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Abstract: Deep learning technology has brought great impetus to artificial intelligence, 

especially in the fields of image processing, pattern and object recognition in recent years. 

Present proposed artificial neural networks and optimization skills have effectively 

achieved large-scale deep learnt neural networks showing better performance with deeper 

depth and wider width of networks. With the efforts in the present deep learning 

approaches, factors, e.g., network structures, training methods and training data sets are 

playing critical roles in improving the performance of networks. In this paper, deep 

learning models in recent years are summarized and compared with detailed discussion of 

several typical networks in the field of image classification, object detection and its 

segmentation. Most of the algorithms cited in this paper have been effectively recognized 

and utilized in the academia and industry. In addition to the innovation of deep learning 

algorithms and mechanisms, the construction of large-scale datasets and the development 

of corresponding tools in recent years have also been analyzed and depicted. 
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convolutional neural network. 

1 Introduction 

With the continuous improvement of computing system, such as the help of GPU and 

distributed computing system, the training of large-scale multi-layer artificial neural 

network has become possible. In addition, the project of ImageNet [Deng, Dong, Socher 

et al. (2009)] makes a fertile soil for deep learning to develop. It offers a very giant image 

database which contains 12 subtrees with 5247 synsets and 3.2 million images in total. 

This storage was going to bigger after it became public. More than a million of the 

images have a clear category tag and an annotation of the object in the image. The tags 

and annotations are up corrected or updated when mistakes found. The giant data quantity 

and highly tagging make the ImageNet almost become the standard the image processing 
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in deep learning especially computer vision. Researchers from all the world compete their 

image classification, object detection and location algorithms in the ImageNet Large 

Scale Visual Recognition Competition (ILSVRC). The most attractive achievement at the 

beginning is the work from Krizhevsky et al. [Krizhevsky, Sutskever and Hinton (2012)] 

in 2012. They give a very efficient and effective network architecture that has a great 

impact on subsequent researches. This network was named as AlexNet by the researchers 

which is an homage to Yann LeCuns pioneering LeNet 5 network [Lecun, Boser, Denker 

et al. (1989)]. They propose many efficient optimization techniques, such as Dropout, 

ReLU (Rectified Linear Unit) and LRN (Local Response Normalization). Many follow-

up networks were put forward at the basement of the AlexNet such as VGG [Simonyan 

and Zisserman (2014)], GooLeNet [Szegedy, Liu, Jia et al. (2015)], ResNet [He, Zhang, 

Ren et al. (2016)]. They extend depth and width of the AlexNet basically and optimize 

the structures of networks. These networks have a great impact on computer vision and 

pushed artificial intelligence technology to a new height. They are very inspiring for later 

researchers and have had far reaching influence. 

Deep learning has become a hot research topic for its excellent performance. More and 

more researchers from different fields devote their efforts into deep learning and combine 

it with their own research projects. Countless innovations have emerged constantly in 

recent years. For example, Google made a great progress with the neural machine in their 

translation systems [Wu, Schuster, Chen et al. (2016)]. Further, Van Den Oord et al. [Van 

Den Oord, Dieleman, Zen et al. (2016)] design a WaveNet which can generate human 

likely voice from text. On the other hand, deep learning shows great strength in the field 

of games. The famous AlphaGo [Silver, Huang, Maddison et al. (2016); Silver, 

Schrittwieser, Simonyan et al. (2017)] defeat many human top Go masters in 2016 and 

2017. Before that, the machine equipped with deep reinforcement learning technologies 

is realized the human like video games control in 2015. Even some robot algorithms have 

surpassed humans’ recordings [Mnih, Kavukcuoglu, Silver et al. (2015)]. Besides, deep 

learning also shows its ability in artistic creation. GAN [Goodfellow, Pouget-Abadie, 

Mirza et al. (2014)] is a network that can generate fraudulent data based on training data. 

The generated images from the large data set are hard to find differences from the 

training data. Gatys et al. [Gatys, Ecker and Bethge (2015)] propose an artistic style 

transfer neural network. It can redraw the image according to other artistic works 

following the style of the learnt images. Besides, deep learning also shows its powerful 

performance in the tradition artificial intelligence such as NLP, auto driving, medical 

industry and robot industry et al. Innumerable specific neural networks and optimization 

methods have been invented. 

This paper mainly discusses the major progress of deep learning in image processing in 

recent years, especially in the fields of image classification, target detection and object 

segmentation. The three research areas have both connected and progressive relationships. 

The connected thing is that they are all based on the basic idea of a convolutional neural 

network. The progressive relationship is that their difficulty is getting higher and higher. 

Target detection and object segmentation all use some basic network models in image 

classification. The image classification algorithm based on convolutional neural network 

gives a lot of new ideas to target detection and object segmentation and achieves very 

good results. 
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On the other hand, efficient experimental tools, high-performance computing platforms 

high-quality and large-scale training data sets are also an essential part of achieving an 

outstanding model. Therefore, this paper compares the typical experimental tools and 

training datasets in Section 2 firstly. To achieve better results, only increasing the width 

and depth of the network is far from enough. Next, this paper compares the typical deep 

learning networks developed in recent years and refine their advantages in Section 3. In 

the Section 4, the paper lists and compares several networks that have the most 

recognized results in the field of target detection. Finally, the Section 5 briefly describes 

the research progress in semantic segmentation and instance segmentation. 

