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Abstract: The MDS-MAP (multidimensional scaling-MAP) localization algorithm utilize 
almost merely connectivity information, and therefore it is easy to implement in practice of 
wireless sensor networks (WSNs). Anisotropic networks with energy hole, however, has 
blind communication spots that cause loss of information in the merging phase of MDS-
MAP. To enhance the positioning accuracy, the authors propose an MDS-MAP (CH) 
algorithm which can improve the clustering and merging strategy. In order to balance the 
effect of energy consumption and the network topology stabilization, we present a weighted 
clustering scheme, which considers the residual energy, the degree of connectivity nodes and 
node density. As the original MAD-MAP method poses a limitation of merging condition, 
the authors relax the merging requirement and present a heuristic estimation method for lost 
connectivity over energy holes. Simulation results show that the improved MDS-MAP (CH) 
localization algorithm has achieved higher localization accuracy, better-balanced energy 
consumption and stronger network robustness. 
 
Keywords: Wireless sensor network, localization, MDS-MAP, clustering, merging 
strategy, heuristic method.  

1 Introduction 
WSNs (Wireless Sensor Networks) are ad-hoc networks composed of sensor nodes with 
limited computational and communicational capabilities. Sensor nodes are usually 
randomly scattered into the filed. Thus it is necessary to report data with geometrical 
information. Nowadays, localization of sensor nodes in WSN has become a fundamental 
and essential service which benefits many industrial and civilian cyber-physical system 
applications, such as environmental monitoring, industrial control and battle fields 
[Adissi, Lima, Gomes et al. (2017); Sundararajan, Redfern, Schneider et al. (2005); 
Perumal, Utharaj and Christo (2014)]. Although localization is crucial in determining 
the source of triggering events, over complex algorithms are not supported by the light 
weight process unit in the network. Therefore, extensive research has been focusing on 
designing localization algorithms that are energy and cost efficient. 
Mounting GPS on each sensor in the network is an easy solution but too expensive to be 
feasible in practice. GPS receivers have degraded performance in indoor places and dense 
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urban areas [Sahu, Wu and Sahoo (2017); Tashnim, Chowdhury, Vijay et al. (2016)]. 
A typical scenario is that there are only a few nodes equipped with position-aware device 
and those nodes are referred to as anchors. The localization of other nodes is 
accomplished by its interaction and information exchange with anchors. Various existing 
localization schemes can be classified as centralized or distributed. Centralized 
algorithms utilize a central computing unit to calculate each node’s position based on the 
information collected through the network [Fang, Jiang and Nan (2016); Carmelo, 
Mauro, Enrico et al. (2018)]. These techniques are usually more accurate because they 
use global modeling, but the cost is the heavy computation overhead and communication 
bottleneck. While in distributed approaches, the process resides in a subset of the global 
graph, which is much more practical regarding lower energy consumption and 
communication coverage cost. Multidimensional scaling (MDS) is a typical centralized 
localization algorithm which uses simple network connectivity to localize sensor nodes. It 
is regarded as a practical scheme because sophisticated position tracking- devices are 
avoided and only a few anchors are enough for final graph adjustment.  
The classical MDS algorithm is a means aims at visualizing the placement of a set of 
objects in N-dimensional space based on the between-object distances, or dissimilarities. 
It is widely used in many application areas as a set of information visualization 
techniques. Recent research tends to develop distributed MDS algorithms [Shang and 
Ruml (2004); Saeed and Nam (2016)] and the benefit is much more noticeable in large-
scale networks. Shang et al. [Shang and Ruml (2004)] presented the MDS-based 
localization algorithm called MDS-MAP (P), which uses patches of relative maps for 
local positioning and then merge those maps into a global one. The merging can be 
executed in distributed fashions and this leads to more balanced computation. Besides, it 
works well on irregular networks. 
In practice, communication holes caused by power exhaustion are often found in the 
unbalanced network. In this investigation, we propose a cluster-based MDS localization 
algorithm called MDS-MAP (CH) for WSN with energy holes. We present a better 
clustering strategy which balances the energy consumption and network topology 
stability. We also propose an improved heuristic merging scheme to compensate previous 
existing merging restrictions that plague anisotropic network with energy holes. The 
contributions of this study are summarized as follows:  
• We develop a clustering strategy as a segmentation technique that is better at 

balancing the energy consumption and topology over the network. This clustering 
strategy also provides an excellent solution for cluster-head selection in an energy 
unbalanced network. The strategy utilizes a competition to choose the best candidate 
node based on node residual energy, connectivity and edge-degree. This election 
mechanism leads to a better-balanced network and well-chosen cluster-heads as sub-
processing centers. 

• A heuristic algorithm is proposed to compensate connectivity information for merging 
relative maps. The algorithm is implemented on the boundary of two clusters where 
communication is blocked over energy holes and it constructs virtual connectivity 
close on the border of the obstructed area so that a relaxed merging condition is 
satisfied. 
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The rest of this paper is organized as follows: In Section 2, background and related works 
are summarized. In Section 3, the motivation and details of the proposed MDS-MAP (CH) 
are presented. Section 4 presents the experimental results and performance evaluation. 
Finally, we state the conclusion of this paper and thoughts of future work in Section 5. 

