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Abstract: In ab initio molecular dynamics (AIMD) simulations of chemical reactions, it 
is important but difficult to identify the chemical species in the trajectory automatically 
and quickly. In this paper, based on the chemical graph theory, an algorithm for 
molecular species identification, according to the molecular coordinates and empirical 
bond length database, is presented. As an example, the chemical species in condensed 
glycine at room temperature are investigated with our algorithm in detail. The chemical 
species, including canonical and zwitterionic glycine, their protonated and de-protonated 
states, and the free protons, are all identified, counted and recorded correctly. Potential 
applications and further development of the algorithm are also discussed. 
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1 Introduction 
In the last decade, with the lasting improvement of computational simulation capabilities, 
quantum ab initio molecular dynamics simulations (AIMD) have become more and more 
important for the multidisciplinary studies of physical, chemical, biological and material 
science [Chin, Rood, Lin et al. (2000); Kühne (2014); Kohanoff (2006)]. One of the great 
advantages of AIMD simulations is the accurate representation of dynamical changes of 
chemical bonds, which is crucial for the understanding of micro-dynamics of any 
chemical reaction [Kühne (2014); Kohanoff (2006)]. 
In AIMD simulations, the chemical species, e.g., clusters of atoms with chemical bonding, 
keep varying. The identification and statistics of specific chemical species emerging in 
AIMD simulations are routine procedures for most of the reaction studies. For example, 
in the study initial clustering and aggregation of air pollution particles such as PM2.5 and 
the cloud condensation nuclei (CCN) from the sources of SO2, ammonia, water vapor, 
and even criegee intermediates, both the cluster size and isomer structure should be 
tracked step by step, for the understanding of the growth of the particles in the 
atmosphere with varying meteorological conditions [Wang, Huang, Gu et al. (2016); 
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Herb, Nadykto and Yu (2011); Zhu, Kumar, Zhong et al. (2016); Myerson and Trout 
(2013)]. In a physiological environment, some bonding (or non-bonding) between 
specific atoms in protein and DNA are crucial for the survival of a cell [Kohanoff, 
McAllister, Tribello et al. (2017); Gu, Smyth and Kohanoff (2014)].  
However, as far as we know, there is still no report on the algorithm of automatic 
identification, classification and statistics of the chemical species for AIMD simulations. In 
literatures, most of the related tasks are accomplished by artificial offline recognition snap 
by snap after the simulation [Wang, Huang, Gu et al. (2016); Gu, Smyth and Kohanoff 
(2014)]. AIMD is expected to be applied for large scale simulations with over million and 
more snaps recorded in the trajectory. There needs further guarantee on the unified criteria, 
accuracy and efficiency in these works. A standard and smart tool is needed for chemical 
clustering analysis of AIMD simulations [Kühne (2014); Kohanoff (2006)]. 
In this paper, based on the chemical graph theory [Pietrucci and Andreoni (2011); Dias 
and Milne (1992)], an identification algorithm for chemical species in AIMD simulation 
trajectory is presented. In Section 2, the algorithm, e.g., the manipulation of the 
connecting matrix (𝑅𝑅𝑐𝑐) according to an empirical bonding criteria database, is given in 
detail. In Section 3, taking the condensed glycine at room temperature as an essential 
example, the molecular structure variations from complete canonical states to the mixture 
of zwitterionic and canonical states is studied. Further potential applications and 
discussions are given at the end of the paper. 

2 The chemical species identification algorithm 
2.1 The essential problem 
In AIMD simulations, the elements of a system are atoms contained in the simulation cell. 
With the adiabatic approximation, the movements of the valence electrons are described 
with the time dependent many-body Schröedinger equations (SEs). In practice, the 
approximations such as Hatree-Fock (HF) and Density Functional Theory (DFT) of SE, 
are adopted to solve the SEs. The nucleus with core electrons are always regarded as 
classical mass points and described with the second Newton Law [Kühne (2014)]. 
In graph theory, a chemical species can be defined as a collection of bonded atoms. For a 
specific species, any atom is reachable from another one through chemical bond network. 
The chemical bonds mean stable and strong enough interactions between atoms, ions or 