2 Typical experimental tools and training datasets 

A workman must sharpen his tools if he is to do his work well. Good tools can make the 

research process go more efficiently and successful. For deep learning, the tools can be 

divided into two parts. The first part is a good computing platform, including hardware 

and software. Another part is the high-quality large-scale training datasets. 

2.1 Typical experimental tools 

Deep learning is a class of computationally intensive algorithms. They rely on high 

performance computing resources heavily, especially floating-point operations. 

Fortunately, with the development of technology, the floating-point operation ability of 

GPU has been emphasized in the industry. More and more researchers are using GPU and 

even distributed GPU clusters to speed up the training of large-scale artificial neural 

networks [Li, Zhang, Huang et al. (2016)]. Therefore, to facilitate the adoption of the 

high-performance computing resources well and help researchers to focus on the 

implement of algorithms agilely, a variety of programming tools and frameworks emerge 

as the times require. Besides, most of these tools are not only for deep learning. They can 

also do a lot different kinds of scientific speed-up calculation in a very easy way. 

The frameworks in the Tab. 1 are very popular both in the industry and academia. They 

provide rich convenient interfaces for mathematical computation. Users can use these 

interfaces to build their own neural network models conveniently with powerful 

GPU/CPU even their clusters without worrying about tedious computing details. 

Some of these frameworks lay particular emphasis on the underlying design of 

mathematical interfaces. Therefore, there is still a lot of work to do before users realize 

their own experiments. To further simplify programming, a more advanced framework 

arises at the historic moment. The high-level frameworks, such as Keras, use some of 

above frameworks as the backend so that combine ease of use and high performance 

together but sacrifice certain expansibility. 
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Table 1: Comparison of programming tools supporting deep learning 

Features TensorFlow MXNet PaddlePaddle Caffe Torch Theano 

Main develop 

language 

C++/ 

CUDA 

C++/ 

CUDA 

C++/ 

CUDA 

C++/ 

CUDA 

C++/Lua/ 

CUDA 

Python/C+

+/CUDA 

Sub-language Python 
Python/R/ 

Julia/Go 
Python Python/Matlab - - 

Hardware 
CPU/GPU/ 

Mobile 

CPU/GPU/ 

Mobile 

CPU/GPU/ 

Mobile 
CPU/GPU CPU/GPU CPU/GPU 

Cluster Enable Yes Yes Yes No No No 

Speed Medium Fast Fast Fast Fast Medium 

Extensibility Good Good Good Medium Good Good 

Documents Common Rich Rich Rich Rich Common 

OS support 
Linux, OSX, 

Win 

Linux, 

OSX, Win 
Linux, OSX 

Linux, OSX, 

Win 

Linux, 

OSX 

Linux, 

OSX, Win 

Command 

(CMD)/ 

Configuration 

(Conf) 

Conf Both Conf Conf CMD Conf 

Net structure Tensor graph Uncertain Layered Layered Layered 
Tensor 

graph 
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Table 2: Common datasets of image processing 

Name 
Release 

time 
Type Size Description 

MNIST 1998 
Image, 

binary 

60,000 train samples and 

10,000 test samples, a total 

of about 12M zipped 

Classical dataset, only 

handwritten digital images, 

academic standards. 

PASCAL 

VOC 
2005 Image 

20 classes. The train/val 

data has 11,530 images 

containing 27,450 ROI 

annotated objects and 6,929 

segmentations. 2 GB of 

final version. 

The quality of the data set is 

good, and the annotation is 

complete. It is very suitable 

for testing the performance of 

the algorithm. It was updated 

from 2005 to 2012. 

CIFAR 2009 
Image, 

RGB 

CIFAR-10: 10 categories 

and 50000 training images 

and 10000 test images 

CIFAR-100: 100 classes, 

each has 600 pictures. 

CIFAR is a very good small 

and medium scale data set for 

the image classification 

algorithm test. 

ImageNet 2009 Image 

14,197,122 images, 

1,034,908 images with 

bounding box annotations, 

1.2 million images with 

SIFT features, 1 TB in total. 

It is very convenient to use. It 

has been widely applied in 

computer vision field and has 

almost become the "standard" 

dataset for deep learning 

algorithm performance in 

image domain. 

COCO 2014 Image 

Multiple objects per image, 

more than 300,000 images, 

more than 2 million 

instances, 80 object 

categories, 5 captions per 

image, 40 GB. 

Image annotations 

information of COCO not 

only has category, location 

information, but also 

describes the semantic text of 

image, almost become the 

standard data set of image 

semantic understanding 

algorithm performance 

evaluation. 

Open 

Image 
2016 Image 

9 million images URL, 

more than 6000 classes, 1.5 

GB (images excluded). 

High quality for network 

training, but only provides 

picture URLs, which may not 

be easier to use. 

Youtube-

8M 
2016 Video 

8 million videos, 50 million 

hours in total, 4800 classes, 

less than 1.5 TB after 

compression. 

Only uses more than 1000 of 

the public video resources on 

YouTube. 
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As the excellent performance of deep learning is more and more favored by the market, 

the customized chips and computing systems come into being, such as NVIDIA DGX 

with NVIDIA Tesla V100s, Google TPU. However, they are all expensive or no public 

for sale. In addition to speeding up on general-purpose chips, researchers are also trying 

to design specialized chips for accelerated calculations, such as FPGA, ASIC, and 

achieved good performance [Nurvitadhi, Sheffield, Sim et al. (2017)]. What is more, 

researchers have already successfully ported models to embedded devices [Hegde, 

Ramasamy and Kapre (2016)] and mobile devices [Tsung, Tsai, Pai et al. (2016)]. 

