115.75 8.27 115.75 8.27

4 69.50 0.00 110.77 6.08 110.77 6.08 110.77 6.08

5 72.00 0.00 72.39 7.13 72.39 7.14 72.39 7.13

6 72.50 0.00 71.52 11.34 71.52 11.34 71.52 11.33

7 73.00 0.00 70.93 11.00 70.93 10.99 70.93 11.00

8 73.50 0.00 66.34 12.54 66.34 12.54 66.34 12.53

9 74.50 0.00 71.56 11.36 71.56 11.36 71.56 11.36

10 75.00 0.00 78.31 10.64 78.31 10.65 78.31 10.64

on GPU devices
);// Perform wind vector inversion task
//3. Serial part, data summary, data saving
}

608 CMC, vol.60, no.2, pp.599-613, 2019

(2) The inversion parameters are 32×32 pixels for the tracer. The size of the tracking area
is 64×64 and the wind density is 4/degree. The 10 winds with 32 degrees north latitude
are selected as the comparison object, parallel and string. The wind vector precision of
the row algorithm inversion is shown in Tab. 2. (where S represents serial, T-64
represents 64 threads allocated in one thread block, and T-128 represents 128 thread
threads in a thread block, then The number of blocks in the thread grid is the total number
of tasks WN divided by the number of threads in each block).

Table 2: Accuracy comparison-2

wind
num

longitude
(East)

latitude
(North)

S T-64 T-128

wind
direction
(degree)

wind
speed
(meter/
second)

wind
direction
(degree)

wind
speed
(meter/
second)

wind
direction
(degree)

wind
speed
(meter/
second)

1 54.00 32.00 186.36 4.68 186.36 4.68 186.36 4.59

2 54.25 32.00 202.28 6.58 202.28 6.59 202.28 6.58

3 54.50 32.00 187.65 6.14 187.65 6.13 187.65 6.15

4 54.75 32.00 204.66 6.70 204.66 6.70 204.66 6.70

5 55.00 32.00 200.98 6.52 200.98 6.52 200.98 6.54

6 55.25 32.00 186.16 6.12 186.16 6.13 186.16 6.12

7 55.50 32.00 209.54 5.34 209.54 5.34 209.54 5.33

8 55.75 32.00 205.07 5.13 205.07 5.12 205.07 5.13

9 56.00 32.00 222.43 4.35 222.43 4.35 222.43 4.34

10 56.25 32.00 217.63 4.05 217.63 4.07 217.63 4.05

As can be seen from Tab. 1 and Tab. 2 above, GPU-based parallel cloud-derived wind
inversion, serial inversion and parallel inversion yield most of the same, less partial
similar numerical results due to GPU float Point operations also have precision errors, so
it is ideal to achieve this result, which proves that the GPU-based parallel algorithm is
numerically reliable and efficient.
The cloud-derived product map of the GPU-based parallel inversion algorithm is shown
in Fig. 5.

Satellite Cloud-Derived Wind Inversion Algorithm Using GPU 609

Figure 5: Product map of the parallel algorithm based on GPU

4.2 Performance comparison
The experiment uses the host machine as a 4-core 8-thread CPU. The GPU used is Nvidia’
Nvidia GeForce GT650M. The core frequency is 925 MHz, the memory is 1 G, the
memory frequency is 5400 MHz, the memory bandwidth is 84.6 GB/s, and the number of
stream processors is 768. The theoretical computing power is 1.42 TFLOPs. The satellite
cloud image is inverted in the case of different inversion parameters and thread blocks. The
relative acceleration ratio and parallel efficiency of the algorithm vary with the inversion
parameters and the number of thread blocks as shown in Tab. 3 and Tab. 4.