2 Background and related work 
The classical MDS-MAP based localization algorithm was developed in the past decades 
and the idea is to take an input of between-nodes distance matrix and output a coordinate 
matrix by minimizing a loss function. The popular MDS-MAP was proposed in 
Hightower [Hightower (2001)] and the localization method was based on 
multidimensional scaling (MDS). In this centralized approaches, the final network graph 
requires a transformation into absolute coordinates over the anchors. Shang et al. [Shang 
and Ruml (2004)] proposed the distributed MDS-MAP (P) which aims at improving the 
performance by avoiding the inaccurate shortest path. Shi et al. presented a heuristic 
MDS algorithm in Shi et al. [Shi, Meng, Zhang et al. (2017)], which explores virtual 
nodes to construct the shortest paths between nodes and this can be a distinct advantage 
in anisotropic networks. 
There are two drawbacks of the classical MDS-MAP algorithm. Firstly, poor positioning 
results are shown for anisotropic networks. Secondly, the merging strategy restriction is 
too strict. In Shang et al. [Shang and Ruml (2004)], MDS-MAP (P) uses paths within 2 
to 3 hops to estimate the distances between nodes, which can cause significant errors 
when merging nodes are out of the communication range. Jia et al. [Cheng, Qian and 
Wu (2008)] proposed an improved merging strategy for relaxing the previous restrictions 
to more general conditions.  
A relative map segmentation method based on rigid subset is proposed in Yu et al. [Yu, 
Zhou and Zhang (2017)] to overcome the flip ambiguity problem in merging, which 
adopts the graphic rigidity theory for unique merging solution. Another segmentation 
strategy is proposed by Kim et al. [Kim, Woo and Kim (2007)], which only consider 
local maps composed of nodes within the reliable communication range. Therefore, the 
accuracy is enhanced, but the merging condition is neglected. Clustering has been 
considered an effective method to distribute computation overhead and degrade the 
complexity. Weighted clustering further helps with decision making [Edwards, Stillwell 
and Seaver (1981)]. A number of cluster-based MDS algorithms are available in recent 
literature [Biljana, Danco and Andrea (2008)], [Minhan, Minho and Hyunseung 
(2012)] and they have proven this technique outperforms MDS in terms of accuracy 
especially in irregular networks. Saeed et al. [Saeed and Nam (2016)] proposed an 
algorithm for a cognitive network that uses the fuzzy C-means clustering technique to 
reduce shortest path error and the computational complexity is distributed into clusters. 
Chen et al. [Cheng, Qian and Wu (2008)] proposed an energy based weight-clustering 
which improved clustering formation by taking energy efficiency into consideration. 

2.1 Summary of MDS-MAP 
In this subsection, we briefly summarize the 3 phases of the MDS-MAP based 
localization algorithms as follows: 
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Phase 1: A distance matirx for the MDS is constructed within each cluster based on the 
shortest paths between nodes. 
The distance matrix, which is also called dissimilarity matrix D, can be estimated with 
algorithms, e.g., Dijkstra shortest path. Assume that there are 𝑛𝑛 nodes lying on a 2-D 
plane. Then distance matrix 𝐷𝐷2(𝑋𝑋)  is constructed with squa value of distance 
measurements, where 𝑋𝑋 denotes the coordinate estimation matrix. 𝐷𝐷2(𝑋𝑋) is expressed as: 

𝐷𝐷2(𝑋𝑋) =
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𝑑𝑑2𝑛𝑛2
⋯ ⋯ ⋱ ⋯

𝑑𝑑𝑛𝑛12 𝑑𝑑𝑛𝑛22 ⋯ 0 ⎦
⎥
⎥
⎤

= 𝑐𝑐𝑒𝑒𝑇𝑇 + 𝑒𝑒𝑐𝑐𝑇𝑇 − 2𝐵𝐵                                                          (1) 

where dij represents the Euclidean distance between node 𝑖𝑖 and node 𝑗𝑗, 𝑒𝑒 = (1,1,⋯ ,1)𝑇𝑇, 
matrix 𝐵𝐵= 𝐷𝐷𝐷𝐷𝑇𝑇, 𝑐𝑐 = �∑ 𝑥𝑥1𝑘𝑘2𝑚𝑚

𝑘𝑘=1 ,∑ 𝑥𝑥2𝑘𝑘2 ,⋯ ,∑ 𝑥𝑥𝑛𝑛𝑘𝑘2𝑚𝑚
𝑘𝑘=1

𝑚𝑚
𝑘𝑘=1 �𝑇𝑇. 