2.2 Typical data set comparison 

The development of deep learning cannot be separated from the development of data sets. 

The next table shows the typical dataset of image processing fields. They all play an 

important role in the recent neural network researches whatever in industry application or 

academic research. 

Tab. 2 shows the common data sets of image processing which is used frequently. Some 

of these data sets have been unable to meet the needs of modern machine learning but 

they are still popular, such as MNIST. Because they can still verify the basic function of 

algorithms just like the first “hello world” program or be the standard of the contrasts in 

some performances of different algorithms. Some of the data sets were continually 

updated, such as ImageNet and PASCAL VOC. But the updates are stopped now. 

Because they cannot meet the needs like the MNIST.   

The Fig. 1 shows some pictures of several typical image datasets. The picture (a) is some 

handwritten digits samples from MNIST, which is a subset of National Institute of 

Standards and Technology (NIST). The digits have been size-normalized and centered in 

a fixed-size image. This data set has a long history, and there are only ten kinds of 

pictures, but the quality of data set is very high. So many researchers regard it as the 

simplest data sets for testing algorithms. It is a very simple and meaningful benchmark in 

the field of image classification. The pictures (b) and (c) are two more modern practical 

datasets. They are very suitable for modern artificial neural network training. The 

ImageNet is a large-scale hierarchical image database which aims to populate the 

majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full 

resolution images. The hierarchical structure of each node is depicted by thousands of 

images. An average of more than five hundred of each node. They are all annotated by 

manual labelling. When ImageNet was born, deep learning based on big data has not 

been widely concerned. It's a very forward-looking dataset. On the basis of ImageNet, 

ImageNet Large Scale Visual Recognition Competition (ILSVRC) also has a great 

impact on the promotion of machine learning and artificial intelligence. Researchers and 

enterprises from all over the world compete against their algorithm performance on the 

basis of ImageNet. This competitive activity has greatly promoted the progress of related 

intelligent algorithms. At the same time, similar competitions emerge in an endless 

stream. Many datasets of other research fields are emerged accompanied by related 

competitions that attract a lot of researchers’ interests from all over the world. For 

example, The Microsoft COCO (Common Objects in Context) [Lin, Maire, Belongie et al. 

(2014)] dataset is designed not only for image classification, but also object recognition 
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in the context of the broader question of scene understanding. Specifically, the COCO 

can be used to do object segmentation and recognition in context. Most pictures have 

multiple objects which are very different from ImageNet that only each object per image. 

It has more than 300,000 images and more than 2 million instances in total. The objects 

can be classified into 80 categories and you can find more than 100, 1000 people from 

the dataset. Besides, each image has 5 captions in texts. This dataset aims at scene 

understanding, which is mainly intercepted from complex everyday scenes. The targets in 

the images are calibrated by precise segmentations. 

 

Figure 1: Samples of some typical datasets 

Most of the deep learning algorithms are typical supervised machine learning. Therefore, 

accurate high-quality training samples are very important, which can be as important as 

the algorithm. Not a single one can be omitted. Collecting so much data, classifying and 

tagging it one by one is a quite great project. Thanks to the authors of these open source 

data sets for their unselfish dedication to their work which is meaningful. These data sets 

have greatly promoted the development of artificial intelligence technology. Many 

researchers, engineers, and students with limited funds and strength can easily verify their 

innovation in deep learning with these open source data set and made a leap forward. 

Since then, CNN has become a hot research topic in the academic world. The COCO 

dataset has 91 categories, although there are fewer than the ImageNet category, but there 

are more images in each category, which is conducive to obtaining more capabilities in 

each category in a particular scene. Compared with PASCAL VOC, there are more 

categories and images.  

The researchers from Google and CMU [Li, Wang, Agustsson et al. (2017)] find that the 

quality and quantity of data are crucial to the training of deep learning models. This 
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conclusion is based on an already existing JFT image dataset [Sun, Shrivastava, Singh et 

al. (2017)]. The data set was first proposed by scientists such as Geoffrey Hinton et al. 

and expanded by Hinton et al. [Hinton, Vinyals and Dean (2015)]. The JFT dataset has 

over 300 million images and is marked with 18291 categories. It is much larger than the 

size of ImageNet, but the accuracy is not high. They find that the performance of visual 

tasks continues to increase linearly with the magnitude of the training data size. Network 

performance increases linearly with the magnitude of training data. Representation 

learning (or pre-training) is still of great use. By training a better basic model, it can 

improve the performance of visual tasks. Besides the hardware performance of computer 

system, the training datasets are also very important to deep neural network models. 

3 An analysis of convolutional neural network based image classification 

Image classification means that the image is structured into a certain category of information, 

and the image is described with a previously determined category or instance ID. This task is 

the simplest and most basic image understanding task, and it is also the task of the deep 

learning model to achieve the first breakthrough and realize large-scale application. Among 

them, ImageNet is the most authoritative evaluation set. Each year, ImageNet Large Scale 

Visual Recognition Competition (ILSVRC) has spawned a large number of excellent in-

depth network structures, providing the basis for other tasks. In the application field, the 

recognition of faces, scenes, etc. can be classified as classification tasks. 

