
  
 
 
Copyright © 2019 Tech Science Press           CMC, vol.59, no.3, pp.925-941, 2019 

CMC. doi:10.32604/cmc.2019.04842                                    www.techscience.com/cmc 

 
 

Reversible Data Hiding Based on Pixel-Value-Ordering and Pixel 
Block Merging Strategy 

 
Wengui Su1, 2, Xiang Wang3, * and Yulong Shen1 

 
 
Abstract: With the reversible data hiding method based on pixel-value-ordering, data are 
embedded through the modification of the maximum and minimum values of a block. A 
significant relationship exists between the embedding performance and the block size. 
Traditional pixel-value-ordering methods utilize pixel blocks with a fixed size to embed 
data; the smaller the pixel blocks, greater is the embedding capacity. However, it tends to 
result in the deterioration of the quality of the marked image. Herein, a novel reversible 
data hiding method is proposed by incorporating a block merging strategy into Li et al.’s 
pixel-value-ordering method, which realizes the dynamic control of block size by 
considering the image texture. First, the cover image is divided into non-overlapping 2×2 
pixel blocks. Subsequently, according to their complexity, similarity and thresholds, these 
blocks are employed for data embedding through the pixel-value-ordering method 
directly or after being emerged into 2×4, 4×2, or 4×4 sized blocks. Hence, smaller blocks 
can be used in the smooth region to create a high embedding capacity and larger blocks in 
the texture region to maintain a high peak signal-to-noise ratio. Experimental results 
prove that the proposed method is superior to the other three advanced methods. It 
achieves a high embedding capacity while maintaining low distortion and improves the 
embedding performance of the pixel-value-ordering algorithm.  
 
Keywords: Reversible data hiding, pixel-value-ordering, prediction error expansion, 
dynamic block partition. 

