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Abstract: Cyber-physical system (CPS) is an advanced system that integrats physical 
processes, computation and communication resources. The security of cyber-physical 
systems has become an active research area in recent years. In this paper, we focus on 
defensive strategies against network attacks in CPS. We introduce both low- and high-
interaction honeypots into CPS as a security management tool deliberately designed to be 
probed, attacked and compromised. In addition, an analysis resource constraint is 
introduced for the purpose of optimizing defensive strategies against network attacks in 
CPS. We study the offensive and defensive interactions of CPS and model the offensive 
and defensive process as an incomplete information game with the assumption that the 
defender's analysis resource is unknown to the attacker. We prove the existence of 
several Bayesian-Nash equilibria in the low- and high-interaction honeypot game without 
analysis cost constraints and obtain the attacker's equilibrium strategy firstly. Then, we 
take the impact of analysis cost on the capture effect of honeypots into consideration and 
further optimize the defensive strategy by allocating analysis resource between low- and 
high-interaction honeypot with resource constraint. Finally, the proposed method is 
evaluated through numerical simulation and prove to be effective in obtaining the optimal 
defensive strategy. 
 
Keywords: Honeypot, game theory, cyber-physical system, network attack, human 
analysis cost. 

1 Introduction 
Cyber-physical system (CPS) refers to a new generation of systems with integrated 
computing and physical capabilities that can interact with humans through many new 
modalities. These systems can be found in many key infrastructures such as smart grids, 
chemical plants, and transportation systems [Li, Zhang, Zheng et al. (2017); Celli, 
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Pegoraro, Pilo et al. (2014); Liu, Luo, Liu et al. (2018)]. In the past few decades, the 
development of control algorithms and technologies has greatly improved the adaptability 
and robustness of the system [Yağan, Qian, Zhang et al. (2012)]. While the technologies 
can significantly improve the resilience of the integrated systems, the CPS security has 
become an important subject of research and development due to the growing number of 
cyber-attacks in recent years [Humayed, Lin, Li et al. (2017); Amin, Schwartz and 
Hussain (2013); Yang, Zhou, Yang et al. (2018)] 
Security issues in the CPS can be grouped into four categories: confidentiality, integrity, 
availability, and authenticity [Von Solms and Van Niekerk (2013); Banerjee, 
Venkatasubramanian, Mukherjee et al. (2012)]. Among the various threats in CPS, network 
attack is a typical attack mode, which seriously threatens the data and communication. 
Network attack refers to any event that can control or eliminate the normal execution of the 
network [Pasqualetti, Dorfler and Bullo (2013)], or invade the system through a system 
vulnerability. With the continuous development of network attack technology, new forms of 
security threats continue to emerge and evolve [Nappa, Johnson, Bilge et al. (2015)]. 
However, defense technologies usually cannot keep up with the pace of change in security 
threats, which greatly worsens the security situation of CPS. As an active defense 
technology [Spitzner (2003)], honeypot technology is essentially a technique for defrauding 
attackers by arranging some hosts, network services, or information as bait, which induces 
attackers to attack them so that they can capture and analyze attack behavior [Cao, Liu and 
Xu (2004); Zhang, Zhou, Qin et al. (2003)]. 
Distinct from other security tools, most honeypots can only generate reports due to their low 
degree of automation. However, the participation of human is required to analyze and 
capture attacks for most honeypots. Therefore, human analysis costs became an important 
factor for the success of honeypot capture [Ghourabi, Abbes and Bouhoula (2013)]. In 
addition, in real scenarios, honeypots can always be classified as high-interaction honeypots 
and low-interaction honeypots. High-interaction honeypots can completely imitate service 
like real servers [Alata, Nicomette, Kaaniche et al. (2006)] and low-interaction honeypots 
can only provide partial service [Mukkamala, Yendrapalli, Basnet et al. (2007)]. To best of 
our knowledge, little existing work has been done that focus on the use of honeypots in 
attack-defense game with the consideration of human analysis cost constraint and honeypot 
classification, and is not adequate to deal with the actual attacks [Nawrocki, Wahlisch, 
Schmidt et al. (2016)]. This motivates the present study. 
In this paper, we study defensive strategies against network attacks in CPS with human 
analysis cost constraint. We analyze the offensive and defensive interactions and model 
the offensive and defensive process as an incomplete information game with the 
assumption that the defender’s analysis resource is unknown to the attacker. We prove 
the existence of several Bayesian-Nash equilibria in the low- and high-interaction 
honeypot game (LHHG) without analysis cost constraints, obtain the optimal deployment 
strategy and get the attacker’s equilibria strategy firstly. Then, we take the impact of 
human analysis cost on the capture effect of honeypots into consideration and further 
optimize the defensive strategy by allocating human analysis cost between low- and high-
interaction honeypot with cost constraint. It is shown that the proposed model and 
approach can optimize defense performance with limited human analysis costs. The main 
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contributions are summarized as follows. 
(1) We introduce honeypots into the security of CPS. At the same time, we classified 
honeypots into high- and low-interaction honeypots in order to make the interaction 
process more accurate. 
(2) We also introduce human analysis cost constraint in the honeypot to maximize the 
defense payoff since defender’s budget is usually insufficient in practice. 
The rest of the paper is organized as follows. Section II provides a summary of related 
work from other researchers. Section III describes the proposed low- and high-interaction 
honeypot game model based on the game tree. In Section IV, the existence of Bayesian 
Nash equilibria with sufficient analysis cost is proved, and the defensive strategy with 
human analysis cost constraint is optimized. In Section V, extensive numerical simulation 
using MATLAB is carried out to evaluate the proposed method. Finally, a conclusion is 
given in Section VI. 