In the domain of image classification, the convolutional neural network shows excellent 

performance. In general, the CNNs are the state-of-the-art contrast to the classic 

algorithms. The structural features of the convolutional neural network are more suitable 

for solving the problem of image field. Through the continuous research and 

improvement of its structure, a series of network models have been formed, which have 

been successful in a wide range of practical applications. The convolutional neural 

network can reduce the parameters needed to learn by using the spatial structure relation, 

thus improving the training efficiency of the back-propagation algorithm. In the 

convolutional neural network, the first volume layer will accept a pixel level image input, 

each operation only a small image processing convolution, and convolution change and 

then spread to the back of the network, each layer of convolution will have the most 

effective feature extraction data. This method can extract feature the most basic image, 

such as edges or corners in different directions, and then combined and abstract formation 

characteristics of higher order, so CNNs can cope with various situations, the theory of 

image with zoom, rotation and translation invariance. 

LeCun has used the back-propagation algorithm to train multi-layer neural networks to 

identify handwritten postcodes, which is the first modern CNN [Lecun, Bottou, Bengio et 

al. (1998)] in 1998. However, limited to the development of computing performance and 

data sets, it was not until 2012 that Krizhevsky et al. [Krizhevsky, Sutskever and Hinton 

(2012)] proposed a CNN to adapt to the large data set. On the millions of ImageNet data 

sets, the effect is much more than the traditional method, and the classification accuracy 

has risen from more than 70% to more than 80%.  
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Table 3: Architectures of typical convolutional neural networks 

Features AlexNet VGG Inception-v1 ResNet Inception-v2 Inception-v4 

1st release time 2012 2014 2014 2015 2015 2016 

Layers 8 19 22 152 22 22 

Top-5 error 16.4% 7.3% 6.7% 3.57% 4.8% 3.08% 

Data 

Augmentation 
✓ ✓ ✓ ✓ ✓ ✓ 

Convolutional 

layers 
5 16 21 152 21 21 

Convolutional 

kernel size 
11,5,3 3 7,1,3,5 7,1,3,5 7,1,3 7,1,3 

Inception ✗ ✗ ✓ ✗ ✓ ✓ 

Full connected 

layers 
3 3 1 1 1 1 

Full connected 

size 

4096,4096,

1000 

4096,409

6,1000 
1000 1000 1000 1000 

Dropout ✓ ✓ ✓ ✓ ✗ ✗ 

Local response 

normalization 
✓ ✗ ✓ ✗ ✓ ✓ 

Batch 

normalization 
✗ ✗ ✗ ✗ ✓ ✓ 

After that, because of the great performance, CNNs have attracted the attention of many 

researchers. Until the last ILSVRC in 2017, the image classification accuracy of the deep 

learning algorithm on ImageNet has approached or even surpassed that of humans. 
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Because of this, the ILSVRC competition is no longer continuing. Researchers will focus 

on more challenging projects, such as WebVision Challege [Ioffe and Szegedy (2015)]. 

Tab. 3 shows the best CNNs in the ILSVRC competition from 2012. It lists the new 

features of the successive generations of networks. As we can see from the table, more 

and more optimizations are applied into the network design, such as ReLU, Dropout, 

Inception, Local Response Normalization (LRN), Batch Normalization, etc. With the 

development of the network, not all of the optimization methods are applied to the latest 

algorithms. For example, not all the networks use the LRN method. The author of VGG 

believes that LRN does not play an optimization role in their network structure. However, 

the Inceptions [Szegedy, Vanhoucke, Ioffe et al. (2016); Szegedy, Ioffe, Vanhoucke et al. 

(2017); Girshick (2014)] all adopt the LRN. On the other hand, the Dropout method has 

always been considered to be able to effectively improve the network generalization 

ability and reduce overfitting. But after the first version of the Inception, the method has 

been abandoned. Because batch normalization in the Inceptions regularizes the model and 

reduces the need for Dropout. It can be either removed or reduced in strength in a batch-

normalized network 

The performance results of the above networks are based on the ImageNet data set in the 

ImageNet Large Scale Visual Recognition Competition (ILSVRC). However, the 

competition stopped after the 8 sessions from 2009 to 2017. The accuracy rate of 

identifying objects from the original algorithm is only 71.8% up to 97.3% of the present, 

and the error rate of recognition is far below the 5.1% of human. Although the ImageNet 

challenge has ended its short life cycle, ImageNet data set will continue to exist. Up to 

now, there are more than 13 million pictures and will grow in the future and continue to 

contribute to the field of computer vision. In the future, ImageNet will remain open for 

free use by researchers. Even if the ImageNet competition itself is over, its legacy will 

continue to affect the entire industry. Since 2009, dozens of newly developed datasets 

have introduced computer vision, neural language processing and speech recognition and 

other subdomains. ImageNet has changed researchers’ thinking mode. Although many 

people still care about models, they are also concerned about data. Data redefine our way 

of thinking about models. 

4 Two significant target detection ideas with CNNs 

It is not enough to just classify images. Classification is the basic of computer vision. 