1 Introduction 
Reversible data hiding (RDH), also known as lossless data hiding, can recover both secret 
information and host image without loss after the extraction of embedded data [Caldelli, 
Filippini and Becarelli (2010)]. Currently, RDH has been applied in quality sensitive fields 
such as copyright protection, medical image processing, and military image protection. 
Based on lossless compression, early RDH methods realized reversible information 
embedding [Celik, Sharma, Tekalp et al. (2005)]. The embedding capacity (EC) is highly 
limited, as only the compressed redundant space is utilized for embedding. To improve 
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the embedding capacity and maintain a low distortion, many efficient RDH techniques 
have been introduced and developed over time. Among them, difference expansion (DE) 
[Tian (2003); Pei, Wang, Li et al. (2013)] and histogram shifting (HS) [Ni, Shi and 
Ansari (2006); Li, Li, Yang et al. (2013)] are two fruitful schemes. 
The difference expansion scheme proposed by Tian [Tian (2003)] is a basic RDH 
technique. In recent years, the DE scheme has been extensively researched and developed 
in the aspects of integer transformation [Wang, Li, Yang et al. (2010)], reducing bitmap 
size [Hu, Lee and Li (2009)], prediction of error expansion (PEE) [Yao, Liu, Tang et al. 
(2018); He, Zhou, Cai et al. (2017)], and pixel-value-ordering (PVO) [Li, Li, Li et al. 
(2013); Ou, Li and Wang (2016)]. 
The HS algorithm proposed by Ni et al. [Ni, Shi and Ansari (2006)] is another important 
scheme for RDH. This scheme embeds secret information by shifting the intensity 
histogram bins between the peak point and zero point to obtain a higher quality 
embedded image. However, the maximum embedding capacity is limited by the number 
of pixels at the peak of the histogram. To improve the embedding capacity, many scholars 
have performed further improvements based on HS technology in recent years [Qin, 
Chang, Huang et al. (2013); Wang, Ye, Wang et al. (2018); Rad, Wong and Guo (2016); 
Du, Yin and Zhang (2018)]. For example, Du et al. [Du, Yin and Zhang (2018)] 
introduced the HS-based method in JPEG bitstream to optimize histogram modification. 
This novel method achieves lossless embedding with high payload and less file size 
expansion in an identical payload.  
Thodi et al. [Thodi and Rodriguez (2007)] proposed the PEE method by combining DE 
and HS. The PEE algorithm introduces HS to compress the location map efficiently and 
utilizes the prediction error instead of the adjacent pixel difference for expansion 
embedding. The local correlation of the larger neighborhood of the image rather than the 
two adjacent pixels is considered in the prediction; therefore, the PEE method achieves a 
tradeoff between embedding capacity and fidelity. Because the prediction accuracy has an 
important impact on the performance of the PEE method, many related PEE methods 
have also been presented for efficient predictions, such as the median edge detector 
(MED) [Thodi and Rodriguez (2007)], gradient adjusted prediction (GAP) [Wu and 
Memon (2015)], adaptive embedding [Cao, An, Yao et al. (2018)], rhombus prediction 
[Sachnev, Kim, Nam et al. (2009)], and pixel value ordering [Li, Li, Li et al. (2013)]. In 
most of the improved PEE methods, both local complexity (LC) and prediction error (PE) 
can be served as metrics to determined block smoothness. The hypothesis that a direct 
proportion exists between LC and PE is typically exploited to reduce image distortion. 
However, in practice, some cases exist that do not conform to this hypothesis. Hence, 
Chen et al. [Chen, Ni, Hong et al. (2017)] devised a directionally enclosed prediction and 
expansion method to limit data embedding to pixels proportional to LC and PE. 
Experiments proved that this method yields high image fidelity while providing a 
considerable payload.  
In recent years, the PVO-based RDH [Li, Li, Li et al. (2013)] has attracted increasing 
attention. The advantage of this method is that it can achieve better visual quality at low 
EC. In the PVO-based method [Li, Li, Li et al. (2013)], the image is divided into 
equal-sized pixel blocks; subsequently, the second largest/smallest pixel in the block is 
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used to predict the largest/smallest pixel that is modified to embed data and reversibility 
is achieved by maintaining the order of pixel values within each block before and after 
embedding. Because the pixels in the same block are often highly correlated, the 
PVO-based RDH method presents an excellent embedding performance. Meanwhile, the 
block selection technique is adopted to select smooth blocks for data embedding and a 
more concentrated histogram is obtained that improves the embedding performance. 
However, bin0, which is typically the second-highest bin, was not used in Li et al.’s 
method [Li, Li, Li et al. (2013)]. Peng et al. [Peng, Li and Yang (2014)] extended Li et 
al.’s work by introducing the relative position of the pixels into the prediction to 
construct a bilateral prediction error histogram. In his method, bin1 and bin0 were 
exploited for data embedding to better utilize image redundancy and achieve better 