2 Related works  
In this section, we briefly summarize the latest technical literature on security issues in 
CPS, honeypot for network attack and the use of game theory for modeling offense and 
defense process. 

2.1 Security issues in CPS 
Security issues in CPS have been widely studied in the past few years. Current research 
focuses on different areas such as smart grids, high confidence medical devices and 
systems, robots, distributed robotics, and transportation. Some work mainly focuses on 
intrusion detection. For example, Faisal et al. [Faisal, Aung, Williams et al. (2015)] 
proposed an intrusion detection system (IDS) architecture that uses the AMI data flow in 
the smart grid to analyze the performance of existing data flow mining algorithms and 
IDS data sets. However, with more and more interactions between physical systems and 
cyber systems, physical systems have a greater impact on security vulnerabilities. In 2010, 
the attacker demonstrated a software tool called CarShark [Koscher, Czeskis, Roesner et 
al. (2010)] that can kill the car engine remotely, turn off the brake system so that the car 
cannot stop, and carry out attack by monitoring the communication between the 
electronic control units (ECUs) and inserting forged packets so that the instrument gives 
erroneous readings. Actually, there are more and more security vulnerabilities in CPS like 
electronic power grids, smart transportation systems, and medical systems, and so on. 
In addition, we can list several possible threats related to the development of CPS as 
follows: 1) High complexity may cause some unknown vulnerabilities and make the 
network to be vulnerable. 2) CPS contains different networks, so the interaction between 
the networks easily leads to new types of attacks and further leads to the collapse of the 
defense system. 3) Multiple nodes in the network are potential threats because they are 
very vulnerable to attackers. 

2.2 Honeypot for network attack 
The concept of honeypot technology first appeared in the book “The Cuckoo’s Egg” 
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published in 1989 [Stoll (1989)]. This book describes how to use honeypot technology to 
discover and trace the story of a commercial espionage case. In particular, honeypots 
only analyze incoming traffic and generate reports compared to traditional defense tools. 
Then human analysis is very necessary to mark and capture the attackers, otherwise there 
is no defensive effect. Since 1998, honeypot technology has gradually attracted the 
attention of security researchers who have developed honeypot software tools specifically 
designed to deceive attackers. The most famous is DTK (deception toolkit) developed by 
the famous computer security expert Cohen [Cohen (1998)]. Traditional network attacks 
and malicious code on the Internet mainly use the security vulnerabilities or configuration 
weaknesses in network services to pose a threat to the target information system and the 
network. Therefore, the earliest honeypot tool software is also designed for network 
service attacks. Provos [Provos (2004)] presented “honeyd”, which is a honeypot 
software package to monitor large-scale honeynet. Vetsch [Vetsch (2011)] focuses on 
Web application attacks such as remote file packages and local file packages to simulate 
the exploit process and generate response results. Meanwhile, the attack log and the 
malicious script file are recorded by triggering the attacker to further malicious requests. 
Some previous studies pointed out the idea that honeypots can be deployed in the CPS to 
attract, detect, and gather attack information [Wang, Du, Maharjan et al. (2017)]. 
However, none of these studies considers the involvement of human analysis costs. In 
addition, the realization of the spoofing environment construction mechanism determines 
the degree of interaction that the honeypot can provide for the attacker. Hastings et al. 
[Hastings, Laverty and Morrow (2014)] set a low-interaction honeypot in the smart grid 
and recorded the attack data for 6 months. HoneyBow [Zhuge, Holz, Han et al. (2007)] 
used a high-interaction honeypot that has the advantage of capturing more malicious code 
and capturing unknown samples. 

2.3 Game theory for modeling 
Game theory has been widely used in offensive and defensive modeling of CPS. For 
defenders, the intrusion detection system of passive defense response equipment has 
become a necessary complement to the security of CPS due to the increasingly serious 
types of attacks in recent years [Hodo, Bellekens, Hamilton et al. (2016)]. Wang et al. 
proposed a non-cooperative game framework to solve different aspects of intrusion 
detection [Wang, Ouyang, Krishnan et al. (2015)]. They put forward an approach of 
dynamically adjusting host-based IDS (HIDS) monitored objects based on the expected 
attacks based on non-cooperative games. Mohi et al. [Mohi, Movaghar and Zadeh (2009)] 
and Zang et al. [Zang, Liu and Yu (2007)] used the Bayesian game method for intrusion 
detection in Ad hoc networks. Specifically, they developed a two-player game with non-
zero and incomplete information to provide a framework for IDS to minimize its losses 
based on its own beliefs. The reason for choosing a Bayesian game is that the interaction 
between the attacker and the defendant is usually an incomplete information game in 
which the defender or attacker is not sure of the type of other players. 
In terms of the budget of human analysis cost, the most current researchers assume the 
human analysis cost is sufficient. However, to the best of our knowledge, due to their low 
degree of automation most honeypot cannot capture network attack without participation 
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of human in the offensive and defensive interacting processes. In terms of the incomplete 
information, the attacker must assume a sufficient defender’s budget for insurance, as they 
have no idea about the accurate amount of the defender’s budget. From the defender’s 
perspective, the human analysis cost is usually insufficient. Therefore, we should consider 
the human analysis constraint in the further study of defensive strategy, which is closer to 
the real facts. In terms of application scenarios, no matter the behavior analysis of industrial 
network or the virtual network, they in essence base on the strategies selections, so that the 
researches on the issue of strategy selection is more general. 