Apply a decantation process with matrix 𝐽𝐽 = (𝐼𝐼 − 𝑛𝑛−1𝑒𝑒𝑒𝑒𝑇𝑇): 

𝐵𝐵 = −1
2
𝐽𝐽𝐷𝐷2(𝑋𝑋)𝐽𝐽 = −1

2
𝐽𝐽(𝑐𝑐𝑒𝑒𝑇𝑇 + 𝑒𝑒𝑐𝑐𝑇𝑇 − 2𝐵𝐵)     = 𝑄𝑄𝑄𝑄𝑄𝑄𝑇𝑇                                                (2) 

Perform singular value decomposition on matrix B: 

𝐵𝐵 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑇𝑇 = �𝑄𝑄𝑄𝑄1 2⁄ ��𝑄𝑄𝑄𝑄1 2⁄ �
𝑇𝑇                                                                                    (3) 

Phase 2: The MDS utilizes the distance matrix to generate relative maps. The relative 
coordinates can be represented by  

𝑋𝑋𝑘𝑘 = 𝑄𝑄𝑄𝑄1 2⁄                                                                                                                     (4) 

Phase 3: Relative maps are merged into the absolute map with sufficient anchors. 
Various merging strategies can be used to stitch patches of local maps to form a global 
relative map. Finally, build the absolute map by performing a transformation process on 
the relative map: 
𝑥𝑥0,𝑖𝑖 = 𝛼𝛼𝛼𝛼�𝑥𝑥𝑠𝑠,𝑖𝑖�+ 𝑡𝑡0                                                                                                       (5) 

where 𝛼𝛼 is the scaling factor and 𝑡𝑡0 is the translation coefficient, and 𝛼𝛼(∙) is the rotation 
and translation matrix. 𝑥𝑥𝑠𝑠,𝑖𝑖 is the relative coordinates of node 𝑖𝑖 before merging. After all 
clusters are merged, the relative coordinates of the nodes can be adjusted into the global 
map by anchor nodes, where each node 𝑖𝑖 gets its absolute coordinates at 𝑥𝑥0,𝑖𝑖. 

2.2 Merging strategy  
In phase 1 of MDS-MAP framework, the network is divided into segments or clusters. 
Those local patches should be stitched together in merging phase 3, using information on 
the borders or overlapping areas. Merging can only be done under certain conditions. Yu 
et al. [Yu, Zhou and Zhang (2017)] utilizes the rigid subset characteristic to avoid the 
ambiguity in local map construction and merging, which implicitly requires a sufficient 
number of common nodes and connectivity between local graphs. Merging restriction 
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analysis has been a neglected problem in MDS-MAP (P) related algorithms. In Kim et al. 
[Kim, Woo and Kim (2007)], the paper proposed a merging method that constructs the 
global map with local maps at a common node. This algorithm requires three common 
nodes between every two segmented maps during merging. Most cluster-based 
algorithms [Biljana, Danco and Andrea (2008); Minhan, Minho and Hyunseung 
(2012)] also require adequate information within communication range on the boundary.  
Assuming that there are 𝑁𝑁 nodes deployed in a 2-D plane and for each node 𝑖𝑖 ∈ S, where 
node set is 𝑆𝑆 = {1,2,⋯ ,𝑁𝑁}. The distance measurement between node 𝑖𝑖 and 𝑗𝑗 is denoted 
as 𝑑𝑑𝑖𝑖𝑖𝑖. A common node merging condition can be summarized as follows: Assume that 
two cluster nodes sets are 𝐶𝐶1 and 𝐶𝐶2 and the set of common nodes is 𝑄𝑄 = 𝐶𝐶1  ∩ 𝐶𝐶2, and 
the set of non-common nodes of  𝐶𝐶1 and 𝐶𝐶2 are represented as 𝐹𝐹𝐶𝐶1 = (𝐶𝐶1 ∪ 𝐶𝐶2)\𝐶𝐶2 and 
𝐹𝐹𝐶𝐶2 = (𝐶𝐶1 ∪ 𝐶𝐶2)\𝐶𝐶1. Previous work Saeed et al. [Saeed and Nam (2016)] suggests that 
two clusters can be merged only when the size of the common node set 𝑄𝑄 satisfies:|𝑄𝑄| ≥
3. Dan et al. [Jia, Li, Wang et al. (2016)], studied the merging condition in localization 
algorithms under MDS-MAP framework. In this investigation, the authors conducted a 
thorough analysis and the relaxed the merging requirements. The analysis suggests that 
when |𝑄𝑄| < 3, additional distance information 𝑑𝑑𝑎𝑎𝑎𝑎 should be provided, where node 𝑏𝑏 ∈
𝐹𝐹𝐶𝐶1, and  node 𝑎𝑎 ∈ 𝐹𝐹𝐶𝐶2, then 𝐶𝐶1 and 𝐶𝐶2 can be merged. 
Based on the rigidity theory, we drew the following conclusions. Assuming that in m-
dimensional space and the size of non-collinear common node set is |Q|  , we can 
summarize the two relaxed merging conditions as follows: 
• Condition 1: If  |𝑄𝑄| ≥ 𝑚𝑚 + 1 , two maps can be uniquely merged. The rigid subset 

[Yu, Zhou, Zhang (2017)] strategy falls into this category. 
• Condition 2: If |𝑄𝑄| < 𝑚𝑚 + 1, additional connectivity information has to be found to 

form a local rigid boundary. In a 2-D plane there requires a number of (m + 1 −
|𝑄𝑄|) connectivity. 