embedding performance than that of Li et al. [Li, Li, Li et al. (2013)]. The work of Weng 
et al. [Weng, Pan, Deng et al. (2018)] is an improvement of Peng et al.’s work [Peng, Li 
and Yang (2014)]. They developed a novel pixel modification strategy. Three largest (or 
smallest) pixels in a smooth block were exploited for prediction; hence, a smooth block 
can carry at most 3log2 bits. Furthermore, two-layer embedding and n block partition 
ways were combined to achieve high embedding capacity and low distortion.  
To our knowledge, the PVO embedding performance has a significant correlation with 
block size; therefore, many RDH methods are dedicated to introducing the block 
selection strategy in PVO embedding. Wang et al. [Wang, Ding and Pei (2015)] further 
improved Peng et al.’s work [Peng, Li and Yang (2014)] and proposed a PVO-based 
method with a dynamic block strategy. In accordance with the block complexity, the pixel 
blocks are divided into rough blocks, normal blocks, and flat blocks. Subsequently, the 
rough blocks are excluded from data embedding, whereas the flat blocks are further 
divided into four sub-blocks to increase the embedding capacity. A larger block size is 
selected in the texture area to ensure high peak signal-to-noise-ratio (PSNR), while a 
smaller block size is adopted in the smoothing area to achieve higher EC. This method 
can provide higher embedding capacity and lower distortion than the PVO-based RDH 
algorithm proposed in Li et al. [Li, Li, Li et al. (2013)] and [Peng, Li and Yang (2014)]. 
Further, Weng et al. [Weng, Liu, Pan et al. (2016)] proposed a reversible data hiding 
method based on flexible block-partition and the adaptive pixel modification strategy. 
The image is partitioned in accordance with the local complexity metric, and a 
high-correlation block is further divided into sub-blocks of size 1×3, and each block can 
be embedded with two data bits. A moderate-correlation block is divided into two 
sub-blocks of different sizes, each of which can embed up to four data bits. A 
low-correlation block can embed up to two bits. This method outperforms some of the 
state-of-the-art methods. Based on the dynamic block strategy proposed by Wang et al. 
[Wang, Ding and Pei (2015)]; He et al. [He, Cai, Zhou et al. (2017)] developed a 
multistage blocking strategy for n-threshold and n-level blocks. The image was first 
divided into non-overlapping root blocks. The root blocks were further divided into 
intermediate blocks or leaf blocks in accordance with the threshold. Further, different 
embedding schemes were selected in accordance with the block type. The algorithm 
guarantees less embedding distortion under the given EC, and outperforms Wang et al.’s 
work in computational complexity. Meikap et al. [Meikap and Jana (2018)] developed a 
PVO-based method with varying block sizes and multi-direction overlapping embedding. 
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In this method, a parameter α was utilized to maintain the order of pixel in a block to 
ensure that the method is suitable for different block sizes. Three directions: horizontal, 
vertical, and diagonal of each block were embedded for high embedding capacity. 
Experiments indicate that the method yields a better performance. 
To achieve larger embedding capacity and high fidelity, many improved PVO-based 
methods aim to exploit the pixel correlation to obtain more suitable pixel block for data 
hiding. Inspired by this, a novel PVO-based algorithm based on the block merging 
strategy is proposed herein. In Li et al.’s work [Li, Li, Li et al. (2013)], the cover image 
was divided into blocks of equal size and the pixels in each block were sorted in 
accordance with the pixel values; subsequently, data embedding was realized by 
modifying the maximum and minimum values of each block. For a given EC, blocks of 
different sizes, i.e., }5,4,3,2{, 2121 ∈× nnnn ， were tested in the embedding process; 
subsequently, that with the best embedding performance was determined to be the final 
block size. A larger block produces a more concentrated histogram that improves the 
image PSNR but reduces the EC significantly. A smaller block helps to achieve higher 
EC, but typically results in the deterioration in image quality. The PVO-based embedding 
performance has a significant correlation with the block size and is highly limited by the 
uniform-blocking manner. To achieve high embedding capacity while preserving good 
visual quality, we propose a pixel block merging strategy based on the local complexity, 
similarity, and thresholds. We first divide the image into non-overlapping 2×2 blocks; 
subsequently, these pixel blocks are employed for PVO-based embedding or after being 
merged, which is decided according to a local complexity measurement. Experimental 
results indicate that the proposed method exploits the advantage of pixel correlation well 
and yields high embedding capacity without deteriorating the image quality. 
The remainder of this paper is structured as follows. Section 2 provides an introduction of 
Li et al.’s PVO-based RDH algorithms. Section 3 introduces the proposed PVO-based 
embedding and extraction procedures in detail. Section 4 provides the experimental 
results and Section 5 concludes this paper. 