3 Low- and high-interaction honeypot game model of CPS 
In this section, we describe the CPS structure and its potential security issues. Then, we 
introduce the low- and high-interaction honeypot game modeling based on the game tree. 

3.1 CPS structure 
CPS is an advanced form of a large multi-component automation system. The structure of 
CPS consists of the cyber layer and physical layer. Cyber layer consists of control 
systems and communication networks. Physical layer consists of various physical plants. 
Typically, Sensors and actuators achieve interaction between the cyber layer and the 
physical layer. The sensors transfer the measured physical quantities to the control 
system through the communication network at first. Then, the control system makes 
computations and decisions, and issues control instructions to the actuators and drive the 
operation of physical plants after receiving the signals from the sensors. 
With the deep coupling of the cyber layer and the physical layer, attacks on the physical 
process initiated through the cyber layer are increasing in recent years. Therefore, the 
security of the cyber layer is also essential to ensure the security of the CPS. In this paper, 
we introduce honeypots to protect against network attacks in the CPS. 
We first provide a brief explanation for the architecture of the CPS and its components: A 
typical access diagram in the CPS is shown in Fig. 1(a). Visitors represent the users 
accessing CPS, including legitimate users and attackers, and all users’ access CPS 
resources over the Internet. Firewall is a security protection system that allows or restricts 
the transmission of data in accordance with specific rules. Router is used to connect 
multiple logically separate network devices, such as servers that receive, process, store 
and transmit data from sensors. Meanwhile, in order to increase the security level of CPS, 
many honeypots coexist with servers. In this paper, we consider the case where 
honeypots are deployed in network terminals. 
Then, we briefly introduce the interaction between the visitors and CPS. When the visitor 
is a legitimate user, the router assigns the visitor to the normal server to get the service. 
However, there exist many attackers in visitors who impersonate legitimate users. For 
these attackers, they first explore vulnerabilities in the CPS and are apt to launch 
offensive access by exploiting the vulnerabilities. So all network attacks into the CPS will 
be directly tricked into the honeypots because honeypots will actively expose many 
vulnerabilities. In this paper, we assume that an offensive access is tricked into a high-
interaction honeypot or a low-interaction honeypot with equal probability. The access 
diagram from attacker's perspective is shown in Fig. 1(b). 
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Figure 1: User access diagram 

3.2 LHHG modeling based on the game tree 
In this subsection, we first analyze the objects of the attacker and SP. For the attacker, the 
goal is to identify honeypots and maximize payoff. We assume that the attacker has two 
offensive access types: strong offensive access and weak offensive access in this paper. 
We believe that a strong offensive access has a better recognition effect on the honeypot, 
but it consumes more resources. In contrast, weak offensive access has a worse 
recognition effect on the honeypots, but it consumes fewer resources. For the SP, the goal 
is to capture the attacker and maximize the payoff or minimize the loss of CPS. The 
honeypots of SP are classified into two modes: low-interaction honeypots and high-
interaction honeypots. High-interaction honeypots imitate the activities of a CPS like 
servers and capture extensive information. The attacker can access all commands and 
files on the system with access right, so this mode of honeypot has the greatest potential 
for collecting information but also consume the greatest defense resources to maintain. 
Unlike high-interaction honeypots, low-interaction honeypots simulate only the services 
frequently targeted by attackers and so are less risky and less complex to maintain. 
We define the LHHG as a tuple: , , , , ,Z W Z WG Z W F F U U< > . 1 2{ , }Z Z Z∈  is the mode 
of SP, 1Z  indicates low-interaction honeypot and 2Z  indicates high-interaction honeypot. 

1 2{ , }W W W∈  is the type of offensive access, 1W  indicates weak offensive access and 2W  
indicates strong offensive access. 1 2{ , }ZF ∈ Ω Ω  is a binary strategy used by SP of mode 
Z , where 1Ω  indicates that SP provides services and 2Ω  indicates that services are not 
provided. { }1 2,WF ν ν∈  is a binary strategy used by attackers of type W , where 1ν  
indicates that the attackers launch the offensive access and 2ν  indicates the offensive 
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access are not launched. 
1 2 1 2

( , , , )W W Z ZF F F F  is a set of game strategies for attackers and 

service providers. ZU and WU  represent the payoffs of SP and attackers, respectively. 
The detailed list of notations is provided in Tab. 1. 

Table 1: List of symbols in the paper 

Symbols Descriptions Symbols Descriptions 

1Z  low-interaction honeypot 1Ω  SP provides service 

2Z  high-interaction honeypot 2Ω  SP does not provide service 

1W  weak offensive access 1ν  launch offensive access 

2W  strong offensive access 2ν  do not launch offensive access 

ZF  strategies of SP 1ς  the reward of a low-interaction 
honeypot 

WF  strategies of attackers 2ς  the reward of a high-interaction 
honeypot 

1γ  
the cost of weak offensive 

access 
2γ  the cost of strong offensive access 

β   
the reward of CPS work 

normally 
  

 
In summary, there are two modes of honeypots, and each honeypot has two different 
strategies (provides services or not). Similarly, there are two types of offensive access, 
each type has two different strategies (initiate or not initiate access). Hence, there are 16 
cases as shown in Fig. 2(a) and Fig. 2(b).  
If the low-interaction honeypot provides effective service and the weak offensive access 
escapes capture, the payoff for the SP is 1ς−  ( 1 0ς > , 1ς indicates the reward of attackers 
attacking low-interaction honeypots successfully). The payoff for the attackers is 

