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Abstract: In this paper, a reliable stochastic numerical analysis for typhoid fever 
incorporating with protection against infection has been considered. We have compared 
the solutions of stochastic and deterministic typhoid fever model. It has been shown that 
the stochastic typhoid fever model is more realistic as compared to the deterministic 
typhoid fever model. The effect of threshold number T* hold in stochastic typhoid fever 
model. The proposed framework of the stochastic non-standard finite difference scheme 
(SNSFD) preserves all dynamical properties like positivity, bounded-ness and dynamical 
consistency defined by Mickens, R. E. The stochastic numerical simulation of the model 
showed that increase in protection leads to low disease prevalence in a population. 
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1 Introduction 
Typhoid is consequent of a disease with similar symptoms called typhus. The cause of this 
endemic disease is highly virulent bacterium Salmonella typhi. This bacterium spread 
through contaminated water and carrier of this bacterium. The symptoms of the typhoid 
are sustained fever, very poor appetite, vomiting, severe headache and fatigue. Typhoid 
has an incubation period of 7 to 14 days. The germ lives in the intestine of the patient which 
is its natural habitat. The multiple mononuclear phagocytic cells are added into the 
bloodstream [Cai and Li (2010); Nthiiri, Lawi, Akinyi et al. (2016)]. Treatment of typhoid 
depends upon the blood culture of the patient. When the strain is sensitive amoxicillin, 
chloramphenicol is given orally. In the asymptomatic carrier, the oral dose of ciprofloxacin 
or norfloxacin is used to wipe out the problem. It has become difficult to treat by antibiotics 
throughout the world because of multi-drug resistant strain. In many countries, the goal of 
wiping out the disease can only be achieved by providing healthy pure water, safe, sanitary 
conditions, healthy food and above-mentioned medical facilities. Although it is tough to 
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achieve this goal, these steps may minimize or blot out the disease. The public can be made 
conscious after having health educational programs which change the behaviour towards 
the precautions and treatment of the disease. Millions of people across the world are being 
affected by typhoid every year. According to many surveys, every year about 20 million 
cases are reported, and approximately 200,000 are deceased annually. According to a survey 
in Africa, 50/100,000 people are dying because of typhoid, where 400,000 cases are reported 
annually [Cvjetanovic, Grab and Uemura (1971); Regan, Kelly, Korobeinikov et al. (2010)]. 
Currently, oral and injectable vaccines are being used to treat typhoid, but these two are not 
enough to treat the disease. If the infected person is treated with drug-resistant strain, then it 
can reduce the duration of illness. Many mathematical models designed have been used to 
explain and analysis the dynamics of infectious disease. Ordinary differential equations are 
formulated in the presence of many assumptions and parameters. 
The amount of newly infected folks is voiced as a role of the infectious and susceptible folks 
in a municipal within a given time in this model. The age edifices of the populace are 
established, which enables more detailed simulation of the upshot of various intercessions 
and tactics to control the disease in diverse age groups. The study indicates that once the 
incidence rate of the contagion has collapsed underneath the threshold quantity. It cannot be 
sustained in a community owed to the loss of the core source of infection long-lasting hailers 
as they die out unsurprisingly. The Mathematical model for transmission dynamics of 
typhoid is developed in demand to evaluate the budding, straight and incidental possessions 
of vaccination. The model is validated against randomized serum prosecutions. It is evaluated 
on school-based vaccination strategies, and it is discovered that typhoid vaccination is 
projected to lead a short-term incidental fortification and decrease in typhoid frequencies. 
However, vaccination alone is questionable lead to the elimination of typhoid. Mutually short 
and long-term shippers contribute to transmission but not necessarily at the same rate as 