2 Related works 
Li et al.’s method [Li, Li, Li et al. (2013)] fully utilizes the similarity of pixels and can 
create the space for data embedding by modifying the maximum and minimum pixel 
blocks, thus enabling sufficient payloads to be embedded into images with low distortion. 
Take the maximum-modification-based embedding phases as an example. First, divide 
the cover image into non-overlapping and equal-sized blocks. For a given block including 
n pixels X = {x1, x2,...,xn}, sort the pixel values (x1, x2,...,xn) in the ascending order, and 
obtain a sequence ),...,( )()1( nxx σσ , where ),...,2,1(),...,2,1(: nn →σ denotes the unique 
one-to-one mapping such that 1 2( ) ( ) ( n )x x ... xσ σ σ≤ ≤ ≤ , ( ) ( )i jσ σ<  if )()( ji xx σσ =  and i<j,  
subsequently, the second largest value )1( −nxσ  can be used for predicting the maximum 

)(nxσ , and the corresponding prediction error can be expressed as follows: 

max ( ) ( 1)n nPE x xσ σ −= −                                                  (1) 
A histogram for PEmax can be obtained after calculating the prediction errors of all blocks. 
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The value of PEmax is always positive and bin1 (the bin of PEmax =1) is typically the peak 
value of the histogram, implying that this bin can be regarded as the interior region for 
data embedding. Furthermore, to ensure reversibility, bins larger than 1 are used as the 
external regions and are shifted to create the space for data embedding. Therefore, the 
maximum )(nxσ can be modified as follows: 
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where b∈{0,1} refers to the data to be embedded. 
Let the marked value of X be represented as ),...,( 1 nyy , and sort its values in the 
ascending order and obtain ),...,( )()1( nyy σσ . Subsequently, all i ( )nσ≠ satisfies the 

condition that yi =xi and )()(ˆ nn yx σσ = . In addition, the order of pixel values is 
consistent in the embedding process, implying that the mapping of σ remains unchanged 
before and after data embedding. 
When decoding, the prediction error can be described as follows: 

)1()(max
ˆ

−−= nn yyEP σσ                                                   (3) 

Only when }2,1{ˆ
max∈EP can max

ˆEP include the embedded data, and the process of 
decoding is detailed as follows: 
(1) If }2,1{ˆ

max∈EP , the embedded data will be 1ˆ
max −= EPb  and the original value will 

be ( ) ( )n nx y bσ σ= − . 

(2) If maxP̂E >2, the prediction error will not include the embedded data and the original 
value will be 1)()( −= nn yx σσ . 

(3) If maxP̂E = 0, the marked value will be the same as the original value and the original 
value will be )()( nn yx σσ = . 

3 Proposed method 
In the PVO-based RDH scheme [Li, Li, Li et al. (2013); Peng, Li and Yang (2014)], the 
image will be divided into pixel blocks of equal size, which subsequently are utilized for 
data embedding in a block-by-block manner. As shown in Fig. 1, the larger blocks lead to 
higher PSNR for low EC, whereas the smaller blocks yield a better embedding 
performance for high EC. Moreover, the block size is related to the maximum EC. The 
smaller blocks can provide higher EC. For PVO-based works, the tradeoff between 
capacity and fidelity is achieved by adjusting the block size.  
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Figure 1: Performance of the scheme proposed by Peng et al. [Peng, Li and Yang (2014)] 
with different block sizes for the image Lena 

With the above consideration, a novel PVO-based RDH using the block merging strategy 
is proposed to better exploit the pixel correlation within a block and create more 
embedded space with low distortion. In the smooth region where the pixels exhibit 
similar pixel values and good prediction accuracy, a smaller block size is adopted to 
improve the EC. Meanwhile, in the texture region where the pixels exhibit a weak 
correlation, a larger block size is employed to preserve good visual quality. 
First, the host image is divided into non-overlapping 2×2 pixel blocks, and are classified 
into smooth blocks or normal blocks according to the local complexity measurement. The 
smooth 2×2 pixel blocks are directly embedded via the PVO-based method [Li, Li, Li et 
al. (2013)]. For normal pixel blocks, the similarity of the adjacent blocks is measured; 
subsequently, the similar blocks are merged into larger 2×4 or 4×2 blocks to perform 
PVO-based embedding. The unused merged blocks are further merged into 4×4 pixel 
blocks in accordance with the similarity and thresholds for PVO-based embedding. 
Hence, the proposed method achieves the dynamic control of the block sizes according to 
the image texture possible and achieves a better payload with lower distortions. 