molecules. Bonding interactions vary with atom species, local chemical arrangements and 
macro-circumstances such as temperature and pressure. To figure out the bond 
connections in the snaps of AIMD trajectory, the bonding criteria, e.g. the standard inter-
atomic distances, should be observed or calculated theoretically. As a starting point, an 
empirical database of bonding criteria can be established from the experimental 
measurements with techniques such as X-ray diffraction and NMR methods [Tjandra and 
Bax (1997)] for typical chemical species.  
For AIMD simulations, the coordinates of the atoms are available. The inter-atomic 
distances can be easily calculated from the atom coordinates. Therefor the connectivity 
matrix 𝑅𝑅𝑐𝑐(𝑁𝑁 × 𝑁𝑁) of the system, with 𝑁𝑁 atoms, can be defined based on the bonding 
criteria [Dias and Milne (1992); Pietrucci and Andreoni (2011)]. To this end, the essential 
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problem of chemical species identification is how to search and classify the local 
chemical bonding networks according to their topology information in the MD 
trajectories accurately and as quick as possible. 

2.2 Algorithm and its realization 
The flow diagram of our algorithm of chemical species recolonization is shown in Fig. 1. 
Before the configuration of the MD snap is loaded, the initial value of the connectivity 
matrix 𝑅𝑅𝑐𝑐(𝑁𝑁 × 𝑁𝑁) is set to be zero. Define the distance between the mass centers of a pair 

of atoms (the 𝑖𝑖-th and 𝑗𝑗-th atoms) as 𝑟𝑟(𝑖𝑖, 𝑗𝑗). If 𝑟𝑟(𝑖𝑖, 𝑗𝑗) ≤ 𝑟𝑟0(𝑖𝑖, 𝑗𝑗), the relevant elements of 
 𝑅𝑅𝑐𝑐  are set to be 𝑅𝑅𝑐𝑐(𝑖𝑖, 𝑗𝑗) = 𝑅𝑅𝑐𝑐(𝑗𝑗, 𝑖𝑖) = 1. Here, 𝑟𝑟0(𝑖𝑖, 𝑗𝑗) is the bonding criteria of the 𝑖𝑖-th 
and 𝑗𝑗-th atoms in the database. For convenience, the diagonal elements 𝑅𝑅𝑐𝑐(𝑖𝑖, 𝑖𝑖) are all set 
to be 1. The none-zero elements of this original matrix 𝑅𝑅𝑐𝑐(𝑜𝑜𝑟𝑟𝑜𝑜) contains the topology 
information of current state of the system.  

 

Figure 1: The flow diagram of the chemical species classification and statistics algorithm 

To extract the inter-molecule networks and classify the molecule clusters in each MD 
snap from  𝑅𝑅𝑐𝑐(𝑜𝑜𝑟𝑟𝑜𝑜) , a serial of manipulations of  𝑅𝑅𝑐𝑐(𝑁𝑁 × 𝑁𝑁)  are designed. From the 
column view of  𝑅𝑅𝑐𝑐(𝑜𝑜𝑟𝑟𝑜𝑜), setting the number of the non-zero elements in each (for 
example, the 𝑖𝑖-th) column of 𝑅𝑅𝑐𝑐 as 𝑚𝑚, the 𝑖𝑖-th atom will directly bond with other (𝑚𝑚 − 1) 
atoms. If any two columns (for example the 𝑖𝑖-th and the 𝑗𝑗-th) have any non-zero matrix 
element in the same row (for example the 𝑘𝑘-th row), then these two atoms (the 𝑖𝑖-th and 𝑗𝑗-
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th) are indirectly connected through the atom of the non-zero row (the 𝑘𝑘-th atom). All of 
the atoms, directly or indirectly, connected with the 𝑖𝑖-th and the 𝑗𝑗-th atoms belongs to a 
local network. The collection of these atoms can be defined as a chemical species. With a 
serial of operations as: if 𝑅𝑅𝑐𝑐−𝑖𝑖𝑐𝑐 ⋂𝑅𝑅𝑐𝑐−𝑗𝑗𝑐𝑐 ≠ {0}, then 𝑅𝑅𝑐𝑐−𝑖𝑖𝑐𝑐 = 𝑅𝑅𝑐𝑐−𝑖𝑖𝑐𝑐 ⋃𝑅𝑅𝑐𝑐−𝑗𝑗𝑐𝑐 and 𝑅𝑅𝑐𝑐−𝑖𝑖𝑐𝑐 =
0. The networking information can be incorporated into the first column of these atoms, 
while other following columns will be set as zero. 
Through the above column integrations, no crossing link is left between any two non-zero 
columns. As a result, all of the elements of the upper right corner of the matrix 𝑅𝑅𝑐𝑐  
changes into zero. Each column with non-zero elements represents an isolated chemical 
species. The number of the non-zero elements in the column equals to the atoms of the 

specific molecular cluster. The distinct topology of the chemical species can be identified 
with the value of each element.  