primary infections [Cui, Tao and Zhu (2008)]. 
A simple mathematical model is developed by direct and indirect protection by vaccine 
and the benefits of the generic vaccination program. The population is divided into 
vaccinated, and the unvaccinated subgroups and its effectiveness redefined. It is found that 
vaccination reduces the number of susceptible to infection and fewer infected individuals 
spread the disease among vaccinated and unvaccinated persons. A mathematical model on 
the influence of control strategies to successfully control the drain of the upshot of shippers 
on the typhoid fever in Kisii town is developed and analyzed. This model showed the 
dynamics of typhoid fever by verbalizing and scrutinizing the bearing of hauliers, verdict 
and health education on typhoid hauliers’ control in Kenya [Triampo, Baowan, Tang et al. 
(2007)]. The model considered that exposed individuals developed the typhoid fever due 
to endogenous renaissance and exogenous re-infection. The investigation exertion allows 
the latent and infectious period to have a dispersal other than the exponential. Numerical 
results show that dipping the typhoid shippers by 9.5% could contribution Kisii county 
regime in Kenya to accomplish a typhoid free spot by 2030 [Holt, Davis and Leirs (2006)]. 
Mathematical modelling has emerged as an effective tool to extract comprehensive insight 
knowledge about epidemic diseases. The formation of the model and the possible 
simulations allow for scrutinising the sensitivity and comparison of conjuncture patterns. 
As a result, the prediction of mediator, host and ecological factor affecting public health is 
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possible, and health policymakers can scientifically suggest and implement health services 
[Anwar, Goldberg, Fraser et al. (2014)]. Several studies have been conducted on various 
models of typhoid fever transmission dynamics [Cai and Li (2010); Nthiiri, Lawi, Akinyi 
et al. (2016)]. It is well-known that nonlinear initial value problems (IVPs) do not always 
possess analytical solutions. The available classical explicit finite-difference schemes such 
as Euler Maruyama, stochastic Euler and stochastic Runge-Kutta methods can bring about 
perplexing chaos and deceiving oscillations for specific concentrations of the discretization 
parameters [Zafar, Rehan and Mushtaq (2017); Zafar, Rehan, Mushtaq et al. (2017); Zafar, 
Rehan and Mushtaq (2017); Bayram, Partal and Buyukoz (2018)]. Due to these reasons 
and some other schemes dependent numerical instabilities such methods proved to be less 
fortunate options. 
In general, the elasticity of stochastic differential equations (SDEs) are difficult, and the 
solutions of stochastic differential equations do not exist explicitly. We use different 
numerical schemes to integrate these equations in sagacity of convergence is difficult 
[Mickens (1994); Mickens (2005); Cresson and Pierret (2014); Pierret (2015)]. A natural 
question on numerical schemes can be the following despite convergence analysis: Do the 
numerical schemes preserve the dynamical properties of the initial system [Mickens (2005)]. 
In the deterministic modelling, we have pragmatic usual numerical schemes Euler and 
Runge-Kutta do not preserve dynamical properties. However, in stochastic case, the Euler 
Maruyama scheme, stochastic Euler scheme and stochastic Runge-Kutta scheme do not 
preserve the dynamical properties. Here the question arises: Can we construct a stochastic 
numerical scheme which preserves all dynamical properties? 
The main theme of this paper is to introduce the idea of stochastic nonstandard finite 
difference scheme (SNSFD) based on the rules introduced in the deterministic case by 
[Mickens (1994, 2005)]. 
The strategy of this paper as follows: 
In Section 2, we review classical definitions and some history of stochastic differential 
equations (SDEs) calculus. In Section 3, we instruct the invention of stochastic epidemic 
models. In Section 4, we discuss the deterministic typhoid fever model and equilibrium 
points. In Section 5, we discover the stochastic typhoid fever model. In Section 6, we will 
introduce the different stochastic numerical schemes and linked their result with 
deterministic solutions. In Section 7, we will conclude and will give the future directions.  