3.1 Classification of pixel blocks 
3.1.1 Definition of complexity 
In this study, we utilized the block complexity (denoted by NL) to differentiate a block 
Ii in the smooth region from the others. For the blocks with different texture 
complexities, different sizes of the embedding blocks should be determined. The image 
blocks can be classified by the NL and threshold T. Smooth blocks can be embedded via 
the PVO-based method directly, while ordinary blocks should be embedded via block 
merging before embedding. 
Suppose the cover image I is a grayscale image of size HW × ; divide I into n r×c 
non-overlapping blocks, where I={I1, I2,...,In}. Sort a block Ii by its pixel values in the 
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ascending order to obtain ),...,,( 21 ki xxxI = , where kxxx ≤≤≤ ...21 . Thus, the block 
complexity NLi of Ii can be defined as follows: 
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3.1.2 Smoothness classification  
For a one-pixel block Ii (i=1, 2,…, n) of I, Eq. (4) can be used for calculating the local 
complexity NLi (i=1,..., n). Further, whether a pixel block is smooth can be determined 
using the threshold Tj (j=1, 2, 3, –1≤Tj ≤255). All pixel blocks can be divided into two 
sets, E and G, according to their local complexities NLi and thresholds Tj. Set E contains 
all smooth blocks that are employed to embed data. The set G contains ordinary blocks 
that cannot be embedded into the data directly but must be further merged to maintain 
low distortion according to the similarity. The detailed steps of the block merging 
strategy are described in Section 3.2.2. As for the classification of the pixel blocks, two 
cases exist: 
Case 1: if NLi ≤Tj, the block Ii is classified as a smooth block and added to set E. In this 
case, Ii locates in the smooth region where the blocks have similar pixel values and can be 
used for embedding. According to the PVO-based method in Li et al. [Li, Li, Li et al. 
(2013)], two bits of data (one bit for maximum and one bit for minimum) are directly 
embedded into block Ii. 
Case 2: if NLi>Tj, Ii is denoted as a normal block. In this case, Ii likely locates in the 
texture region where using a larger block size will exhibit evident advantages and higher 
PSNR. Therefore, the normal block Ii is added sequentially into set G and labeled with

),...,1( liGi = for further processing in Section 3.2. 
Reversibility is guaranteed by maintaining the complexity NL of each block invariant 
after embedding. In the embedding process of the PVO-based method, the pixels of a 
normal block remain unchanged; thus, the complexity remains unchanged as well. 
Meanwhile, for the smooth block, only the maximum kx and minimum 1x are modified to 
accomplish the PVO-based embedding. In such situations, the pixel values )...,,( 132 −kxxx  
remain unchanged. Therefore, the complexity of a smooth block remains unchanged 
according to Eq. (4). 

3.2 Pixel merging strategy 
3.2.1 Definition of the similarity between blocks 
After completing the block classification, adjacent blocks with high similarity in set G 
will be merged to create a larger block before performing data embedding to maintain 
higher PSNR and further improve the performance of the PVO-based method.  
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For two adjacent non-overlapping pixel blocks ),...,,( 21 ki xxxG = and 
)1,...,2,1(   ),...,,( 211 −==+ liyyyG ki  of size r×c in G, the definition of similarity (denoted 

by Sim) between blocks is: 

)1,...,1(  
1

2
−=−= ∑

−

=
liyxSim

k

i iii                                          (5) 

The threshold S is used to measure the similarity of two blocks. If SSimi ≤ , Gi is similar 
to Gi+1, and these two blocks can be merged into a larger block with the size of r×2c or 
2r×c. Similar to the local complexity NL, the similarity Sim remains unchanged during 
embedding and extraction, thus ensuring reversibility. 

3.2.2 Pixel merging strategy 
Specifically, we use a threshold S to estimate the similarity of two adjacent blocks in the 
set G. According to the similarity Sim of two r×c blocks Gi and Gi+1 (i=1,2,...,l-1) and the 
threshold S, two situations must be considered. 
Case 1: If SSimi ≤ , Gi has high correlation with Gi+1, merge these two r×c blocks to form 
a new pixel block of size of r×2c or 2r×c. After this process, the better correlation among 
the pixels within the merged block will be maintained to ensure better visual effects in the 
texture regions after embedding. Subsequently, the block classification method depicted 
in Section 3.1.2 is applied again to estimate the smoothing level of the new merged block 
to determine whether the new pixel block should be embedded or further merged. 
Case 2: If SSimi > , a significant difference appears between the pixel blocks Gi and Gi+1, 
and will lead to severe distortions and thus not suitable for embedding. 