Table 3: Acceleration ratio and parallel efficiency-1
Inversion
Parameter
 model

Thread block Execution time
(seconds)

Relative
acceleration ratio

Tracer cloud:36×36
Tracking area:72×72
Wind density: 4/degree

1(CPU core) 1636.00 --

1 1401.52 1.17

2 700.36 2.34

4 349.78 4.68

8 174.64 9.37

16 87.44 18.71

24 65.59 24.94

32 43.77 37.38

40 44.55 36.72

48 33.39 49.00

56 33.33 49.08

64 22.55 72.55

72 24.69 66.26

610 CMC, vol.60, no.2, pp.599-613, 2019

80 23.55 69.47

88 23.52 69.56

96 23.47 69.71

104 24.98 65.49

112 24.83 65.89

120 24.83 65.89

128 14.14 115.70

136 24.48 66.83

144 24.48 66.83

152 24.47 66.86

160 24.47 66.86

168 24.5 66.78

176 24.52 66.72

184 24.5 66.78

192 24.5 66.78

200 24.86 65.81

208 24.86 65.81

216 24.83 65.89

224 14.55 112.44

232 24.88 65.76

240 24.86 65.81

248 14.52 112.67

256 14.52 112.67

Table 4: Acceleration ratio and parallel efficiency-2
Inversion
Parameter

Thread block Execution time
(seconds)

Relative
acceleration ratio

Tracer cloud: 36×36
Tracking area: 72×72
Wind density: 2/degree

1(CPU core) 1205.06 --

1 1086.94 1.11

2 542.72 2.22

4 270.61 4.45

8 139.67 8.63

16 96.05 12.55

24 69.86 17.25

Satellite Cloud-Derived Wind Inversion Algorithm Using GPU 611

32 52.41 22.99

40 34.95 34.48

48 35.59 33.86

56 26.64 45.23

64 26.63 45.25

72 17.95 67.13

80 19.73 61.08

88 18.78 64.17

96 18.78 64.17

104 18.78 64.17

112 20 60.25

120 19.88 60.62

128 19.88 60.62

136 11.34 106.27

144 19.59 61.51

152 19.59 61.51

160 19.58 61.55

168 19.59 61.51

176 19.61 61.45

184 19.59 61.51

192 19.59 61.51

200 19.88 60.62

208 19.88 60.62

216 19.84 60.74

224 11.63 103.62

232 19.89 60.59

240 19.89 60.59

248 11.61 103.80

256 11.61 103.80

It can be seen from the analysis of Tab. 3 and Tab. 4 that in the case where the inversion
parameters are the same, the more thread blocks are basically followed, the larger
acceleration ratio is. When the thread block is smaller than 64, the parallel acceleration
ratio is increased by 2 times. When it is greater than 64, the parallel acceleration ratio is
related to the division of the thread block. The highest acceleration ratio of the two
experiments reaches 112 and 103 and the acceleration effect is very significant.

612 CMC, vol.60, no.2, pp.599-613, 2019

5 Conclusion
This paper discusses the parallel computing problem of cloud-derived wind inversion.
According to the characteristics of cloud-derived wind inversion, a parallel algorithm based
on GPU for many-core computing is designed and implemented. By analyzing the
calculation results, it is known that assigning reasonable parallel granularity can guarantee
the correctness of the calculation results and effectively improve, compared with the serial
algorithm, the calculation efficiency. Compared with the serial algorithm, it provides an
efficient calculation for large-scale, short-interval and high-density wind vector.
In recent years, the application of cluster computing is becoming much more extensive,
and the mixed using multi-core CPU, MPI and GPUs [Pawliczek, Dzwinel and Yuen
(2014)] mixed programming mode for design algorithm design will also be the direction
to further improvement of the efficiency of cloud-derived wind cloud windward inversion.
In addition to the application of parallel technology, the efficiency improvement of the
cloud-derived wind inversion algorithm is also worth considering from the perspective of
optimizing the algorithm of the wind vector inversion. For example, the other tracer
cloud tracking algorithms and the optimization of thee tracking efficiency are considered.

Acknowledgements: This work was supported in part by the National Natural Science
Foundation of China (61872160, 51679105, 51809112, 61672261).