2 Preliminaries 
Einstein gave the idea of stochastic differential equations (SDEs) in (1905) and a 
mathematical gathering between microscopic random motion of particles and the 
macroscopic diffusion equation [Gard (1988); Karatzas and Shreve (1991); Platen (1991); 
Mickens (2005); Allen (2007); Britton (2010)]. Today the SDEs are fascinating many 
attentions due to physical expansions in real life system because the ordinary differential 
equations (ODEs) did not include random apprehension forcing and stochastic inputs. A 
stochastic calculus distributes a mathematical constituent for the manner of stochastic 
differential equations (SDEs). In general form, we can write the stochastic differential 
equation that comprises parameters. Continuous time t and variable Tt, as follows: 
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 dTt = u(t, Tt)dt + v(t, Tt)dB(t).                (1) 
moreover, the integral form is  

 T(t) = c + ∫ u(s, Ts)dst
to

+ ∫ v(s, Ts)dBs
t
to

.              (2) 

The differential equation (1) is also called the Ito stochastic differential equation (SDE) 
where u(t, Tt) and v(t, Tt) are drift and diffusion coefficients respectively. The casual 
variable c is called the initial value at the instant to. A solution Tt of Eqs. (1) or (2) is called 
a stochastic process. 

2.1 Brownian motion 
The Brownian motion can be defined as a continuous time haphazard walk with the 
following properties [Gard (1988); Oksendal (2003)]. 
(i) B0 = 0. 
(ii) Bt  must be continuous, the event happens with probability one. The sample 

trajectories t → Bt are continuous with probability one. 
(iii) For any finite sequence of times t1 < t2 < t3 … < tn then the following paths 

Bt1 − Bto , Bt2 − Bt1 , Bt3 − Bt2 … , Btn − Btn−1  are independent. 
(iv) For any times 0 ≤ s ≤ t, Bt − Bs  is normally distributed with mean zero and 

variance is t − s . In particularly we say that expectation of [Bt − Bs] =
0 and variance of [Bt − Bs] = t − s. 

The stochastic process is a fundamental example of Brownian motion. The study of 
stochastic epidemic model based on stochastic modelling processes, but the stochastic 
modelling process is a grouping of random variables {Tt(S) tϵT⁄ , sϵS}, where T the guide 
is set and S is a joint sample space. The guide set may often personify time such as T =
{0,1,2, … } or T = [0,∞). So, the time may have discrete or continuous. The study of 
stochastic modelling processes is based on probability theory. We will describe the 
stochastic epidemic modelling processes in three different ways such as DTMC (Discrete 
Time Markov Chain) epidemic models, CTMC (Continuous Time Markov Chain) 
epidemic models and SDEs (Stochastic Differential Equations) epidemic models [Shoji 
and Ozaki (1997); Shoji and Ozaki (1998)]. We will assume the time and the state variables 
are discrete in discrete time Markov chain (DTMC) epidemic models and the time is 
continuous, and the state variables are discrete in continuous time Markov chain (CTMC) 
epidemic models. We will assume both time and variables as continuous in stochastic 
differential equations (SDEs) epidemic models. Now! We will discuss Ito stochastic 
differential equations (SDEs) in stochastic epidemic models. It was first introduced and 
developed by Ito in 1942. In order to illustrate the development of the stochastic process is 
almost in all sciences such as economics, mathematics, physics, chemistry and biology. 
Due to their non-differentiable character of realization of the Brownian motion, the 
solutions of stochastic differential equations (SDEs) are not given explicitly. So! The 
stochastic numerical approximation is used to study the properties of stochastic epidemic 
models [Maruyama (1955); Kloeden and Platen (1992); Kloeden, Platen and Schurz (1994); 
Bayram, Partal and Buyukoz (2018)]. 
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3 Construction of stochastic epidemic models 
Epidemics are usually twisted by non-linear systems pragmatic through patchy noisy data. 
The epidemic models can be divided into two main types such as deterministic epidemic 
models and stochastic epidemic models. The deterministic epidemic models do not 
preserve the natural uncertainty of disease dynamics, but the idea of stochastic epidemic 
models preserves all types of the uncertainty of disease dynamics. There are numerous 
conducts to diffuse the deterministic epidemic models to stochastic epidemic models [Allen, 
Allen, Arciniega et al. (2008)]. The stochastic epidemic modelling has been done by 
discrete time Markov chain (DTMC), continuous time Markov chain (CTMC) and Ito 
stochastic differential equations (SDEs). Consequently! The idea of Ito stochastic 
differential equations gives a more opportune way to move from deterministic epidemic 
models to stochastic epidemic models. The idea of Ito stochastic differential equation can 
be pronounced by the following methods such as parametric perturbation and non-
parametric perturbation methods. In parametric perturbation method, we will choose a 
parameter from the model and transformed into random variables of the model. In non-
parametric perturbation method, we will introduce the Brownian processes in each 
differential equation (or introduce the extra stochasticity parameters). The non-parametric 
perturbation method is more useful as compared to parametric perturbation method. 
Another way of non-parametric perturbation method is introduced by Allen [Karatzas and 
Shreve (1991); Platen (1991); Allen and Burgin (2000); Holt, Davis and Leirs (2006); 
Allen (2007); Britton (2010)] in which any extra stochasticity parameters is not introduced 
in the model. Here we will frame the ways of non-parametric perturbation method in 
deterministic epidemic models and use different numerical methods to prompt them and 
check the efficiency of numerical methods on stochastic epidemic models. We will observe 
the association between the solutions of deterministic epidemic models and stochastic 
epidemic models. 