Object localization, object recognition, semantic segmentation, instance segmentation 

and key point detection are more hard and meaningful tasks. The classification task is 

concerned with the whole, given the content description of the entire picture, while the 

detection is focused on the specific object target, and it is required to obtain the category 

information and location information of this target at the same time. Compared with 

classification, target detection gives the understanding of the foreground and background 

of the image. The algorithm needs to separate the target of interest from the background 

and determine the description of the target, such as the category and location of the target. 

Therefore, the output of the target detection model is a list. Each item of the list uses a 

data group to give the category and position of the target, which is commonly represented 

by the coordinates of the rectangular detection frame. 
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Target detection research has been conducted for many years, and there are many 

methods that have been widely recognized and applied in the industry, such as Jones et al. 

[Jones and Viola (2001); Zhu, Yeh, Cheng et al. (2006)]. But most classic methods are 

very dependent on finding effective features which is hard to be found in a common 

simple method. The introduction of CNNs changed the main research ideas in the field of 

target detection. It frees researchers from complex feature engineering. In the next part, 

several typical target detection algorithms are introduced in the field of target detection 

with the help of deep learning. 

At present, there are two main ideas in the field of target detection based on deep learning. 

One is the RCNN series method based on the region proposal, and the other is the YOLO 

series algorithm based on the regression. 

4.1 RCNNs: regions with CNN features 

4.1.1 RCNNs: Regions with CNN features 

The classical target detection algorithm uses a sliding window method to determine all 

possible areas in turn. Girshick [Girshick (2015)] extract a series of more likely candidate 

regions in advance with the method of selective search, and then the CNNs based 

extraction features are used only in these candidate regions for judgment. The RCNN 

algorithm can be divided into 4 steps: 

1. Candidate region generation: An image generates 1K~2K candidate regions (using the 

Selective Search method). 

2. Feature extraction: Using deep convolution network to extract feature (CNN) for each 

candidate region. 

3. Category judgment: The feature is sent to each class of SVM classifier to distinguish 

whether it belongs to the class. 

4. Location: Refinement using regressor fine correction candidate frame position. 

The drawback of this method is that RCNN has the problem of repeated computation. 

There are thousands of regions in proposal, most of which overlap each other, and the 

overlapped parts will be repeatedly extracted from feature. To solve the problem, Kaiming 

He et al. [He, Zhang, Ren et al. (2014)] propose the SPP-Net to improve the RCNN. 

4.1.2 SPP-net: spatial pyramid pooling in deep convolutional networks. 

An image has 1~2 k candidate boxes in RCNN, and each one has to enter a CNN to do 

convolution. SPP-net proposes to extract the RoI (Region of Interest) features on the feature 

map, so that only a convolution is needed on the entire image. The overall process is similar 

to RCNN. But because all Z the features of the RoI are extracted directly from the feature 

map, the convolution operation is greatly reduced, and the efficiency is improved. 
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Figure2: SPP-net data flow graph 

4.1.3 FAST and FASTER RCNN 

Girshick et al. combined with SPP-net to improve the performance of RCNN networks 

[Girshick (2015); Ren, He, Girshick et al. (2015)]. The Faster RCNN even realize object 

recognition in video. Specifically, in Fast-RCNN, the author put bounding box regression 

into the internal neural network and classified it into region and became a multi-task 

model. The actual experiment also proved that these two tasks can share convolutional 

feature and promote each other. However, the performance can still be promoted. Faster-

RCNN is an end-to-end CNN object detection model. The authors propose that the 

convolutional level features in network can be used to predict category dependent region 

proposal, and do not need to perform algorithms such as selective search in advance. The 

author integrates region proposal extraction and Fast-RCNN part into a network model. 

Although the training stage is still multi-step, the detection phase is very convenient and 

fast, and the accuracy rate is not much different from the original Fast-RCNN. At last, for 

the very deep VGG-16 model, the Faster-RCNN detection system has a frame rate of 

5fps (including all steps) on a GPU in 2016. 

4.1.4 Mask R-CNN 

Mask-RCNN [He, Gkioxari, Dollar et al. (2017)] is a parallel detection and segmentation 

results, which means that the two results can be got at one time, but unlike the previous 

segmentation after do classification. The general framework of Mask-RCNN is still like 

the Faster-RCNN framework. It can be said that the fully connected subdivision network 

is joint after the basic feature network. The task of the network is from the original two 

tasks (classification+regression) to three tasks (classification+regression+segmentation). 

 

Figure 3: The Mask R-CNN framework for instance segmentation 
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Mask R-CNN is mainly divided into two stages: 

Stage 1: Generate the candidate box area. This process is the same as Faster R-CNN, the 

RPN (Region Proposal Network) is used. 

Stage 2: RoIPool is used in the candidate box area to extract features and to classify and 

border box regression, and a two-element mask is generated for each RoI. 

In target detection, there are some errors in the given bounding box and the original graph, 

which does not affect the results of the classification detection. But in pixel level image 

segmentation, such spatial location error will seriously affect the segmentation results. 

Therefore, this network proposes the use of bilinear interpolation to solve this problem, 

that is, RoIAlign. The image is passed through RoIAlign instead of RoIPool, making the 

area of the feature map selected by RoIPool more accurately corresponding to the area of 

the original image. 

Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, 

running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., al- 

lowing us to estimate human poses in the same framework. 

Although the detection accuracy of RCNNs is high, if it is applied to video information 

processing, the excessive calculation amount required by the algorithm makes it difficult 

to process the video information in real time in a single machine condition. The 

emergence of YOLOs has brought the target detection speed to a new level with the 

lowest loss of accuracy rate. 