1 1ς γ− ( 1γ  represents the cost of attackers’ weaker offensive access). However, if the weak 
offensive access does not escape capture, the payoff for the SP is β ( 0β > , β  indicates 
the reward of CPS working normally). The payoff for the attackers is 1γ− . Similarly, if 
the low-interaction honeypot provides services and the strong offensive access escapes 
capture, the payoff for the SP is 1ς− . The payoff for the attackers is 1 2ς γ− ( 2 1γ γ> , 2γ  
represents the cost of strong offensive access).  By contrast, when the strong offensive 
access does not escape capture, the payoff for the SP is β and the payoff for the attackers 
is 2γ− . Furthermore, if the high-interaction honeypot provides effective service and the 
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weak offensive access escapes capture, the payoff for the SP is 2ς−  ( 2 1ς ς> , 2ς  indicates 
the reward of attacker attacking high-interaction honeypots). The payoff for the attackers 
is 2 1ς γ− . Moreover, if the high-interaction honeypot provides effective services and 
strong offensive access escapes capture, then the attacker’s payoff is 2 2ς γ− . The payoff 
for the SP is 2ς− . 

Table 2: The escape probability of offensive access 

The escape probability A low-interaction honeypot A high-interaction honeypot 

weak offensive access 1p   2p  

strong offensive access 3p  4p  

In the LHHG, the SP does not know the type of offensive access in advance, but it has a 
priori information about certain statistical metrics of access, such as the distribution of 
access types. According to Harsanyi transformation, we assume 
( ) ( )1 21 ,p W p Wα α= − =  where α is the probability of strong offensive access. Similar 

to SP, we also assume that attackers also know the probability distribution of the mode of 
SP, where ( ) ( )1 21 ,p Z p Zθ θ= − = and θ  is the probability distribution of high-
interaction honeypots. As we know, the players participating in the game understand each 
other's strategies, so we use Bayesian rules to get the player's posterior probability and 
use it to calculate the expected maximum payoff for all players. Obviously, all potential 
strategies ( )1 2

,Z ZF F  that the SP can provide are as follows: ( ){ ( ) ( )1 1 1 2 2 1, , , , ,Ω Ω Ω Ω Ω Ω , 

( )}2 2,Ω Ω  which indicates the strategies of both low-interaction honeypot and high-

interaction honeypot, respectively. Analogously, all potential strategies ( )1 2
,W WF F that the 

attackers can use are as follows: ( ) ( ) ( ) ( ){ }1 1 1 2 2 1 2 2, , , , , , ,ν ν ν ν ν ν ν ν , which indicates the 
strategies of both strong offensive access and weak offensive access, respectively. To 
best of our knowledge, the SP cannot guarantee full capture of offensive access, even if it 
is for a specific offensive access behavior. Therefore, a unit honeypot can only capture 
offensive access successfully with a probability, and the escape probabilities of offensive 
access are shown in Tab. 2.  
For the SP, the capture probabilities of low- or high-interaction honeypot varies with the 
number of low- and high-interaction honeypots respectively. The expected escape 
probabilities of strong offensive access and weak offensive access to the number of low- or 
high- interaction honeypots with human analysis costs participation n  is measured by 
function ( ),i i in p aΨ  where (a) ( )1 ,i i i in p a pΨ = = , because when there is only one 
honeypot, the escape probability of the offensive access for the SP is the escape probability 
of the offensive access for the honeypot; (b) ia  is the minimum escape probability that an 
offensive access faces the CPS because no SP can fully capture the offensive access; and (c) 
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iΨ  is strictly decreasing and convex, because the escape probability from similar offensive 
access to similar honeypot decreases yet flattens out with the increase of the number of the 
similar honeypots [Levine, LaBella, Owen et al. (2003)]. This set of conditions on the 
function iΨ  is referred to as the generic conditions, and those functions that satisfy the 
generic conditions are referred to as the generic functions. 
 

 
             (a) Attackers’ perspective                                 (b) SP’s perspective 

Figure 2: The game tree from perspective of attackers and SP 
In order to express the payoffs of SP and attackers in different situations clearly, the 
game tree is a common way to show it. Fig. 2(a) and Fig. 2(b) show the game trees from 
the attackers’ perspective and SP's perspective when the offensive access is successful, 
respectively. The first term in each bracket in the Fig. 2(a) and Fig. 2(b) is the payoff of 
the attackers and the second term is the payoff of the SP. 

4 The optimal defensive strategy under human analysis cost constraint 
In this section, we analyze the offensive and defensive interactions and model the offensive 
and defensive process through an incomplete information game. In particular, we assume 
that the attacker thinks the human analysis cost of the defender is sufficient for insurance. 
Based on this assumption we prove the existence of several Bayesian-Nash equilibria in the 
LHHG with sufficient human analysis cost and obtain the attacker’s equilibrium strategy and 
the optimal deployment strategy of high- and low-interaction honeypots firstly. We then 
consider the impact of insufficient human analysis cost on the honeypot capture effect and 
further optimize the defensive strategy to maximize the payoff for SP by allocating 
insufficient analysis cost between low- and high- interaction honeypots. 