4 Deterministic typhoid fever model 
Figures and tables should be inserted in the text of the manuscript. 
In this segment, we consider the deterministic typhoid fever model incorporating with 
protection against infection [Nthiiri, Lawi, Akinyi et al. (2016)]. Let at any arbitrary time 
t , the variables are stated as T1(t)  exemplifies protected humans’ fraction, T2(t) 
exemplifies susceptible humans’ fraction, T3(t) exemplifies infected humans’ fraction and 
T4(t) exemplifies treated humans’ fraction. The communication dynamics of typhoid fever 
model as shown in Fig. 1. 
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Figure 1: Flow diagram of typhoid fever model 

The model parameters are pronounced as β (pronounces rate of treated humans from 
infected humans fraction), α (pronounces the enrolment rate into the conference of 
protected humans against typhoid), (1 − α) (pronounces the rate of those humans who 
have chances to get virus), δ (pronounces the transience rate of humans by typhoid fever), 
θ  (pronounces the susceptible humans acquire typhoid fever infection at per capita rate), 
μ (pronounces the natural rate of death/birth of humans). 
The governing equations of the typhoid fever model are given below as  

 

dT1(t)
dt

= αμ − (γ+ µ)T1(t)                                             
dT2(t)
dt

= (1 − α)μ + γT1(t)− θT2(t)T3(t)− μT2(t)
dT3(t)
dt

 = θT2(t)T3(t)− (δ + β + µ)T3(t)                   
dT4(t)
dt

 = βT3(t)− µT4(t)                                                ⎭
⎪⎪
⎬

⎪⎪
⎫

             (3) 

where the constant size of total humans under as  
 T1(t) + T2(t) + T3(t) + T4(t) = 1.               (4) 

4.1 Steady states of the typhoid fever model  
The steady state of typhoid fever model (3) can be categorized into two ways of equilibrium 
points under as  

 Disease-free equilibrium is D1
∗ = (T1o, T2o, T3o, T4o) = � αμ

γ+µ
, (γ+µ)(1−α)μ+γαμ

μ(γ+µ) , 0,0�. 

 Endemic equilibrium is E1∗ = (T1o, T2o, T3o, T4o).  
 E1∗ =
� αμ
γ+µ

, δ+β+µ
θ

, (γ+µ)(1−α)μθ+γαμθ−μ(δ+β+µ)(γ+µ)
θ(δ+β+µ)(γ+µ) , β[(γ+µ)(1−α)μθ+γαμθ−μ(δ+β+µ)(γ+µ)]

µθ(δ+β+µ)(γ+µ) �. 

where T∗ = θ(γ+µ−αμ)
(δ+β+µ)(γ+µ). 
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Note that T∗ is the reproductive number of the typhoid fever model (3). The reproductive 
number has a vital role in disease dynamics. If the reproductive number T∗ < 1 then this 
strategy helps us to control the disease and if T∗ > 1 then this will be an alarming situation 
of disease in the population. 

5 Stochastic typhoid fever model 
Let T(t) = [T1(t), T2(t), T3(t), T4(t), T5(t)]T  to form the stochastic differential equations 
(SDEs) of typhoid fever model (1). We want to calculate the expectations  E∗[∆T] and 
E∗[∆T∆TT] to find these expectations the possible changes along with their associated 
transition probabilities are listed in the following (see Tab. 1). 

Table 1: Possible changes in the process for the typhoid fever model (3) 

Transition Probabilities 
 (∆Z)1 = [1,0,0,0]T     P1 = αμ ∆t.              
 (∆Z)2 = [−1,1,0,0]T  P2 = γT1(t)∆t.    
 (∆Z)3 = [−1,0,0,0]T  P3 = μT1(t)∆t.   
 (∆Z)4 = [0,1,0,0]T     P4 = (1 − α)μ∆t.  
 (∆Z)5 = [0,−1,1,0]T  P5 = θT2(t)T3(t)∆t. 
 (∆Z)6 = [0,−1,0,0]T  P6 = μT2(t)∆t.            
 (∆Z)7 = [0,0,−1,0]T      P7 = (δ + µ)T3(t)∆t.   
 (∆Z)8 = [0,0,−1,1]T  P8 = βT3(t)∆t.         
 (∆Z)9 = [0,0,0,−1]T   P9 = µT4(t)∆t.           