3.3 Embedding procedure 
In this section, the embedding procedure of the presented method will be described in 
detail. Here are the specific steps. 
Step 1: image partition 
Divide the host grayscale image I into n non-overlapping pixel blocks of size 2×2, I={I1, 
I2,..., In}. For each block Ii, sort its pixel values in the ascending order as },...,,{ 421 xxx , 
such that 421 ... xxx ≤≤≤ . 
Step 2: location map (LM) construction 
For pixel values ),...,,( 421 xxx in each block Ii, if 255),...,,max( 421 =xxx or

0),...,,min( 2,1 =nxxx , then this block may cause an overflow or underflow and should be 
excluded from embedding. In this case, we set the location map LM(j)=1, otherwise 
LM(j)=0. Therefore, LM is a binary sequence of length ξ . LM is consequently 
compressed losslessly using arithmetic coding and the length of LM is denoted as lclm. 
Step 3: block Classification and Embedding  
Each block Ii should be classified according to the method in Section 3.1 with the given 
threshold T1.  
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● If LM(i)=1, then the block is an exception that will cause overflow/underflow; skip this 
block and add it into set C.  
● If LM(i)=0 and 1TNLi ≤ , then the block is smooth. Subsequently, add Ii to set E with 
label Ei (i=1,..,p). Subsequently, utilize the PVO-based method in Li et al. [Li, Li, Li et al. 
(2013)] to embed two bits into each block. 
● If LM(i)=0 and NLi > T1, then the block is normal. Subsequently, add the pixel block Ii 
in sequence to set G(Gj(j = 1,...,l). 
Step 4: the first merging and embedding process  
With the given threshold S and the similarity Simi of adjacent blocks Gj and Gj+1 in G, the 
first merging and embedding procedure are performed in this step.  
1. If Simi ≤ S, subsequently merge Gi and Gi+1 into a larger pixel block of size 2×4 or 4×2. 
Subsequently, re-estimate the block complexity of the merged block with the given 
threshold T2 and the method described in Step 3. If smooth, the merged block is added to 
set E (Ei(i=p+1,...,q)) for embedding data. Further, two bits of data should be embedded 
into each of the smooth blocks. If normal, the merged block is grouped into a set M, 
where 1)-l1,2,...,j ;n 1,2,...,(k 1 ==∪= +jjk GGM  for the second merging process. 

2. If Simi > S, neither block Gj nor Gj+1 is used for merging and embedding. Subsequently, 
add these two blocks into set C. 
Step 5: the second merging and embedding process 
The second merging is performed in set M using the same steps in Step 4 and the 
threshold T3. All the smooth blocks generated in this step are added into set E 
(Ei(I=q+1,..., endξ ) and the remaining blocks in set C. For every smooth block, two bits of 
data are embedded. Repeat this step until all embeddable blocks are embedded and denote 

the index of the last data-carrying block as endξ . 
The three threshold values T1, T2, T3, and the similarity threshold S are related to specific 
images and the embedding capacity. Test all combinations; subsequently, the optimal 
threshold for different capacities can be determined. 
Step 6: auxiliary information and the embedding procedure 
Record the least-significant-bit (LSB) of the first   clmlog ++ )16(1232 2 ξ  pixels of the 
image to generate a binary sequence SLSB, which will be embedded into the image as part 
of the watermark. Subsequently, these LSBs are replaced by the following auxiliary 
information and the compressed location map LM: 
 Thresholds T1 (8 bits), T2 (8 bits), and T3 (8 bits) for block complexity; 
 Thresholds S (8 bits) for similarity; 

 The end position endξ ( 2log 16ξ  （ ）bits); 

 The length of the compressed location map ldm( 2log 16ξ  （ ）bits);  

 The location map (ldm bits). 
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Finally, the sequence SLSB is embedded into the remaining blocks },...,{ 1 ξξ EE
end +  using 

the same method in Step 3 to generate the marked image. A flow chart of the embedding 
procedure is shown in Fig. 2. 