Merging conditions can be illustrated by Fig. 1(a): In the 2-D space, there have to be at least 
3 common nodes between two clusters to meet the merging condition [Jia, Li, Wang et al. 
(2016)]. Fig. 1(b) shows that if the number of non-collinear common nodes is less than 3, 
there has to be some connectivity information for the two clusters to merge into a unique 
global formation. Moreover, Fig. 1(c) shows that if there is no common nodes, there has to 
be at least three known connectivity (For example: 𝑑𝑑𝐴𝐴1𝐵𝐵1, 𝑑𝑑𝐴𝐴1𝐵𝐵2, 𝑑𝑑𝐴𝐴2𝐵𝐵3).  
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Figure 1: Inter-cluster nodes 
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In an anisotropic network, energy holes often block communication over the border, 
which causes loss of common nodes and connectivity information. In order to solve this 
problem, a heuristic method of distance estimation is proposed in Section 3.3 to 
compensate the merging rules.  

2.3 Network model  
Irregular network topology can obviously degrade the performance of MDS-MAP 
algorithms. The authors investigate the energy level and network topology characteristics 
of anisotropic networks. In this paper irregular specifically refers to networks with energy 
holes caused by battery drainage. The network model and parameters used in the 
proposed algorithm can be described as follows: 
𝑁𝑁=Total number of source nodes on a 2-D plane, 
𝛼𝛼𝑖𝑖=Communication range of sensor node 𝑖𝑖(m) 
𝐷𝐷𝑖𝑖=Average node degree of senor node 𝑖𝑖 (number of connected neighbors) 
𝐸𝐸𝑑𝑑𝐸𝐸𝑒𝑒(𝑖𝑖)=Edge degree of sensor 𝑖𝑖 (how far away the sensor is close to the edge of the 
network) 
𝐸𝐸𝐶𝐶=Energy cost of signal reception in one transmission 
𝑆𝑆𝑖𝑖=Residual energy level of the node 𝑖𝑖 
Tab. 1 lists other parameters used for the simulation of the research. In the study, sensor 
nodes are deployed in a two-dimensional square area. We assume that each node has an 
adjustable communication range 𝛼𝛼𝑖𝑖  to be more energy efficient. The degree of 
connectivity 𝐷𝐷𝑖𝑖  is dependent on the deployment of the network, which directly affect the 
network density. Edge degree can be a decent measurement of how close a node is to the 
local geometric center (or how far away it is to the edges).  Nodes on the edge should not 
be favored as cluster heads because the sub process unit should lie in the center to 
balance resources in each local map.  
Fig. 2 shows an anisotropic network with holes which signal does not pass through and 
no nodes can be sensed within communication range. A local O-shaped area is therefore 
formed and the distance estimation using shortest path algorithm has to be done with a 
detour (Fig. 2(b)). The authors used cluster-based graph segmentation method that 
considers energy level as a major factor so that network hole usually lies on the boundary 
between clusters. Therefore the inter-cluster communication issue needs to be addressed 
in the merging phase of the proposed MDS-MAP algorithm. Other parameters used in 
simulations are listed in Tab. 1. 
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(a) Shortest path between 2 nodes in 

uniform topology 

 
(b) Shortest path between 2 nodes over 

energy hole 

Figure 2: Shortest path error caused by energy hole 

3 The proposed algorithm MDS-MAP (CH) 
3.1 Motivation 
The goal of this research is to investigate an energy efficient MDS-MAP localization 
algorithm for WSN with energy holes. The motivation of our research is that firstly, in 
most circumstances, energy holes are caused by unbalanced resource allocation. The 
network patch segmentation scheme should consider the distribution of network 
resources as well as topology stability. Therefore, we consider a weighted cluster head 
selection method that considers multiple factors so that the selected cluster head can 
perform better as the local process unit. 
Secondly, energy holes cause blind area on the inter-cluster boarders, where two clusters 
need to be merged into the relative map in the third phase of MDS-MAP algorithms (Section 
2.1). In existing algorithms, the perquisite merging condition requires a sufficient number of 
anchor nodes [Jia, Li, Wang et al. (2016)]. This merging condition demands a large 
communication coverage overlapping area between two clusters, where the signal 
transmission, however, is often blocked by the energy holes. Thus, we present the heuristic 
algorithm to compensate the inter-cluster common information for merging purpose. 