 

Figure 2: Isomers of glycine monomer: a) canonical, b) zwitterion (color online) 

In practice, the chemical formula of each species can be represented by the serial of 
atomic species, each followed by the ordered atom numbers directly connected to that 
kind of atoms. For more clarity, we take glycine, the simplest amino acid, as example. As 
shown in Fig. 2, the glycine monomer has two states at room temperature with the 
chemical formula of NH2CH2COOH (canonical) and NH3CH2COO (zwitterion). In our 
algorithm and program, the topologies of these two isomers are represented by the 
sequence of atomic species (C-O-N-H). After the name of each atomic species, the 
numbers of directly connected atoms to these atoms are listed with increasing order. 
Hence, the canonical and zwitterion are represented as: C34O12N3H11111 and 
C34O11N4H11111, individually. They topology differences are highlighted by 
underlined sections. The number of the nearest neighbors of oxygens are {1, 2} and {1, 
1}. For the nitrogen, they are {3} and {4} individually. The time-dependent evolution of 
all chemical species of glycine in condensed state will be studied in the next section. 
In practice, the program of the algorithm has been written in Fortran 90. The trajectory of 
AIMD simulations in xyz format can be analyzed online and offline, snap by snap. The 
chemical species are classified automatically. In addition, some optional functions such 
as coordinates classification and statistics, as shown in Fig. 1 are also realized. At present, 
the code is available via email to the corresponding author. 
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3 Application: chemical species in amorphous glycine at room temperature 

3.1 Basic properties of glycine 
Glycine is an excellent example for species analysis because it has great chance to be 
both locally protonated and de-protonated with proton transferring. In the gas phase, 
glycine is found in its canonical (neutral) form as shown in Fig. 2(left). In aqueous 
solution, glycine transforms to its zwitterionic form, where a proton transfers from the 
acid to the amino group as shown in Fig. 2(right). Theoretically, the zwitterionic form is 
more stable than the canonical state by about 7 kcal/mol, with an interconversion barrier 
around 12 kcal/mol [Leung and Rempe (2005)].  
In micro-solvation state, neutral glycine will transform into a zwitterion only after seven 
water molecules were placed around it [Bachrach (2008)]. At room temperature, pure 
glycine forms a hydrogen-bonded solid, of which three polymorphic crystal structures, α-, 
β- and γ-, are known [Iitaka (1960)]. The polymorphism of glycine makes the molecular 
structure and degree of crystallinity in condensed state dependent on environmental 
conditions, presence of additives, etc.  
As an application of our algorithm, we performed a long enough AIMD simulation of 
glycine in a periodic box, which allows us to gain an understanding of its detailed 
chemical structures at room temperature. In this work the condensed state glycine is 
deemed as an amorphous to represent one possible situation under physiological 
conditions [Shu, Rani, Suryanarayanan et al. (2004); Gu, Smyth and Kohanoff (2014)]. 

3.2 Simulation details 
The initial amorphous sample of the condensed glycine, which contains 32 canonical 
isomers in a cubic box of 15:05 Å with periodic boundary conditions, was prepared with 
the molecule editor ATEN [Youngs (2010)]. The structure was equilibrated for 1 ns via 
classical MD simulation using the CHARMM force field [MacKerell, Banavali and 
Foloppe (2000)] with DL-POLY simulation tool [Smith, Yong and Rodger (2002)]. 

 

Figure 3: The simulation box which contains 32 glycine molecules (left). The chemical 
species identified in the AIMD trajectory (right) (color online) 

After the classical equilibration, the AIMD simulations were carried out with the 
quantum module Quickstep (QS) of the open source code CP2K [VandeVondele, Krack, 
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Mohamed et al. (2005)]. The AIMD simulations were performed at the PBE [Perdew, 
Burke and Ernzerhof (1996)] pure DFT functional level theory. Periodic boundary 
conditions was applied to the Poisson solver. The Goedecker-Teter-Hutter pseudopotentials 
[Goedecker and Teter (1996)], the TZVP-GTH basis sets, and the PBE [Perdew, Burke and 
Ernzerhof (1996)] exchange-correlation functional were utilized. The time step of MD 
simulations is 1 fs. After an ab initio optimization of 500 steps, a product simulation with 
NVT dynamics at 300 K was carried out for over 15 ps. 