4.1 The optimal defensive strategy with sufficient human analysis cost 
Distinct from other security tools, most honeypots can only generate reports due to their low 
degree of automation, so the participation of human is very necessary to analyze and capture 
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offensive access. Therefore, the attacker usually thinks that the human analysis cost of the 
defender is sufficient in the case of asymmetric information for the sake of insurance. 
For the low-interaction honeypot that provides service, its payoff ( )

1 1ZU Ω is denoted as 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 1 11 1 1 1 1 2 1 2 1

1 1 1 3 1 3

1 1 3 1 1 3

| * | | * |

1 * ( ) (1 )* * ( ) (1 )*

1 *( ) *( ) 1 *(1 )* *(1 )*

Z Z ZU p w U w p w U wν ν

α ς β α ς β

α ς α ς α β α β

Ω = Ω + Ω

= − Ψ − + −Ψ + Ψ − + −Ψ

= − −Ψ + −Ψ + − −Ψ + −Ψ

          (1) 

The payoff of the low-interaction honeypot for the strategy 2Ω  can be computed as 

( ) ( ) ( ) ( ) ( )
1 1 12 1 1 1 2 2 1 2 2

1 1

| * | | * |

(1 )*( ) *( )
Z Z ZU p w U w p w U wν ν

α ς α ς

Ω = Ω + Ω

= − − + −
                                         (2) 

For the high-interaction honeypot that provides service, the payoff for the strategy 1Ω and 

2Ω are expressed below respectively. 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

2 2 21 1 1 1 1 2 1 2 1

2 2 2 4 2 4

2 2 4 2 2 4

| * | | * |

1 * ( ) (1 )* * ( ) (1 )*

1 *( ) *( ) 1 *(1 )* *(1 )*

Z Z ZU p w U w p w U wν ν

α ς β α ς β

α ς α ς α β α β

Ω = Ω + Ω

= − Ψ − + −Ψ + Ψ − + −Ψ

= − −Ψ + −Ψ + − −Ψ + −Ψ

        (3) 

( ) ( ) ( ) ( ) ( )
2 2 22 1 1 1 2 2 1 2 2

2 2

| * | | * |

(1 )*( ) *( )
Z Z ZU p w U w p w U wν ν

α ς α ς

Ω = Ω + Ω

= − − + −
                                        (4) 

From Eqs. (1)-(4), no matter how the values of 1 2 1 2, , , ,ς ς Ψ Ψ  3 4,Ψ Ψ andα changed in 
the feasible domain, the relations

1 11 2( ) ( ),Z ZU UΩ > Ω  
2 21 2( ) ( )Z ZU UΩ > Ω are always hold 

true. Therefore, it is obvious that SP have a strict dominant strategy 1 1( , )Ω Ω .Similar to SP, 
the payoff of the weak offensive access using strategy 1ν   is as follows: 

( ) ( ) ( ) ( ) ( )
( )

1 1 11 1 1 1 1 2 1 2 1

1 1 1 1 1 2 2 1 2 1

| * | | * |

(1 )* ( ) (1 ) *( ( ) (1 ) )
W W WU p Z U Z p Z U Zν ν ν

θ ς γ γ θ ς γ γ

= Ω + Ω

= − Ψ − − −Ψ + Ψ − − −Ψ
                    (5) 

The payoff of weak offensive access using strategy 2ν  can be expressed by 

( ) ( ) ( ) ( ) ( )
( ) ( )

1 1 12 1 1 1 2 2 1 2 2

1 1 2 1

| * | | * |

| *0 | *0 0
W W WU p Z U Z p Z U Z

p Z p Z

ν ν ν= Ω + Ω

= Ω + Ω =
                                         (6) 

The payoff of the strong offensive access using strategy 1ν and 2ν  can be expressed by 

( ) ( ) ( ) ( ) ( )
( )

2 2 21 1 1 1 1 2 1 2 1

3 1 2 3 2 4 2 2 4 2

| * | | * |

(1 )* ( ) (1 ) *( ( ) (1 ) )
W W WU p Z U Z p Z U Zν ν ν

θ ς γ γ ϑ ς γ γ

= Ω + Ω

= − Ψ − − −Ψ + Ψ − − −Ψ
                (7) 
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( ) ( ) ( ) ( ) ( )
( ) ( )

2 2 22 1 1 1 2 2 1 2 2

1 1 2 1

| * | | * |

| *0 | *0 0
W W WU p Z U Z p Z U Z

p Z p Z

ν ν ν= Ω + Ω

= Ω + Ω =
                                         (8) 

From Eqs. (5)-(8), the payoffs are dependent on the value of parameters and the attacker 
does not have a strict dominant strategy. 
Theorem 1. A BNE strategy 1 1 1 1( , , , )ν ν Ω Ω exists in the LHHG model if 

1 1 2 2 1 1 1

4 2 3 1 3 1 2

( ) 0
( ) 0
θ ς ς ς γ
θ ς ς ς γ

Ψ −Ψ +Ψ − ≥
 Ψ −Ψ +Ψ − ≥

 

Proof of Theorem 1. In order to make 1 1 1 1( , , , )ν ν Ω Ω a BNE strategy, for attackers, the 
payoff of the offensive access is greater than the payoff from not launch offensive access, 
which means

1 11 2( ) ( )W WU v U v> and
2 21 2( ) ( )W WU v U v> . Then, we have 

1 1 2 2 1 1 1( ) 0θ ς ς ς γΨ −Ψ +Ψ − ≥                                                                                           (9) 