3.2 Weighted cluster-head selection scheme 
Clustering technique helps to distribute and to degrade the computational complexity. 
Exiting clustering or cluster head selection strategy that considers only either graph 
partitioning or energy consumption often causes data redundancy, estimation error or 
high communication costs. When implementing MDS-MAP in energy unbalanced 
network, both network topology and energy consumption level are significant factors.  
Cluster head plays an important role in relative map formation. Here we take into 
consideration the connectivity, residual energy, and edge-degree for cluster head election. 
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The degree of a node can be described as the number of its neighbors within transmission 
range. To save resources of network bandwidth, the deployment of nodes in each cluster 
should not exceed a certain number, which means that the average degree of nodes 
connectivity is bounded. If the node degree is too large, there will be a communication 
bottle neck in the network, while if the node degree is too small, there will be a waste of 
network bandwidth resources. 
The sum of the distance of the node i  with its neighbors within the range can be 
calculated as: 

𝑑𝑑𝑖𝑖 = ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=0                                                                                                                      (6) 

Where 𝑑𝑑𝑖𝑖𝑖𝑖is the distance between node 𝑖𝑖 and node 𝑗𝑗. 
The degree of all nodes is measured by degree-difference. The degree-difference of the 
node is expressed as: 

𝐷𝐷𝑖𝑖 = �𝑑𝑑𝑖𝑖 − 𝑑𝑑�                                                                                                                                    (7) 

Where 𝑑𝑑 represents the average degree of nodes. 
Normalize the degree-difference: 

𝜑𝜑𝑖𝑖 = 𝑒𝑒−𝐷𝐷𝑖𝑖                                                                                                                                           (8) 

In the wireless sensor network, a node with a smaller degree-difference means evener 
distribution around it and it is more likely to be elected as a cluster head. The battery 
power is largely consumed by signal transmission and amplification.  To formulate the 
energy cost of signal reception in one transmission, we use the wireless communication 
consumption model [Arumugam and Ponnuchamy (2015)] expressed as： 

𝐸𝐸𝐶𝐶 = 𝑘𝑘 × 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 × 𝑛𝑛 + 𝑘𝑘 × 𝐸𝐸𝑓𝑓 × 𝑛𝑛                                                                                                (9) 

The energy consumed by nodes in each cluster can be expressed as: 

𝐸𝐸𝑒𝑒𝑐𝑐(𝑘𝑘,∆𝑡𝑡) = 𝑘𝑘 × 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑘𝑘 × 𝜀𝜀𝑓𝑓𝑠𝑠 × 𝑑𝑑2                                                                           (10) 

We assume that node 𝑖𝑖 is elected as a cluster head in the process of data collection, the 
total energy consumed in the cluster in one unit time is: 

𝐸𝐸𝑇𝑇𝑖𝑖 = 𝐸𝐸𝐶𝐶 + 𝑁𝑁
𝐻𝐻

× 𝐸𝐸𝑒𝑒𝑐𝑐                                                                                                         (11) 

where, 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 represents the energy consumed to send or receive 1-bit data. 𝐸𝐸𝑓𝑓 denotes the 
energy consumed by the node to fuse 1-bit data. 𝜀𝜀𝑓𝑓𝑠𝑠 indicates the amplification factor of 
the amplifier. 𝑛𝑛 indicates the number of neighbor nodes and 𝑘𝑘 is the length of the data 
packet, 𝑁𝑁 denotes the number of nodes in the network, and 𝐻𝐻 represents the number of 
cluster heads. The number of nodes in each cluster is represented by 𝑁𝑁/𝐻𝐻. 

Assuming that the initial cluster energy is 𝐸𝐸𝑖𝑖, the remaining energy 𝐸𝐸𝑒𝑒𝑖𝑖 in the cluster at 
time 𝑡𝑡 can be expressed as: 
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𝐸𝐸𝑒𝑒𝑖𝑖 = 𝐸𝐸𝑖𝑖 − 𝑡𝑡𝐸𝐸𝑇𝑇𝑖𝑖                                                                                                                                (12) 

Higher residual energy level of the node 𝑖𝑖  means the node fits cluster head better. 𝑆𝑆𝑖𝑖 
denotes the normalized value of the residual energy: 

𝑆𝑆𝑖𝑖 = 𝐸𝐸𝑙𝑙𝑖𝑖
𝐸𝐸𝑖𝑖

                                                                                                                                               (13) 

Usually, the cluster head should be in the center of the cluster, which can be measured by 
edge-degree [Anchao and Guifen (2017)]. The edge degree is a measurement of how far 
away one node is to the center, or how close it is to the edge. The distance between each 
node with the nearest anchor node is recorded as 𝑑𝑑𝑖𝑖𝑑𝑑(𝑖𝑖), and the farthest one is recorded as 
𝑑𝑑𝑖𝑖𝑑𝑑𝑚𝑚𝑎𝑎𝑚𝑚. 

𝑒𝑒𝑑𝑑𝐸𝐸𝑒𝑒(𝑖𝑖) = 1 − 𝑑𝑑𝑖𝑖𝑠𝑠(𝑖𝑖)
𝑑𝑑𝑖𝑖𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

                                                                                                        (14) 

The overall weight parameter, considering degree-difference, residual energy, and edge 
degree is formulated as: 

𝑤𝑤 = 𝑤𝑤𝜑𝜑𝑖𝑖 + 𝑤𝑤2𝑆𝑆𝑖𝑖  + 𝑤𝑤3𝑒𝑒𝑑𝑑𝐸𝐸𝑒𝑒(𝑖𝑖)                                                                                                    (15) 

𝑤𝑤1, 𝑤𝑤2 and 𝑤𝑤3 are the normalized weights of each index. 