3.3 Results and discussions 
In the chemical species analysis of the condensed glycine, the bonding criteria are listed 
as  𝑟𝑟0(𝐶𝐶𝐶𝐶) = 1.43Å ;  𝑟𝑟0(𝐶𝐶𝑁𝑁) = 1.47Å ;  𝑟𝑟0(𝐶𝐶𝐶𝐶) = 1.09 ;  𝑟𝑟0(𝑁𝑁𝐶𝐶) = 1.01Å ;  𝑟𝑟0(𝐶𝐶𝐶𝐶) =
0.96Å. If the distance between two atoms is less than 1.25 times the equilibrium bond 
length 𝑟𝑟0, the atoms are bonded. As shown in Fig. 3, all of the five possible chemical 

species in the condensed glycine at room temperature are successfully identified by our 
program. The four glycine-based species in the sample are: canonical (GlyC), zwitterionic 
(GlyZ), deprotonated (Gly-H), and protonated (Gly+H). In addition, there exist some free 
protons (P), which are transferring among the glycine-based molecules.  

The numbers of the five species in the simulation box during the AIMD simulation are 
shown in Fig. 4. It can be seen that, during the initial stage of about 4 ps, the system is out 
of equilibration. The number of canonical glycine keeps decreasing, while the ratios of all 
other species keep increasing. After the transition period, a dynamical equilibrium is 
reached in the following simulation. All the fluctuations of the number of each species are 

no more than 2. In the simulation box, the average number of each glycine-based state is 
around 8, individually. It means that, the original canonical molecules have changed 
equally to be the four glycine-based species. Meanwhile, the average number of free 
protons is around 1.6 in the simulation sample. These dynamically transferring protons 
promote the transformation among canonical and zwitterionic states of glycine.  

 
Figure 4: Time evolution of the number of molecules species in the sample of 
amorphous glycine. The bonding criteria is set as 𝑅𝑅 < 1.25𝑅𝑅0 (color online)  
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It is clear that our algorithm of chemical identification and classification for AIMD 
simulations is quite effective. It should be noticed that the number distribution of 
molecules of the species depends on the bonding criteria database. As a reference, we 
recommend the bond length database (https://cccbdb.nist.gov/expbondlengths1.asp) 
provided by National Institute of Standards and Technology (NIST) for general chemical 
species identification for AIMD simulations. 

4 Conclusions 
In this work, we present an algorithm of automatic and quick identification of all 
chemical species in the trajectory of ab initio molecular dynamics simulations based on 
graph theory [Pietrucci and Andreoni (2011); Dias and Milne (1992)]. The input data are 
mainly the atomic coordinates and the general bonding criteria database. The chemical 
species can be recognized and classified in the dynamics simulations. Our program can 
be used for both online and offline analysis. It can be widely used for any long-time ab 
initio molecular dynamics simulations of molecular clustering and chemical reactions 

[Myerson and Trout (2013); Wang, Huang, Gu et al. (2016)]. 
At present, the bonding order parameters have not been taken into consideration in the 
program. To develop the methods for more complex chemical environments with fast 
electron transferring and for those atoms with multiple bonding orders, the dynamic bonding 
criteria should be designed, according to the online calculations of electron density 
distribution along AIMD simulations [Lu and Chen (2013)]. It is the next aim of our project. 
In addition, some object-orientated functions and interfaces, for more versatile analysis along 
with chemical species analysis, can also be introduced into the program. 
 
Acknowledgement: The authors thank Dr. Gareth Tribello of Queen’s University Belfast 
for helpful discussions on the algorithm. This work was partially supported by the 
program of the Key Laboratory for Aerosol-Cloud-Precipitation of CMA-NUIST (No. 
KDW1304), the National Natural Science Foundation of China (Grant No. 11105075). 

References 
Bachrach, S. M. (2008): Microsolvation of glycine: a DFT study. Journal of Physical 
Chemistry A, vol. 112, no. 16, pp. 3722-3730. 
Chin, M.; Rood, R. B.; Lin, S.; Müller, J. F.; Thompson, A. M. (2000): Atmospheric 
sulfur cycle simulated in the global model gocart: model description and global properties. 
Journal of Geophysical Research: Atmospheres, vol. 105, no. D20, pp. 24671-24687. 
Dias, J. R.; Milne, G. W. A. (1992): Chemical applications of graph theory. Journal of 
Chemical Information and Computer Sciences, vol. 32, no. 1, pp. 1. 
Goedecker, S.; Teter, M. (1996): Separable dual-space gaussian pseudopotentials. 
Physical Review B-Condensed Matter and Materials Physics, vol. 54, no. 3, pp. 1703-1710. 
Gu, B.; Smyth, M.; Kohanoff, J. (2014): Protection of DNA against low energy 
electrons by amino acids: a first-principles molecular dynamics study. Physical 
Chemistry Chemical Physics, vol. 16, no. 44, pp. 24350-24358. 