4 2 3 1 3 1 2( ) 0θ ς ς ς γΨ −Ψ +Ψ − ≥                                                                                        (10) 
From the perspective of the attackers-side, when the service provider is a low-interaction 
honeypot and θ satisfying the Eq. (9), 1ν  would be the dominant strategy for attackers. In 
this case, attackers will launch offensive access. Otherwise, 2ν  would be the dominant 
strategy for attackers and attackers will not launch offensive access to the low-interaction 
honeypot. Similarly, when the service provider is a high-interaction honeypot and 
θ satisfying the Eq. (10), 1ν  would be the dominant strategy for attackers. In this case, 
attackers will launch offensive access. Otherwise, 2ν  would be the dominant strategy for 
attackers and attackers will not launch offensive access to high-interaction honeypot. 
Considering that the players in this game should choose the dominant strategy, we can 
obtain the dominant strategy 1 1( , )ν ν  for SP, which is their strategy 1 1( , )Ω Ω  under the 
condition Eq. (9) and Eq. (10). 
Now, we further prove the dominant strategy of attackers when the SP use strategy 

1 1( , )Ω Ω .  First, we need to check whether the strategy 1 1( , )Ω Ω is the dominant strategy or 
not from the perspective of SP. Assuming that 

1 11 2( ) ( )Z ZU UΩ > Ω and 
2 21 2( ) ( )Z ZU UΩ > Ω , 

we have consider the case 

( ) 1 1 3 1 1 11 * ( ) * ( ) (1 )*( ) *( )α ς α ς α ς α ς− Ψ − + Ψ − ≥ − − + −                                             (11) 

( ) 2 2 4 2 2 21 * ( ) * ( ) (1 )*( ) *( )α ς α ς α ς α ς− Ψ − + Ψ − ≥ − − + −                                           (12) 

when θ satisfies the Eq. (9) and Eq. (10), the Eq. (11) and Eq. (12) hold true because the value 
of function 0 1i< Ψ <  . In this case, we know that the relations ( ) 11 *(1 )* *(1α β α− −Ψ + −  

3 ) * 0βΨ >  and ( ) 2 41 *(1 )* *(1 )* 0α β α β− −Ψ + −Ψ >  are always hold true, so it is 
obvious that the SP strategy 1Ω  will be the dominant strategy for attackers’ strategy 1 1( , )ν ν . 
Similarly, when offensive access is strong offensive access, the SP strategy 1Ω  will be 
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always the dominant strategy for attackers’ strategy 1 1( , )ν ν . 
In summary, from Eq. (9), Eq. (10), Eq. (11) and Eq. (12), we can obtain a Bayesian-
Nash Equilibria (BNE)  1 1 1 1( , , , )ν ν Ω Ω  for the LHHG and Theorem I can be proved. 

Analogously, three other BNE strategies 1 2 1 1( , , , )ν ν Ω Ω , 2 1 1 1( , , , )ν ν Ω Ω , and 2 2 1 1( , , , )ν ν Ω Ω  
exist in the game under other conditions we discussed before. When there are sufficient 
human analysis costs, the Bayesian-Nash strategies for the LHHG model can be reached 
from Algorithm 1. 

Algorithm 1: Bayesian-Nash strategy for low-high interaction honeypot game model 
Input: 1 2 1 2 1 2 3 4 1 2 3 4, , , , , , , , , , , , ,   p p p p a a a a n andς ς γ γ α θ  
Output: Optimal strategy ( ), , ,ii jj ii jjν ν Ω Ω  
/* Initialize the strategy, ( ),ii jjν ν */ 
/* Find the stable state*/ 
    if 1 1 2 2 1 1 1( ) 0θ ς ς ς γΨ −Ψ +Ψ − ≥ then 

       if 4 2 3 1 3 1 2( ) 0θ ς ς ς γΨ −Ψ +Ψ − ≥  
                choose optimal strategy 1 1 1 1( , , , )ν ν Ω Ω  

else 
choose optimal strategy 1 2 1 1( , , , )ν ν Ω Ω  

end 
else  
   if 4 2 3 1 3 1 2( ) 0θ ς ς ς γΨ −Ψ +Ψ − ≥  
            choose optimal strategy 2 1 1 1( , , , )ν ν Ω Ω  

else 
            choose optimal strategy 2 2 1 1( , , , )ν ν Ω Ω  
end 

end 

4.2 The optimal defensive strategy with insufficient human analysis cost 
In the last subsection, we derive the BNE for attackers and SP with sufficient analysis 
resources. However, in real scenarios, the SP usually faces the budget shortage for 
operation and maintenance of honeypots, which decreases the real operation performance. 
Therefore, it is necessary to consider the operation cost constraint to find the optimal 
defensive strategy. In practice, if the generated reports are not analyzed or not activated 
by the human, the function of a honeypot is nearly equivalent to a normal server. 
Therefore, human analysis cost is a vital factor for the effective operation of honeypots, 
and it is necessary to consider accurate in this paper. When the SP's total human analysis 
cost satisfies the requirement for honeypots in the aforementioned BNE, all honeypots 
can work well. In contrast, if the SP has insufficient human analysis cost, some of the 
honeypots may not work effectively due to the lack of the participation of human. 
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Therefore, it is very necessary to study how to improve the capture performance of the 
honeypot system under the constraint of insufficient human analysis cost. Moreover, the 
payoff expression is shown below. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 21 21 Z 1 1 1 2 Z 1 2 1Z Z

ˆ ˆZ * U Z * U Z * U Z * USPpayoff p p p p= Ω + Ω + Ω + Ω   (13) 

where ( )1Ẑp  indicates the proportion of low-interaction honeypots with the participation 

of human analysis to the total honeypots. ( )1Zp  indicates the proportion of low-
interaction honeypots without the participation of human analysis to the total honeypots. 