The expectation of typhoid fever model (3) is defined as 
 E∗[∆T] = ∑ Pi9

i=1 (∆T)i. 

 Expectation =E∗[∆T] =

⎣
⎢
⎢
⎡

αμ − (γ + µ)T1(t)
(1 − α)μ + γT1(t)− θT2(t)T3(t)− μT2(t)

θT2(t)T3(t)− (δ + β + µ)T3(t)
βT3(t) − µT4(t) ⎦

⎥
⎥
⎤
∆t. 

The variance of typhoid fever model is defined as Var=  E∗[∆T∆TT] =
∑ Pi9
i=1 [(∆T)i][(∆T)i]T. 

 E∗[∆T∆TT] = �

W11
W21
W31
W41

W12
W22
W32
W42

W13
W23
W33
W43

W14
W24
W34
W44

� ∆t. 

where, 
W11 = αμ + (γ+ µ)T1(t) , W12 = −γT1(t) ,   W13 = 0W14 = 0 , W21 = −γT1(t) , W22 =
(1 − α)μ + γT1(t) + θT2(t)T3(t) + μT2(t) , W23 = −θT2(t)T3(t)  W24 = 0, W31 =
0 , W32 = −θT2(t)T3(t), W33 = θT2(t)T3(t) + (δ + β + µ)T3(t) , W34 = −βT3(t)W41 =
0, W42 = 0, W43 = −βT3(t) and W44 = βT3(t) + µT4(t). 
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The stochastic differential equation satisfies the diffusion processes, So 
dT(t)
dt

= G(T(t), t) + H(T(t), t) dB(t)
dt

. 

If we define drift = G(T(t), t) = E∗[∆T]
∆t

 and diffusion = H(T(t), t) = �E∗[∆T∆TT]
∆t

 , then 
the stochastic differential equation of typhoid fever model (3) is  
 dT(t) = G(T(t), t)dt + H(T(t), t)dB(t).              (5) 
with initial conditions T(0) = To = [0.2,0.4, 0.3, 0.1]T , 0 ≤ t ≤ T and B(t)  is the 
Brownian motion. 

5.1 Euler maruyama scheme 
Here we use Euler Maruyama scheme [Maruyama (1955)] to find the numerical solution 
of SDEs (5) by using the parameters values given in literature [Nthiiri, Lawi, Akinyi et al. 
(2016)] (see Tab. 2). 

Table 2: Values of Parameter 
 

Parameters 
Values (Days) 
DFE EE 

μ 0.0044 0.0044 
θ 0.1 10 

δ 0.005 0.005 
α 0.8 0.8 
β 0.9 0.9 
γ 0.1 0.1 
σ1 0.09 0.09 
σ2 0.08 0.08 
σ3 0.07 0.07 
σ4 0.06 0.06 

We can write the Euler Maruyama scheme of SDEs (5) is  
 𝑇𝑇𝑛𝑛+1 = 𝑇𝑇𝑛𝑛 + 𝑓𝑓(𝑇𝑇𝑛𝑛, 𝑡𝑡)Δ𝑡𝑡 + 𝐿𝐿(𝑇𝑇𝑛𝑛, 𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡). 
where ‘Δ𝑡𝑡’ is time step size. The solution of SDEs lies in confidence interval for both 
disease-free equilibrium and endemic equilibrium as shown in numerical experiments. The 
solution of deterministic typhoid fever model for the disease-free equilibrium 𝐷𝐷1∗ =
(0.0332,0.9663,0,0) and the reproductive number helps us to control this infection in 
human’s population. The endemic equilibrium 𝐸𝐸1∗ =
(0.0332, 0.09094, 0.004235, 0.8666) and the reproductive number shows that disease is 
endemic in human’s population. The graphical behaviour of Euler Maruyama scheme for 
both disease-free equilibrium and endemic equilibrium at different sub populations as 
shown in figures. 
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       (a)      (b) 

 
      (c)      (d) 

Figure 2: Comparison in solutions of euler maruyama and deterministic (a) Susceptible 
humans fraction  at DFE Point for h=0.01 (b) Susceptible humans fraction at DFE Point for 
h=4 (c) Protected humans fraction at EE Point for h=0.01 (d) Protected humans fraction at 
EE Point for h=20 