 
 
 
1002  Copyright © 2019 Tech Science Press          CMC, vol.59, no.3, pp.995-1003, 2019 

Herb, J.; Nadykto, A. B.; Yu, F. (2011): Large ternary hydrogen-bonded prenucleation 
clusters in the earth’s atmosphere. Chemical Physics Letters, vol. 518, pp. 7-14. 
Iitaka, Y. (1959): Crystal structure of β-glycine. Nature, vol. 183, no. 4658, pp. 390-391. 
Kohanoff, J. (2006): Electronic Structure Calculations for Solids and Molecules. 
Cambridge University Press, Cambridge. 
Kohanoff, J.; McAllister, M.; Tribello, G. A.; Gu, B. (2017): Interactions between low 
energy electrons and DNA: a perspective from first-principles simulations. Journal of 
Physics: Condensed Matter, vol. 29, no. 38. 
Kühne, T. D. (2014): Second generation car-parrinello molecular dynamics. Wiley 
Interdisciplinary Reviews: Computational Molecular Science, vol. 4, no. 4, pp. 391-406. 
Leung, K.; Rempe, S. B. (2005): Ab initio molecular dynamics study of glycine 
intramolecular proton transfer in water. Journal of Chemical Physics, vol. 122, no. 18, pp. 
4637-201.  
Lu, T.; Chen, F. (2013): Bond order analysis based on the Laplacian of electron density 
in fuzzy overlap space. Journal of Physical Chemistry A, vol. 117, no. 14, pp. 3100-3108. 
MacKerell, A. D.; Banavali, N.; Foloppe, N. (2000): Development and current status of 
the CHARMM force field for nucleic acids. Biopolymers, vol. 56, no. 4, pp. 257-265. 
Myerson, A. S.; Trout, B. L. (2013): Nucleation from solution. Science, vol. 341, no. 
6148, pp. 855-856. 
Perdew, J. P.; Burke, K.; Ernzerhof, M. (1996): Generalized gradient approximation 
made simple. Physical Review Letters, vol. 77, no. 18, pp. 3865-3868. 
Pietrucci, F.; Andreoni, W. (2011): Graph theory meets ab initio molecular dynamics: 
atomic structures and transformations at the nanoscale. Physical Review Letters, vol. 107, 
no. 8. 
Shu, J. B.; Rani, M.; Suryanarayanan, R.; Carpenter, J. F.; Nayar, R. et al. (2004): 
Quantification of glycine crystallinity by near-infrared (NIR) spectroscopy. Journal of 
Pharmaceutical Sciences, vol. 93, no. 10, pp. 2439-2447. 
Smith, W.; Yong, C. W.; Rodger, P. M. (2002): Dl poly: application to molecular 
simulation. Molecular Simulation, vol. 28, no. 5, pp. 385-471. 
Tjandra, N.; Bax, A. (1997): Direct measurement of distances and angles in biomolecules 
by NMR in a dilute liquid crystalline medium. Science, vol. 278, no. 5340, pp. 1111-1114. 
VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T. et al. 
(2005): Quickstep: Fast and accurate density functional calculations using a mixed 
gaussian and plane waves approach. Computer Physics Communications, vol. 167, no. 2, 
pp. 103-128. 
Wang, Y.; Huang, Y.; Gu, B.; Xiao, X.; Liang, D. et al. (2016): Formation of the 
H2SO-

4 dimer in the atmosphere as a function of conditions: A simulation study. 
Molecular Physics, vol. 114, no. 23, pp. 3475-3482.  
Youngs, T. G. A. (2010): Aten-An application for the creation, editing, and visualization 
of coordinates for glasses, liquids, crystals, and molecules. Journal of Computational 
Chemistry, vol. 31, no. 3, pp. 639-648. 



 
 
 
The Algorithm of Chemical Species Analysis                                                  1003 

Zhu, C.; Kumar, M.; Zhong, J.; Li, L.; Francisco, J. S. et al. (2016): New mechanistic 
pathways for criegee-water chemistry at the air/water interface. Journal of the American 
Chemical Society, vol. 138, no. 35, pp. 11164-11169. 


	Zhiyi Han0F , Yugai Huang1F , 2F , Xiaoqiang Xie1, Ying Mei1 and Bin Gu1, 3F*