The clustering procedure is conducted as the following steps: 

• Wireless sensor network battery power level are initialized. Each sensor node 
calculates its energy consumption; 

• Within the transmission range 𝛼𝛼𝑚𝑚, each node sends message of the residual energy, 
hop count and network ID number to its neighbors. Meanwhile, the node receives the 
information and put it in the neighbor table; 

• With the distance measurements obtained by RSSI values, degree-difference 𝜑𝜑𝑖𝑖and 
the remaining energy 𝐸𝐸𝑒𝑒𝑖𝑖, and the normalized edge-degree 𝑒𝑒𝑑𝑑𝐸𝐸𝑒𝑒(𝑖𝑖) are calculated; 

• Adjust the weights for each factor according to the scenario. The node with the 
highest weight among all adjacent nodes is elected cluster head (the number of nodes 
in the cluster should be more than 4 and each node is connected to each other). 

After cluster head is selected, clustering can be done by taking in nodes within two hops 
distance away from the cluster head. After the clustering is done, the local maps are 
segmented and localization can be calculated using MDS-MAP by the cluster head.  

3.3 Heuristic merging strategy 
This section presents the improved heuristic strategy that helps two clusters merge when 
the energy hole on the boundary blocks necessary information. The previous merging 
scheme requires a sufficient number of common nodes in this phase. However, in an 
anisotropic network, energy holes often block the communication between clusters and 
neither the number of common nodes or distance measurements are enough for merging 
(as shown in Fig. 3). On the other hand, using the Dijkstra method to calculate the 
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shortest path causes a detour around the hole and the approximation will result in an 
aggregation of errors. Alternatively, we propose a heuristic method to explore virtual 
connectivity and calculate the Euclidean distance to compensate the merging condition. 

Cluster 1

Cluster 2

EH

 
Figure 3: Energy hole blocks communication between two clusters 

Fig. 3 shows an example of an energy hole, denoted as EH, on the border of two merging 
clusters. There are only two common nodes in the overlapping area. As described in Section 
2.2, in a 2-D plane if only two or less common nodes are found, the relaxed merging 
condition requires additional connectivity to be measured for two clusters to merge.  

A a heuristic method to solve this problem in the relaxed merging condition is proposed. 
As shown in Fig. 4, we consider there is an energy hole lying between two clusters 𝐶𝐶1 
and 𝐶𝐶2. Sensor node 𝑑𝑑1 ∈  𝐶𝐶1, s2 ∈  𝐶𝐶2 and 𝑑𝑑3 is unavailable because of the energy hole. 
c1 ∈  𝐶𝐶1  ∩ 𝐶𝐶2 is one common node in the overlapping area of two clusters. 𝑑𝑑1 = |𝑑𝑑1𝑐𝑐1| 
and 𝑑𝑑2 = |𝑑𝑑2𝑐𝑐1|, therefore so 𝑑𝑑2 should be lying on the arc of circle CS2  between  𝑑𝑑3 and 
𝑑𝑑3′, where CS1 ∩ CS2 = {𝑑𝑑3, 𝑑𝑑3′}. 
Now we explore the possibility of compensating a virtual connectivity 𝑑𝑑3. As shown in 
Fig. 4, we consider an estimation of distance measurement 𝑑𝑑3 required for merging 
condition when common nodes are not sufficient. And the equation can be expressed as: 

𝑑𝑑3 = �𝑑𝑑1
2 + 𝑑𝑑2

2 − 2𝑑𝑑1𝑑𝑑2𝑐𝑐𝑐𝑐𝑑𝑑 𝛼𝛼                                                                                            (16) 

As we can see the angle 𝛼𝛼 between 𝑑𝑑2𝑐𝑐1and 𝑑𝑑3𝑐𝑐1, and the angle 𝛽𝛽 between 𝑑𝑑3𝑐𝑐1and 𝑑𝑑4𝑐𝑐1, 
𝑑𝑑4 is where 𝑑𝑑3 =  𝑑𝑑1 + 𝑑𝑑2 should satisfy: 𝛼𝛼 < 180°.Otherwise, if 𝛼𝛼 > 180°. Then, 𝑑𝑑1, 𝑑𝑑2′ 
is not blocked and can be measured. Therefore, the equation can be expressed as: 

𝛼𝛼 = 𝜋𝜋 − 𝛽𝛽                                                                                                                                         (17) 
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Figure 4: Heuristic connectivity compensation over energy hole 

Assuming that 𝑑𝑑2 lies on the middle of arc 𝑑𝑑3, 𝑑𝑑4 , the equation can be expressed as: 

𝛼𝛼 = 𝑐𝑐𝑐𝑐𝑑𝑑−1 �𝑑𝑑1
2+𝑑𝑑22−𝑑𝑑32

2∙𝑑𝑑1∙𝑑𝑑2
�                                                                                                              (18) 