5.2 Non-parametric perturbation of stochastic typhoid fever model  
Another way to construct the stochastic differential equations (SDEs) from the 
deterministic ordinary differential equations (ODEs) is to introduce the non-parametric 
perturbation in each differential equation of typhoid fever model (3) as 

 

dT1(t) = �αμ − (γ + µ)T1(t) + σ1dB1(t)T1(t)�dt                                             
dT2(t) = �(1 − α)μ + γT1(t)− θT2(t)T3(t)− μT2(t) + σ2dB2(t)T2(t)�dt
dT3(t) = �θT2(t)T3(t)− (δ + β + µ)T3(t) + σ3dB3(t)T3(t)�dt                   
dT4(t) = �βT3(t)− µT4(t) + σ4dB4(t)T4 (t)�dt                                                ⎭

⎪
⎬

⎪
⎫

          (6) 

with initial conditions T(0) = [T1(0), T2(0), T3(0), T4(0)]T = [0.2,0.4, 0.3, 0.1]T, where 
σ1,σ2,σ3 and σ4 is stochasticity of each compartment of the typhoid fever model and 
Bj(t), (j = 1,2,3,4)  are the independent Brownian motions. The non-parametric 
perturbation of stochastic typhoid fever model does not have the explicit solution due to a 
non-differentiability term of Brownian motion. So, we introduced some new stochastic 
numerical methods to find the solution of stochastic typhoid fever model (6). 
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5.2.1 Stochastic euler scheme 
The stochastic Euler scheme can be derived from the above non-parametric perturbation of 
stochastic typhoid fever model (6) as 
 
T1n+1(t) = T1n(t) + h[αμ − (γ + µ)T1n(t) + σ1dB1(t)T1n(t)]                                                      
T2n+1(t) = T2n(t) + h[(1 − α)μ + γT1n(t) − θT2n(t)T3n(t) −  μT2n(t) + σ2dB2(t)T2n(t)]
T3n+1(t) = T3n(t) + h[θT2n(t)T3n(t) − (δ + β + µ)T3n(t) + σ3dB3(t)T3n(t)]                       
T4n+1(t) = T4n(t) + h[βT3n(t)− µT4n(t) + σ4dB4(t)T4n(t)]                                                        ⎭

⎪
⎬

⎪
⎫

                   (7) 
where “h” is any time step size. We pretend the solution of stochastic Euler scheme by 
using the Matlab program and parameters values given in Nthiiri et al. [Nthiiri, Lawi, 
Akinyi et al. (2016)] (see Tab. 2). 

 
       (a)      (b) 

 
       (c)      (d) 
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Figure 3: Comparison in solutions of stochastic euler and deterministic (a) Susceptible 
humans fraction  at DFE Point for h=0.01 (b) Susceptible humans fraction at DFE Point for 
h=3 (c) Protected humans fraction at EE Point for h=0.01 (d) Protected humans fraction at 
EE Point for h=5 (e) Infected humans fraction at EE Point for h=0.01 (f) Infected humans 
fraction at EE Point for h=0.6 

5.2.2 Stochastic runge-kutta scheme 
The stochastic Runge-Kutta scheme can be derived from the above non-parametric 
perturbation of stochastic typhoid fever model (6) as 
First Stage 

A1 = h[αμ − (γ + µ)T1n(t) + σ1dB1(t)T1n(t)]. 
 B1 = h[(1− α)μ + γT1n(t) − θT2n(t)T3n(t)−  μT2n(t) + σ2dB2(t)T2n(t)]. 
 C1 = h[θT2n(t)T3n(t)− (δ + β + µ)T3n(t) + σ3dB3(t)T3n(t)]. 
 D1 = h[βT3n(t)− µT4n(t) + σ4dB4(t)T4n(t)]. 

Second Stage 

 A2 = h �αμ − (γ + µ)(T1n(t) + A1
2

) + σ1dB1(t)(T1n(t) + A1
2

)�. 

 B2 = h �(1− α)μ + γ �T1n(t) + A1
2
� − θ �T2n(t) + B1

2
� �T3n(t) + C1

2
� −  μ �T2n(t) +

            B1
2
� + σ2dB2(t)(T2n(t) + B1

2
)�. 