References
Cervantes, D. A.; Casanova, P. G.; Gout, C.; Moreles, A. M. (2016): A line search
algorithm for wind field adjustment with incomplete data and RBF approximation.
Computational & Applied Mathematics, vol. 37, no. 3, pp. 2519-2532.
Chen, Y.; Chen, C. L.; Luo, X.; Zhang, Y.; Yang, Z. H. et al. (2018): Research on
wind field algorithm of wind lidar based on BP neural network and grey prediction.
International Conference on Optical Instruments & Technology: Advanced Laser
Technology & Applications, vol. 10619.
He, L. L.; Ouyang, D. T.; Wang, M.; Bai, H. T.; Yang, Q. L. et al. (2018): A method
of identifying thunderstorm clouds in satellite cloud image based on clustering.
Computers, Materials & Continua, vol. 57, no. 3, pp. 549-570.
Hulse, P. (2018): Review: Beowulf cluster computing with Linux, second edition.
Computer Journal, vol. 48, no. 3, pp. 379-380.
Jongerius, R.; Anghel, A.; Dittmann, G.; Mariani, G.; Vermij, E. et al. (2018):
Analytic multi-core processor model for fast design-space exploration. IEEE
Transactions on Computers, vol. 67, no. 99, pp. 755-770.
Li, H. H.; Wang, M.; Xue, J. S.; Qi, M. H. (2008): A study on the application of FY-2C
cloud drift wind in the mesoscale numerical Model. Acta Meteorological Siica, vol. 66,
no. 1, pp. 50-58.
Lompar, M.; Ćurić, M.; Romanic, D. (2017): Simulation of a severe convective storm
using a numerical model with explicitly incorporated aerosols. Atmospheric Research,
vol. 194, pp. 164-177.

Satellite Cloud-Derived Wind Inversion Algorithm Using GPU 613

Long, Z. Y.; Shi, H. Q.; Huang, S. X. (2011): A new idea of cloud motion wind derived
from satellite images. Acta Physica Sinica, vol. 60, no. 5, pp. 840-845.
Ouyang, H. T. (2018): Input optimization of ANFIS typhoon inundation forecast models
using a multi-objective genetic algorithm. Journal of Hydro-Environment Research, vol.
19, pp. 16-27.
Pawliczek, P.; Dzwinel, W.; Yuen, D. A. (2014): Visual exploration of data by using
multidimensional scaling on multicore CPU, GPU, and MPI cluster. Concurrency &
Computation Practice & Experience, vol. 26, no. 3, pp. 662-682.
Rich, R. L.; Frelich, L.; Reich, P. B.; Bauer, E. M. (2016): Detecting wind disturbance
severity and canopy heterogeneity in boreal forest by coupling high-spatial resolution
satellite imagery and field data. Remote Sensing of Environment, vol. 114, no. 2, pp. 299-308.
Satheesh Kumar, S.; Narayana Rao, T.; Taori, A. (2015): A novel approach for the
extraction of cloud motion vectors using airglow imager measurements. Atmospheric
Measurement Techniques, vol. 8, no. 3, pp. 2657-2682.
Susanne, L.; Andrey, P.; Miguel, B. (2012): High-resolution satellite measurements of
coastal wind field and sea state. International Journal of Remote Sensing, vol. 3, no. 23,
pp. 7337-7360.
Wang, Y.; Pan, Y.; Davidson, A.; Wu, Y. D.; Yang, C. et al. (2017): Gunrock: GPU
graph analytics. ACM Transactions on Parallel Computing, vol. 9, no. 4, pp. 3.
Wang, C. S.; He, L. L.; Ouyang, D. T.; Bai, H. T. (2016): Satellite cloud drift winds
parallel inversion algorithm based on multi-core CPU. Journal of Jilin University:
Science Edition, vol. 54, no. 3, pp. 539-546.
Wang, Y. B.; Jia, X. Z.; Cheng, J. (2002): A numerical differentiation method and its
application to reconstruction of discontinuity. Inverse Problems, vol. 18, no. 6, pp.
1461-1476.

	Satellite Cloud-Derived Wind Inversion Algorithm Using GPU
	Lili He0F , 2, Hongtao Bai1, 2, Dantong Ouyang1, 2, Changshuai Wang1, 2, Chong Wang1, 2, 3 and Yu Jiang1, 2, *

	4 The experimental results
	References