1 1( )ZU Ω indicates the payoff of low-interaction honeypot without the participation of 

human analysis. Similarly, ( )2Ẑp  indicates the proportion of high-interaction honeypots 

with the participation of human analysis to the total honeypots. ( )2Zp  indicates the 
proportion of high-interaction honeypots without the participation of human analysis to 
the total honeypots. 

2 1( )ZU Ω  indicates the payoff of high-interaction honeypot without 

the participation of human analysis. The relationship between ( )1
ˆp Z , ( )1Zp , ( )2Ẑp  and 

( )2Zp is shown below: 

( ) ( )1 1
ˆ 1p Z p Z θ+ = −                                                                                                       (14) 

( ) ( )2 2
ˆp Z p Z θ+ =                                                                                                            (15) 

We define the human analysis cost required for a low-interaction honeypot and a high-
interaction honeypot is lc  and hc , respectively. We also define the average human 
analysis cost constraint for a honeypot as C . For the SP, maximizing the payoff means 
minimizing the loss. Therefore, a reasonable allocation of insufficient human analysis 
costs is important to achieving an optimal defense strategy after the honeypots are 
deployed. Furthermore, the optimal human analysis cost allocation ( ) ( )( )1 2

ˆ ˆZ , Zp p can 

obtained by solving the optimization problem of the following expression: 

( ) ( )( )
( ) ( )1 2

*

1 2
ˆ ˆZ , Z

ˆ ˆZ , Z arg max SP
p p

p p payoff=                                                                                         (16) 

Subject to: ( ) ( )1 2
ˆ ˆ* Z * Z Clc p hc p+ ≤                                                                             (17) 

Obviously, the Eq. (16) expresses a nonlinear inequality constrained optimization 
problem, where ( ) ( )( )1 2

ˆ ˆZ , Zp p is a list of variables and Eq. (17) is constraint. Through 

the research of payoff expression, the properties of expression is a monotone increasing 
function of variable ( )1Ẑp  and ( )2Ẑp . Therefore, the optimal solution of Eq. (16) is 
usually lies on the boundary of the feasible domain. In order to solve the optimization 
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problem, here, we introduce UP as an evaluation factors. UP indicates the unit human 
analysis cost payoff. Furthermore, the expression of UP can be obtained from the analysis 
in the subsection above and expressed below. 

1

1

Z 1 1 1 1 1 3 1 1 1 3
U ( )

zUP
lc lc

α ς ς α ς β α β α β βΩ Ψ −Ψ − Ψ −Ψ + Ψ − Ψ +
= =                            (18) 

2

2

Z 1 2 2 2 2 4 2 2 2 4
U ( )

zUP
hc hc

α ς ς α ς β α β α β βΩ Ψ −Ψ − Ψ −Ψ + Ψ − Ψ +
= =                          (19) 

Eq. (18) and Eq. (19) indicate the unit human analysis cost payoff for low- and high-
interaction honeypot, respectively. We can obtain the optimal human analysis cost 
allocation through the following ways: if 

1z
UP is greater than 

2zUP , we tend to allocate 
more human analysis cost to low-interaction honeypots at first. By contrast, if 

2zUP is 
greater than 

1z
UP , we tend to allocate more human analysis cost to high-interaction 

honeypots at first. 
To this end, to integrate the strategy of the previous part, the optimal defensive strategy 
consists of two parts: the optimal deployment of low- and high-interaction honeypots and 
the optimal allocation of insufficient human analysis cost. 

5 Simulations 
In this section, we carry out numerical simulations in which different ratio of unit human 
analysis cost of the low- and high-interaction honeypot are adopted, in order to evaluate 
the effects of human analysis cost. The details of the simulation settings are explained 
first, and simulation results are given later. 

5.1 Simulation settings 
We conduct various simulations to explore the appropriate human analysis cost allocation 
of high-interaction honeypots and low-interaction honeypots for capturing network 
attacks in the honeypot network. In our simulation, we adopt one typical BNE 

1 1 1 1( , , , )ν ν Ω Ω  as the strategy for attackers and SP. Under this BNE strategy, the attacker 
launches both strong and weak offensive access, while the SP requires both high- and 
low-interaction honeypots to provide service. 
In order to verify the significance of human analysis cost constraint in defensive strategy, 
we consider one situation that the performance of high-interaction honeypot is better than 
low-interaction honeypot and adopt low-interaction honeypot escape probabilities of (0.5, 
0.6). In this situation, the escape probabilities of the combinations of the low- and high- 
interaction honeypots are 1 2 3 4( , , , )p p p p = ( )0.5,0.4,0.7,0.6 . In addition, the minimum 
escape probabilities are assumed as 1 2 3 4( , , , )a a a a = ( )0.2,0.15,0.3,0.25 ; the rewards of 
low-interaction honeypot and the high-interaction honeypot are assumed as 

1 2( , ) (30,50)ς ς = ; the cost of weak offensive access and strong offensive access is 
assumed as 1 2( , ) (3,6)γ γ = and the reward of CPS working normally is assumed 
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as 1000β = . Obviously, the human analysis cost of high-interaction honeypot and low-
interaction honeypot is different. However, when (1 )C lcθ< − , the human analysis cost 
is not enough for a low-interaction honeypot, and all honeypots will not work. Therefore, 

we consider the case (1 )hc C lcθ θ≥ ≥ −  and (1 )
2

hc lcC θ θ+ −
= . In addition, considering 

the generic condition of generic function ( ),i i in p aΨ , we assumed one simple case as 
follows: 

n
i i i ik p aΨ = +                                                                                                                   (20) 

In particular, when there is only one high-interaction honeypot or low-interaction 
honeypot, i ipΨ =  and 1 /i i ik a p= − . 