C2 = h �θ �T2n(t) +
B1
2
� �T3n(t) +

C1
2
� − (δ + β + µ) �T3n(t) +

C1
2
�

+             σ3dB3(t) �T3n(t) +
C1
2
��. 

 D2 = h �β �T3n(t) + C1
2
� − µ �T4n(t) + D1

2
� + σ4dB4(t) �T4n(t) + D1

2
��. 

Third Stage 

 A3 = h �αμ − (γ + µ)(T1n(t) + A2
2

) + σ1dB1(t)(T1n(t) + A2
2

)�. 
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 B3 = h �(1− α)μ + γ �T1n(t) + A2
2
� − θ �T2n(t) + B2

2
� �T3n(t) + C2

2
� −  μ �T2n(t) +

            B2
2
� + σ2dB2(t)(T2n(t) + B2

2
)�.  C3 = h �θ �T2n(t) + B2

2
� �T3n(t) + C2

2
� − (δ + β +

µ) �T3n(t) + C2
2
� +              σ3dB3(t) �T3n(t) + C2

2
��. 

 D3 = h �β �T3n(t) + C2
2
� − µ �T4n(t) + D2

2
� + σ4dB4(t) �T4n(t) + D2

2
��. 

Fourth Stage 
 A4 = h[αμ − (γ + µ)(T1n(t) + A3) + σ1dB1(t)(T1n(t) + A3)]. 
 B4 = h[(1 − α)μ + γ(T1n(t) + A3) − θ(T2n(t) + B3)(T3n(t) + C3) −  μ(T2n(t) +
             B3) + σ2dB2(t)(T2n(t) + B3)]. C4 = h[θ(T2n(t) + B3)(T3n(t) + C3)− (δ + β +
µ)(T3n(t) + C3) +             σ3dB3(t)(T3n(t) + C3)]. 
 D4 = h[β(T3n(t) + C3)− µ(T4n(t) + D3) + σ4dB4(t)(T4n(t) + D3)]. 

Final Stage 

 

T1n+1(t) = T1n(t) + �1
6
� [A1 + 2A2 + 2A3 + A4]

T2n+1(t) = T2n(t) + �1
6
� [B1 + 2B2 + 2B3 + B4]

T3n+1(t) = T3n(t) + �1
6
� [C1 + 2C2 + 2C3 + C4]

T4n+1(t) = T4n(t) + �1
6
� [D1 + 2D2 + 2D3 + D4]⎭

⎪⎪
⎬

⎪⎪
⎫

             (8) 

where “h” is any time step size. We pretend the solution of stochastic Runge Kutta scheme 
by using Mat-lab program and parameters values given in Nthiiri et al. [Nthiiri, Lawi, 
Akinyi et al. (2016)] (see Tab. 2). 
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Figure 4: Comparison in solutions of stochastic runge kutta and deterministic (a) 
Susceptible humans fraction at DFE Point for h=0.01 (b) Susceptible humans fraction at 
DFE Point for h=0.4 (c) Protected humans fraction at EE Point for h=0.01 (d) Protected 
humans fraction at EE Point for h=11 (e) Infected humans fraction at EE Point for h=0.01 
(f) Infected humans fraction at EE Point for h=5 

5.2.3 Stochastic NSFD scheme 
The proposed frame work of stochastic nonstandard finite difference scheme (SNSFD) can 
be derived from the above non-parametric perturbation of stochastic typhoid fever model 
(6) as 

  

T1n+1(t) = T1n(t)+ϕ(h)�αμ+σ1dB1(t)T1n(t)�
�1+ϕ(h)(γ+µ)�

                    

T2n+1(t) = T2n(t)+ϕ(h)�(1−α)μ+γT1n(t)+σ2dB2(t)T2n(t)�

�1+ϕ(h)θT3n(t)+ μϕ(h)�

T3n+1(t) = T3n(t)+ϕ(h)�θT2n(t)T3n(t)+σ3dB3(t)T3n(t)� 
�1+ϕ(h)(δ+β+µ)�

   