4.2 YOLO: you only look once 

YOLO [Redmon, Divvala, Girshick et al. (2015)] is a convolutional neural network that 

can predict multiple Box locations and categories at a time. It can achieve end to end 

target detection and recognition, and its biggest advantage is fast speed. In fact, the 

essence of target detection is regression, so a CNN that implements a regression function 

does not require a complex design process. YOLO does not train the network in the way 

of selecting sliding windows or extracting proposal, but directly selecting the whole 

training model. The advantage of this way is that it can better distinguish the target and 

background area. In contrast, the Fast R-CNN trained by proposal often mistakenly 

checks the background area as a specific target. Of course, YOLO has sacrificed some 

precision while improving the speed of detection. Until now, the YOLO series of 

algorithms have developed three generations 

4.2.1 YOLO Version 1: beginning of a regression-based target detection algorithm 

YOLO [Redmon, Divvala, Girshick et al. (2015)] is the most popular object detection 

algorithm. It is fast and simple. As the name implies, this algorithm recognizes all 

objects by looking at the image only once. This algorithm can achieve real-time object 

detection, about 40 frames per second with the help of the Titan X GPU. The 

accelerated version of YOLO is almost 150 fps. YOLO reasons globally about the 

image when making predictions. It can also learn generalizable representations of 

objects which mean that its generalization ability is relatively strong. YOLO supports 
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end-to-end training, which will reduce a lot of unnecessary work, and the entire model 

is actually a convolutional neural network. 

YOLO’s computing process can be divided into the following steps: 

Step 1: Divide the original image into an S×S grid. 

Step 2: Each grid predicts B bounding boxes and confidence scores which can be represented 

by , where   represents the probability that 

the current position is an Object, IOU is the overlap probability between the predicted 

box and ground truth. The x, y is the center coordinate and the w, h is the size of the box. 

Step 3: The probability of each grid prediction class . 

Step 4: When predicting, multiply the class conditional probability and confidence: 

 

Similar to R-CNN and DPM, when a large object is encountered, it is still necessary to 

perform non-maximally suppressed operations. Since B has a value of 2, that is, a grid 

will only return two boxes, and a grid will have only one category, so if there are multiple 

categories in a grid, there will be problems. YOLO has better results for images like 

small objects such as a flock of birds. 

 

Figure 4: The YOLO models detection as a regression problem. It divides the image into 

an S×S grid and for each grid cell predicts B bounding boxes, confidence for those boxes, 

and C class probabilities. These predictions are encoded as an S×S×(B∗5+C) tensor 

4.2.2 YOLO Version 2: a more comprehensive improvement 

There are still many places in the original YOLO that can be improved, so the original 

author made many improvements in the first version and achieved remarkable results. In 

summary, there are two major improvements. Because the network can distinguish 

approximately 9000 objects under combining training with ImageNet and COCO, it is 

also called YOLO9000 [Redmon and Farhadi (2016)]. 
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First, the author used a series of methods to improve the original YOLO multi-objective 

inspection framework. With the advantage of maintaining the original speed, the 

accuracy was improved. Using the VOC 2007 data set test, the mAP (Mean Average 

Precision) at 67 FPS reached 76.8%, and the mAP at 40 FPS reached 78.6%. The overall 

performance is comparable to Faster R-CNN and SSD. 

Second, the author proposes a joint training method for target classification and detection. 

Through this method, YOLO9000 can simultaneously train in COCO and ImageNet. The 

trained model can achieve real-time detection of up to 9000 objects.  

Some specific improvements are as follows: YOLOv2 adds batch normalization behind 

the volume base layer, removes the dropout layer, and increases its mAP by 2%. During 

network training, the network is changed from 224*224 to 448*448, and in order to 

ensure that there are only an odd number of positioning positions in the feature map, only 

one central cell is guaranteed, and the network is finally set to 416*416. Finally achieved 

4% mAP increase. In addition, previous YOLO uses the data of the full connection layer 

to complete the prediction of the border, resulting in the loss of more spatial information 

and inaccurate positioning. In this version, the author draws on the anchor idea of Faster 

R-CNN, removes the full connectivity layer from the network, and combines Dimension 

Clusters and Direct location prediction to improve the mAP by 5%.  

In terms of training, unlike the method of fixing the picture size of the input network, the 

author finetunes the network after several iterations. Every 10 epochs, new image sizes are 

randomly selected. The down-sampling parameter used by the YOLO network is 32, then a 

scaled multiple of 32 is used for {320, 352...608}. The final minimum size is 320*320 and 

the largest size is 608*608. Then adjust the network according to the input size for training. 

This mechanism allows the network to better predict pictures of different sizes, meaning 

that the same network can perform detection tasks with different resolutions. YOLOv2 runs 

faster on small pictures, achieving a balance in speed and accuracy. 

4.2.3 YOLO Version 3: the latest improvement 

The YOLOv3 model is much more complex than the previous model and can be weighed 

against the speed and accuracy by changing the size of the model structure. It improved 

multi-scale prediction, and better basic classification networks and classifiers. YOLOv3 

does not use Softmax to classify each box. Instead, it is replaced by multiple independent 

logistic classifiers, and the accuracy does not decrease. 