We investigate the properties of the function ( ),i i in p aΨ  via adopting four sets of 
parameters , ,i i ik p a . As shown in Fig. 3, as the number of deployed honeypots increases, 
the escape probability of strong and weak offensive access decreases and asymptotically 
tends to the minimum escape probability. This property is consistent with the theoretical 
prediction. In addition, it is obvious that when the human analysis cost is sufficient, the 
payoff of SP is greater than the human analysis cost is insufficient. This is because those 
honeypots, which are not allocated human analysis costs, do not have capture effects. 
Therefore, it is necessary to study the human analysis cost allocation. 
 

 

Figure 3: The escape probability of weak offensive access and strong offensive access 

In order to obtain the optimal defensive strategy, we study one typical BNE 1 1 1 1( , , , )ν ν Ω Ω  
below. We first assume that the optimal deployment of low- and high-interaction 
honeypot is 0.5θ =  according to the Eq. (9) and Eq. (10). Then, we verify how to obtain 
the optimal human analysis cost allocation under different human analysis cost ratio of a 
high- and low-interaction honeypot /hc lc  according to the method of Eq. (18) and Eq. 
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(19) when the probability of strong offensive access 0.5α = is fixed. Finally, we compare 
the payoff of SP under different /hc lc .In addition, we assume that the total number of 
honeypots is 40. 

5.2 Simulation results 
In order to verify the method, we proposed before, extensive numerical simulations are 
performed. According to the assumption, we have the Eq. (18) and Eq. (19) as follows: 

1

1 1 3 1 1 3

2zUP
lc

β ς ς β β−Ψ −Ψ −Ψ −Ψ
=   

2

2 2 4 2 2 4

2zUP
hc

β ς ς β β−Ψ −Ψ −Ψ −Ψ
=   

Obviously, it is hard to compare the value of 
1ZUP  and 

2ZUP . Therefore, in order to 
analyze the difference between the 

1ZUP  and 
2ZUP  , we investigate them at different 

values of  /hc lc  in the numerical simulation via MATLAB, as shown in Fig. 4(a). 
In Fig. 4(a), the abscissa indicates /hc lc ,  which is the ratio of the human analysis cost 
of the high-interaction honeypot to that of the low-interaction honeypot. The ordinate 
represents the unit human analysis cost payoff. Obviously, when the /hc lc  increases, the 
unit human analysis cost payoff of high-interaction honeypot decreases and convex. 
Particularly, if / 1.569hc lc < , the SP tends to allocate more human analysis costs to the 
high-interaction honeypot. In contrast, if / 1.569hc lc > , the SP tends to allocate more 
human analysis costs to the low-interaction honeypot. In addition, we compare the 
difference in the payoff of SP under the condition of sufficient human analysis cost, and 
analyze the impact of human analysis cost constraints in Fig. 4(b). 

 
                    (a) 

1ZUP  and 
2ZUP                                                (b) Payoff 

Figure 4: The 
1ZUP  and 

2ZUP  and payoff of low- and high-interaction honeypots as a 
function of /hc lc  
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In Fig. 4(b), the ordinate represents the payoff. Obviously, when the /hc lc  increases, the 
payoff of high-interaction honeypots inclines to stable firstly and then decreases and 
convex. When / 1.569hc lc < , we prioritize the allocation of human analysis costs to 
high-interaction honeypots. In contrast, the payoff of low-interaction honeypots decreases 
first and then step and inclines to stable. We find that when / 1.569hc lc > , the human 
analysis cost is prioritized for low-interaction honeypots and the payoff of low-
interaction inclines to stable. In addition, this is also the case in an earlier study between 
the 

1ZUP  and the 
2ZUP  that further validate the effectiveness of our method. 

Thus, take / 3hc lc =  as an expample, the optimal defense strategy is to deploy half low-
interaction honeypots and half high-interaction honeypots and prioritize human analysis 
costs for high-interaction honeypots. The payoff of SP is 475.3744 in this case. 
In summary, the investigation of the human analysis cost allocation of the high- and the 
low-interaction honeypot shows the optimal defensive strategy can be achieved via 
combining the optimal deployment strategy. 

6 Conclusion 
In this paper, we propose a honeypot game model with both low- and high-interaction 
modes to improve the security of cyber-physical systems (CPS), an advanced system 
integrating physical processes, computation and communication resources. To optimize 
defensive strategies against network attacks in CPS, an analysis resource constraint is 
introduced. With the low- and high-interaction honeypots as a security management tool 
deliberately designed to be probed, attacked and compromised, we study the offensive 
and defensive interactions of CPS and model the offensive and defensive process as an 
incomplete information game with the assumption that the defender's analysis resource is 
unknown to the attacker. Firstly, we prove the existence of several Bayesian-Nash 
equilibria in the low- and high-interaction honeypot game without analysis cost 
constraints and obtain the attacker's equilibrium strategy. Then, we take the impact of 
analysis cost on the capture effect of honeypots into consideration and further optimize 
the defensive strategy by allocating analysis resource between low- and high-interaction 
honeypot with resource constraint. Finally, Numerical simulation results showed that the 
optimal human analysis cost allocation and optimal defensive strategy can be obtained 
based on our analysis, which indicates that our method can be used to protect the data and 
to further ensure the security of CPS. 
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