T4n+1(t) = T4n(t)+ϕ(h)�βT3n(t)+σ4dB4(t)T4n(t))� 
�1+µϕ(h)�

           ⎭
⎪
⎪
⎬

⎪
⎪
⎫

             (9) 
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where ϕ(h) = 1 − exp (−h) and "h" is any time step size. We pretend the solution of 
proposed frame work of stochastic nonstandard finite difference (SNSFD) scheme by using 
the Matlab program and parameters values given in Nthiiri et al. [Nthiiri, Lawi, Akinyi et 
al. (2016)] (see Tab. 2). 
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Figure 5: Comparison in solutions of stochastic NSFD and deterministic (a) Susceptible 
humans fraction at DFE Point for h=0.01 (b) Susceptible humans fraction at DFE Point for 
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h=1000 (c) Protected humans fraction at EE Point for h=0.01 (d) Protected humans fraction 
at EE Point for h=1000 (e) Infected humans fraction at EE Point for h=0.01 (f) Infected 
humans fraction at EE Point for h=1000 

6 Results and discussion  
In Fig. 2, it is observed that the Euler Maruyama scheme converges the steady states of the 
typhoid fever model while the deterministic solution is the mean of Euler Maruyama 
solution for descritezation h=0.01 at different sub population fractions. When the time step 
size is increased, the Euler Maryuama scheme fails to maintain positivity and boundedness 
for both disease free equilibrium and endemic equilibrium at different sub population 
fractions. Consequently, Euler Maryuama scheme does not work for any time step size. 
In Fig. 3, it is observed that the stochastic Euler scheme converges the steady states 
equilibrium while the deterministic solution is the mean of stochastic Euler solution for 
descritezation h=0.01 at different sub population fractions. When the time step size has 
been increased, the stochastic Euler scheme fails to maintain positivity and boundedness 
for both disease free equilibrium and endemic equilibrium at different sub population 
fractions. So, the stochastic Euler scheme is not a reliable technique to find the solutions 
of stochastic typhoid model. 
Fig. 4 shows that the stochastic Runge-Kutta scheme converges the disease free equilibrium 
and endemic equilibrium while the deterministic solution is the mean of stochastic Runge-
Kutta solution for descritezation h=0.01 at different sub population fractions respectively. 
When the time step size is increased as shown in Fig. 4, the stochastic Runge-Kutta scheme 
fails to maintain boundedness and positivity for both disease free equilibrium and endemic 
equilibrium at different sub population fractions. So, the stochastic Runge-Kutta scheme does 
not work for any time step size. Thus, the aforasaid stochastic schemes do not preserve all 
dynamical properities [Mickens (1994, 2005)]. 
In Fig. 5, it has been shown that the stochastic NSFD scheme converges both disease free 
equilibrium and endemic equilibrium while the deterministic solution is the mean of 
stochastic NSFD solution for any descritezation such as h=0.01 and h=1000 at different 
sub population fractions respectively. So, the stochastic NSFD scheme preserves all 
dynamical properties such as positivity, boundedness and dynamical consistency defined 
by R. E. Mickens in a stochastic context. The proposed frame work stochastic NSFD 
scheme works for any time step size.  

7 Conclusion and future frame work 
The numerical analysis for the stochastic epidemic model is a more convenient strategy as 
compare to deterministic epidemic model to understand the typhoid dynamics 
incorporating with protection against infection. The Euler Maruyama scheme, stochastic 
Euler scheme and stochastic Runge-Kutta scheme converges the true equilibrium points 
for very small-time step size, after increasing the time step size these schemes diverge and 
lose the dynamical properties such as positivity, bounded-ness and dynamical consistency. 
The proposed frame work of stochastic nonstandard finite difference scheme (SNSFD) of 
typhoid fever model works for any time step size defined by Mickens [Mickens (1994, 
2005)] in the stochastic framework. The above-mentioned frame work (SNSFD) is suitable 
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for all types of non-linear and complicated stochastic epidemic models. The stochastic 
solutions are very close to the deterministic ODEs solutions. The study of stochastic 
epidemic models plays a most important role in disease dynamics. We have observed that 
stochastic epidemic models are more realistic as compared to deterministic epidemic 
models. For future work, the proposed (SNSFD) can be implemented to the complicated 
stochastic delay epidemic models and stochastic diffusion epidemic models. The numerical 
analysis proposed in this work could also be extended to fractional order dynamical system 
[Jajarmi and Baleanu (2018); Jajarmi, Baleanu, Bonyah et al. (2018)]. Our future plan is to 
construct a reliable numerical scheme for the fractional order stochastic epidemic model 
for various infectious diseases. 
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