4.3 General comparison of RCNNs and YOLOs 

Compared to the RCNNs methods, the YOLO series methods have the following 

advantages: 

•    High speed as previous introduction. 

•  False positive rate of background is low. 

•  Versatility. YOLO also applies to object detection in artistic works. Its detection 

rate for non-natural image objects is much higher than DPM and RCNN series 

detection methods. 
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Tab. 4 lists the main features of RCNNs and YOLOs. In general, from R-CNN, SPP-NET, 

Fast R-CNN to Faster R-CNN, and from YOLOv1 to YOLOv2, the detection process 

based on deep learning has become increasingly streamlined and accurate. The speed is 

getting faster and faster. It can be said that the R-CNN series target detection methods 

based on the region proposal and the YOLO series target detection methods based on the 

regression are the two main branches in the current target detection field. 

The target detection, such as RCNNs and YOLOs, only gives the positions and labels of 

the objects in the image. However, many times, there is a need to detect the edges of 

objects and give relevant descriptions of the objects at the same time. The re-search of 

object segmentation is to achieve this goal. 

Table 4: Features of RCNNs and YOLOs 

RCNN 

•  Extracting 2000 bottom-up region proposals using the selective-search 

•  A large CNN network computing feature for each region proposal 

•  Classifying each region proposal using a linear SVMs classifier 

•  Regression analysis to adjust the region area 

Fast-RCNN 

•  Read the entire picture and a set of RoIs as input 

•  Extract features from the entire image to get the feature map with convolutional 

network 

•  For each RoI region, the pooling layer extracts a fixed-size feature factor from the 

feature map 

•  Feature factor is sent to full connected layer and mapped to two parts. One part is 

to evaluate k target classes and another part to generate bounding box regressor 

Faster-RCNN 

•  For the entire picture, use CNN for feature map 

•  Perform full-connected operations on feature maps using RPN networks and get 

the feature information of the candidate box 

•  Use the classifier to determine whether a feature belongs to a particular class for 

the features extracted in the candidate frame 

•  For a candidate box belonging to a certain feature, use a regression to further 

adjust its position 

YOLOv1 

•  Dividing the input image into S×S grids, each grid is responsible for detecting 

objects that fall into it 

•  If the center of the object falls into the grid, the grid is responsible for detecting 

the object 

•  Each grid outputs the number of bounding boxes and the number of objects 

belonging to a class of confidence. 

YOLOv2 

•  Add Batch Normalization to avoid overfitting 

•  Remove a pooling layer to increase the resolution of the convolutional output 

•  Use K-means to automatically select the best initial boxes 

•  Feature map of 26×26×512 turned into 13×13×2048 compared to YOLOv1 

5 Pixel-level object segmentation 

Object detection only gives the locations and labels of the objects, which is not specific 

enough. It is more difficult to separate out all the pixels related to the object and give the 
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categories. This operation is called object segmentation. Object segmentation includes 

semantic segmentation and instance segmentation. The former is an extension of the pre-

background segmentation. It requires the separation of image parts with different 

semantics, while the latter is an extension of the detection task and requires the outline of 

the objects, which is more refined than the detection frame. Object segmentation is a 

pixel-level description of an image. It gives each pixel category meaning and is suitable 

for understanding demanding scenes, such as the segmentation of roads and non-roads in 

auto pilot, geographic information system, and medical image analysis, etc. 

5.1 Semantic segmentation 

Before deep learning was developed, the semantic segmentation method was diverse, and 

the effect levels were uneven, such as thresholding methods, clustering-based segmentation 

methods, graph partitioning segmentation methods and even the pixel-level decision tree 

classification [Shotton, Johnson and Cipolla (2008); Shotton, Fitzgibbon, Cook et al. 

(2011); Shi and Malik (1997); Rother, Kolmogorov and Blake (2004)]. After computer 

vision entered the era of deep learning, semantic segmentation also entered a new stage 

of development. A series of semantic segmentation networks based on convolutional 

neural networks represented by Fully Convolutional Networks (FCNs) are proposed and 

repeatedly refresh the semantic segmentation accuracy of images. 

5.1.1 Full convolutional neural network (FCN) for semantic segmentation 

The idea of the FCN [Long, Shelhamer and Darrell (2015)] is very intuitive. It directly 

performs pixel-level end-to-end semantic segmentation. It can be implemented based on 

the mainstream deep convolutional neural network model. It reuses ImageNet’s pre-

training network for se-mantic segmentation and uses deconvolutional layer up-sampling. 

At the same time, it also introduced a skip connection to improve the up-sampling of 

coarse pixel positioning. 

The SegNet [Badrinarayanan, Kendall and Cipolla (2017)] improves use of encoder and 

decoder. It applies the result of the pooling layer to the decoding process. With other 

improvements, the segmentation accuracy is slightly better than that of the FCN, and the 

overall efficiency is slightly higher than that of the FCN. 

5.1.2 Dilated convolutions 

One deficiency of the FCN is that due to the presence of the pooling layer, the size of the 

tensor, i.e., the length and width, becomes smaller and smaller. However, the original design 

of the FCN required an output that was consistent with the input size, so the FCN did an up-

sampling. But up-sampling cannot retrieve lost information completely without loss. 