∠𝑑𝑑2𝑐𝑐1𝑑𝑑3 = ∠𝑑𝑑2𝑐𝑐1𝑑𝑑4                                                                                                                        (19) 

∠𝑑𝑑2𝑐𝑐1𝑑𝑑3 = 1
2
𝑑𝑑3𝑐𝑐1𝑑𝑑4 = 1

2
𝛽𝛽 = 1

2
(𝜋𝜋 − 𝛼𝛼)                                                                                      (20) 

∠𝑑𝑑1𝑐𝑐1𝑑𝑑2 = 𝛼𝛼 + 1
2

(𝜋𝜋 − 𝛼𝛼) = 𝜋𝜋
2

+ 1
2
𝛼𝛼                                                                                          (21) 

  𝑑𝑑3 = �𝑑𝑑1
2 + 𝑑𝑑2

2 − 2𝑑𝑑1𝑑𝑑2𝑐𝑐𝑐𝑐𝑑𝑑 𝛼𝛼 

         = �𝑑𝑑1
2 + 𝑑𝑑2

2 − 2𝑑𝑑1𝑑𝑑2𝑐𝑐𝑐𝑐𝑑𝑑 �
𝜋𝜋
2

+
1
2
𝛼𝛼� 

     = �𝑑𝑑1
2 + 𝑑𝑑2

2 − 2𝑑𝑑1𝑑𝑑2𝑑𝑑𝑖𝑖𝑛𝑛 �
1
2
𝛼𝛼�                                                                                          (22) 

Therefore, 𝑑𝑑3 is constructed and can be used as additional connectivity information on 
the border. The relaxed merging condition is met.  

3.4 The complete MDS-MAP (CH) algorithm 
This subsection presents the improved MDS-MAP (CH) localization algorithm for WSNs 
with energy holes by utilizing the schemes mentioned in previous subsetion 3.1~3.3 and 
the work flow of the new algorithm is shown in Fig. 5. 
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Figure 5: The flowchart of MDS-MAP (CH) algorithm   

4 Experimental results and analysis 
In order to evaluate the performance of MDS-MAP (CH) algorithm, we simulate a WSN 
system with Matlab and compare the performance of the proposed algorithm with the 
classical MDS-MAP algorithm and the improved MDS-MAP (P). The average estimation 
error 𝐸𝐸 in the Eq. (21) is used as an index for evaluating the localization error of the algorithm. 

𝐸𝐸 = (∑ ‖𝑥𝑥𝑒𝑒𝑠𝑠𝑒𝑒(𝑖𝑖)− 𝑥𝑥𝑟𝑟𝑒𝑒𝑎𝑎𝑒𝑒(𝑖𝑖)‖2𝑛𝑛
𝑖𝑖=1 )′ (𝑛𝑛 × 𝛼𝛼)⁄   (23) 

where 𝑥𝑥𝑒𝑒𝑠𝑠𝑒𝑒(𝑖𝑖) denotes the estimated coordinates of the node 𝑖𝑖 and 𝑥𝑥𝑟𝑟𝑒𝑒𝑎𝑎𝑒𝑒(𝑖𝑖) represents the 
real coordinates of the node 𝑖𝑖, and 𝛼𝛼 is the communication range. 

4.1 Analysis of performance in uniform network 
We first consider the performance of our algorithm in a uniformly deployed situation 
regarding error and energy consumption. We assume a sensor network randomly 
deployed on a square area and the anchor nodes are scattered randomly around the edges. 
Path loss is set to a fixed value. The influence of node density and residual energy is 
relatively lager than other factors. Therefore the order of weight factor should be 
𝜑𝜑𝑖𝑖 > 𝑆𝑆𝑖𝑖 > 𝑒𝑒𝑑𝑑𝐸𝐸𝑒𝑒(𝑖𝑖). According to the weight calculation method of the centroid weights 



 
 
 
An Improved MDS-MAP Localization Algorithm Based on Weighted Clustering        239 

[Edwards, Stillwell and Seaver (1981)], the calculated weighted results are 0.61, 0.278, 
and 0.112. The node performance parameters are shown in Tab. 1. 

Table 1: Parameter dataset 

Parameter Value 
Terrain 
Initial energy of node 

(𝟐𝟐𝟐𝟐𝟐𝟐 × 𝟐𝟐𝟐𝟐𝟐𝟐)𝐦𝐦𝟐𝟐 
0.5 J 
50 𝐧𝐧𝐧𝐧 𝐛𝐛𝐛𝐛𝐛𝐛⁄  
10 𝐩𝐩𝐧𝐧 �𝐛𝐛𝐛𝐛𝐛𝐛 ∙ 𝐦𝐦𝟐𝟐�⁄  
5 𝐧𝐧𝐧𝐧 𝐛𝐛𝐛𝐛𝐛𝐛⁄  
5 𝐁𝐁𝐁𝐁𝐛𝐛𝐁𝐁 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐁𝐁𝐛𝐛⁄  