Dilated Convolution [Yu and Koltun (2015)] is a good solution for this. Since pooled 

down-sampling operations can result in information loss, the pooling layer is removed 

directly. However, the removal of the pooling layer will bring about a smaller receptive 

field in each layer of the network, which will reduce the prediction accuracy of the entire 

model. The main contribution of Dilated Convolution is to remove the down-sampling 

operation of the pool without reducing the receptive field of the network. 
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5.1.3 Following-up development 

After this, most semantic separation networks are inseparable from the FCN architecture. 

The DeepLab [Chen, Papandreou, Kokkinos et al. (2018); Chen, Papandreou, Schroff et 

al. (2017)] also uses Dilated Convolutions and fully connected CRF added and proposes 

atrous spatial pyramid pooling. Dilated Convolution has several disadvantages, such as 

large amount of computation and a large amount of memory. Therefore, RefineNet [Lin, 

Milan, Shen et al. (2017)] designs the Encoder-Decoder architecture with well thought-

out decoder blocks and all the components follow residual connection design which 

reduces the computing requirements. Besides, in the recent years, more and more 

improvements are emerged, such as PSPNet [Zhao, Shi, Qi et al. (2017)], Large Kernel 

Matters [Peng, Zhang, Yu et al. (2017)] and DeepLab v3 [Chen, Papandreou, Schroff et 

al. (2017)]. The semantic segmentation is developing fast. However, there are still many 

challenges waiting to be resolved.  

Semantic segmentation technology based on deep learning can achieve a segmentation 

effect that is faster than traditional methods, but its requirement for data annotation is too 

high. Not only does it require huge amounts of image data, they also need to provide 

Semantic labels that are accurate to the pixel level. Therefore, more and more researchers 

have begun to turn their attention to the problem of image semantic segmentation under 

Weakly-supervised conditions. In this kind of problem, the image only needs to provide 

the image level annotation, and the semantic segmentation accuracy comparable to the 

existing method can be obtained without the need of expensive pixel level information. 

5.2 Instance segmentation 

Instance segmentation is a complex of object detection and semantic segmentation. It can 

both detect the object, give its bounding box, and it can be segmented to the edge of the 

object. Relative semantic segmentation, instance segmentation can label different 

individuals of the same type of object on the picture. Therefore, instance segmentation is 

a very comprehensive problem that combines object detection, semantic segmentation 

and image classification. 

The MASK R-CNN and FCIS [Li, Qi, Dai et al. (2017)] are the most significant research 

results in the past two years. The MASK R-CNN has been introduced in section 4.1. In 

fact, this method can effectively detect the simultaneous occurrence of each target and 

generate a high-quality segmentation mask for each instance. Mask R-CNN has a simple 

and straightforward idea: For Faster R-CNN, it has two outputs for each target object. 

One is the class label and the other is the bounding-box offset. Based on this, the Mask 

R-CNN method adds the output of the third branch: the object mask. The difference 

between the object mask and the existing class and box output is that it requires a finer 

refinement of the spatial layout of the object. 

FCIS solves the problem of instance segmentation through a multitasking network. It 

inherits all the merits of FCNs for semantic segmentation [Dai, He, Li et al. (2016)] and 

instance mask proposal First, primary features are first extracted through a convolutional 

neural network, and a RoI (Region of Interest) is proposed. Then, for each RoI region, 

corresponding features are extracted by RoI Warping and RoI Pooling. Next, use the full 

connected layer to perform the foreground and background division.  Finally, use the full 
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connected layer for image classification for each RoI. 

 

Figure 5: FCIS vs. Mask R-CNN. FCIS exhibits systematic artifacts on overlapping 

objects, suggesting that it is challenged by the fundamental difficulty of instance 

segmentation. Mask R-CNN shows no such artifacts 

There are three shortcomings of the instance-based partitioning architecture based on 

proposal. First, if two objects share the same or similar boundaries, the algorithm cannot 

accurately identify them, especially for low-fill-rate linear objects such as windmills and 

windows. Second, there is no solution in the architecture that can prevent two instances 

from sharing pixels. Finally, the number of identifying instances is usually limited by the 

number of proposals that the network can handle. Some researchers took other ideas to 

avoid the above problems, such as the idea of instance embedding. Each pixel in the 

network output is a point in the embedding space. Points belonging to the same object are 

relatively close in the embedding space, while points belonging to different classes are far 

apart in the embedding space. Each pixel in the network output is a point in the 

embedded space [De Brebandere, Neven and Van Gool (2017); Fathi, Wojna, Rathod et 

al. (2017); Kong and Fowlkes (2017)]. The drawback is that compared to the methods 

based the idea of proposal, the results of these methods are not as good as Mask R-CNN 

or FCIS at present. 

6 Conclusion 

This paper has briefly reviewed typical deep convolutional neural networks in recent 

years and compared their differences and similarities. Effective network structures and 

optimization methods in these convolutions neural network is summarized. Besides, 

target detection and object segmentation algorithms based on deep convolution neural 

network are also summarized. These models have been becoming or will be recognized 

as new hotspots in deep learning and convolutional neural networks to effectively solve 

problems in computer vision, multi-object classification and/or relevant fields in these 

years and are therefore recognized as effective methods and/or de-facto tools in the 

industry and academia. 

Besides the performance of the algorithm, however, most algorithms still highly rely on 

their own training datasets, which directly determines the functionality and performance 

of the algorithms. In that case, careful preparation of a dataset becomes critical and even 

tricky sometimes, so that it is imminent to develop migration learning methods based on 

deep learning. 
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