Path loss of transmit circuit 
Amplification factor 
Energy loss of fusion data 
Packet length 

We assume that there are 100 ordinary nodes randomly deployed on a 2-D plane and the 
average network connectivity is 10. There are four anchor nodes and the ranging error is 
10%. Fig. 6(a) shows the relative coordinates of nodes after all clusters are merged where 
the circles denote the ordinary nodes and the diamonds denotes the anchor nodes. Fig. 6(b) 
displays the global absolute coordinates which were transformed from the map in Fig. 6(a) 
by rotation and translation with the aids of anchor nodes. Fig. 6(c) is a comparison 
between the estimated position (denoted by circles) calculated by the MDS-MAP (CH) 
algorithm, and the actual position (denoted by an asterisk). The average estimation error 
is around 30% in this case, which can be reduced with the increase of connectivity and 
the number of anchor nodes and simulation results are illustrated later. 

 (a) Relative map (b) Adjusted global map  (c) Estimation error 

Figure 6: Localization estimation in a uniformly distributed network 

The performance regarding energy consumption in large-scale networks of the proposed 
method is compared with the classical MDS-MAP algorithm. As shown in Fig. 7, after over 
100 trails for both algorithms, the new method is significantly superior to the MDS-MAP 
algorithm in terms of energy consumption and residual energy, and the energy level can be 
maintained at a high level within the first two hundred runs. Simulation result shows that 
when the density goes higher, the energy decays faster. However, the proposed method 
maintains a stable energy decay speed as the residual energy level goes lower. 
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Figure 7: Comparison of algorithms in average residual energy level 

4.2 Effect of anchor percentage  
We assume that the percentage of anchor nodes are 4%, 6%, 10% and 20% respectively 
in Figs. 8(a)-8(d), and the average connectivity are adjusted by changing the transmission 
ranges. The degrees of connectivity are adjusted from 7 to 30 and the growth step is 3. 
Comparison of the classical MDS-MAP algorithm, the improved MDS-MAP (P) 
algorithm and the proposed MDS-MAP (CH) algorithm are conducted regarding to 
average estimation error after 50 simulations. When the degree of connectivity is less 
than 8, the proposed MDS-MAP (CH) algorithm significantly outperforms others. With 
the increase of connectivity degree, the average estimation error of all the algorithms 
decreases. As shown in Fig. 8. The performance of the other two algorithms can catch up 
by the increasing the degree of connectivity, but at the cost of introducing redundancy 
and consuming more energy.  
With the increase of the number of anchor nodes, as shown in Fig. 8(a) to Fig. 8(d), the 
localization accuracy of the algorithm goes higher. The average estimation error of the 
MDS-MAP (CH) algorithm proposed in this paper under each degree of connectivity is 
smaller than the other two algorithms and the localization results are better. 
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(a) Anchor percentage =4% 

 
(b) Anchor percentage =6% 

 
(c) Anchor percentage =10% 

 
     (d) Anchor percentage =20% 

Figure 8: Performance comparison under different anchor percentage  

4.3 Effect of different network patterns 
In this subsection, the effect of two typical anisotropic network patterns where our MDS-
MAP (CH) algorithm is applied are studied. When calculating the virtual connectivity 
over the energy holes, two patterns are analyzed here: O-shape in Figs. 9(a)-9(b) and H-
shape in Figs. 9(c)-9(d). Hop density is assumed to be 10/100 m2, the anchor percentage 
is 20%. We can see the performance in terms of error in Fig. 9, where the estimated 
position (denoted by circles) calculated by localization algorithm and the actual position 
(denoted by an asterisk), that compared with MDS-MAP (P) the MDS-MAP (CH) 
localization result is more accurate. Evaluating the performance with Eq. (23) and the 
error can be improved by 30-40% compared to MDS-MAP (P). 
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           (a) O-shape network using MDS-

MAP(P) 

 
(b) O-shape network using MDS-

MAP(CH) 

 
           (c) H-shape network using MDS-

MAP (P) 

 
         (d) H-shape network using MDS-

MAP(CH) 

Figure 9: Comparison of error using our algorithm and MDS-MAP (P) 

5 Conclusions and future work 
In this paper, we proposed a MDS-MAP (CH) localization algorithm that aims at 
balancing energy consumption, reducing communication costs and lowering merging 
demand for an anisotropic network with energy holes. Because the cluster heads 
determine the performance of the algorithm, the authors proposed a weight-based 
clustering scheme. In this clustering scheme, with graph topology feature and energy load 
regarded as weighting factors, which can be adjusted flexibly according to realistic 
systems. The heuristic method is used to estimate missing distance information and 
compensate common nodes set to thus improve the merging rule. Experimental results 
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show that the MDS-MAP (CH) algorithm performs better than the existing algorithms in 
higher accuracy and lower energy overhead, and suits well in practical large-scale 
network scenarios. In the future, a lot of our effort will be focusing on further increasing 
the accuracy of the heuristic merging method and a more dynamic weighted clustering 
strategy when considering energy level and topology vary at different time. 
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