 
Figure 2: Embedding procedure 

3.4 Extraction procedure 
The extraction procedure is an inverse process of embedding. The detailed procedure 
consists of the following four steps.  
Step 1: auxiliary information and location map extraction 
Record the LSB of the first  )16(1232 2 ξog+  pixels of the marked image to extract the 
auxiliary information including T1, T2, T3, S, endξ , and lclm. Subsequently, read the LSB of 
the latter lclm pixels to extract the compressed LM. The LM is recovered through the 
decompression of the compressed map.  
Step 2: image partition and the preprocessing 
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Using the same method as Step 1 in Section 3.3, partition the marked image 'I into 
non-overlapping 2×2 blocks. Following the block classification and merging methods 
depicted in Section 3.3, Steps 3-5, and group all the blocks into sets E and C.    
Step 3: sequence SLSB extraction and image restoration 
Extract the sequence SLSB defined in Section 3.3, Step 6, from the block sequence

},...,{ 1 ξξ EE
end +

using the PVO-based decoding method depicted in Section 2 and perform 
image restoration.  
Step 4: data extraction and image restoration 
Replace the LSB of the first   clmlog ++ )16(1236 2 ξ image pixels by the sequence SLSB 
extracted in Step 3. Extract the hidden data and recover the host image from blocks 

},...,{ 1 end
EE ξ using the method depicted in Step 3. For each block in set C, no data is 

hidden and its pixels remain unchanged. Thus, both the host image and secret data are 
fully recovered. 

4 Experimental results  
We first consider the determination of thresholds and the impact of the location map size 
to the embedding performance. The determination of thresholds T1, T2, T3, and S depends 
on the given EC and the host image, and no direction relationship exists between these 
thresholds. The best combination of these thresholds is determined iteratively to be the 
smallest values such that minimal image distortion can be achieved. 
To enable a lossless reconstruction of the host image at the decoder, the location map 
must record the positions of the expandable differences. The location map is compressed 
losslessly and subsequently embedded into the carrier along with the payload. Despite the 
compression, the location map still occupies part of the embedding capacity. Hence, the 
size of the location map will affect the embedding performance to some extent. To 
minimize the impact of location map on the embedding performance, adaptive block 
partition is adopted in our method. Smaller blocks are exploited for smooth areas and 
larger blocks for texture areas, thus improving the distribution of 0 and 1 in the location 
map and further reducing the size of the compressed location map. From Tab. 1, it is clear 
that the sizes of the LMs of different images have relatively small magnitudes compared 
with the EC; therefore, the LM has less influence on the embedding performance. 

Table 1: The sizes of the LMs of different images 

Image Lena Baboon Airplane Peppers Boat 
LM(bit) 96 352 96 136 208 

The proposed method was implemented in MATLAB. For the performance evaluation, 
three state-of-the-art RDH methods, namely, those of Li et al. [Li, Li, Li et al. (2013)], Peng 
et al. [Peng, Li and Yang (2014)], and Sachnev et al. [Sachnev, Kim, Nam et al. (2009)], 
were re-implemented and compared to the proposed method. The embedding performance 
was evaluated by comparing with other RDH schemes from two perspectives: visual image 
quality and embedding capacity. Eight grayscale images including Airplane, Elaine, 
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Barbara, Baboon, Boat, Lake, Lena, and Peppers served as test images. Except Barbara, all 
images were downloaded from the USC-SIPI image database. 
Li et al.’s work [Li, Li, Li et al. (2013)] is a high-fidelity PVO-based RDH method. Our 
method is a direct improvement of their work. Fig. 3 shows that the embedding 
performance of our method is significantly better than that of Li et al.’s work for all test 
images. Referring to Tab. 2 and Tab. 3, the performance of the proposed method 
improves by 0.83 dB on average for an EC of 10,000 bits and by 0.83 dB for an EC of 
20,000 bits compared to the performance of Li et al.’s work. In particular, for the smooth 
image of Airplane, the proposed method provides higher maximum EC (0.198 bit per 
pixel) than that of Li et al. [Li, Li, Li et al. (2013)] (0.145 bits per pixel). Moreover, the 
proposed method obtains a greater gain in PSNR for the large capacity cases. In this case, 
because the EC is high, the 2×2 blocks that are applied in Li et al. [Li, Li, Li et al. (2013)] 
cannot fully utilize the pixel correlation. In addition, because there are no sufficient 
smooth blocks at the high EC, the method proposed in [Li, Li, Li et al. (2013)] employed 
necessary rough blocks for data embedding that will result in image deterioration. 
However, with the proposed method, a high EC can be achieved using 2×2 blocks in the 
smooth regions. If the EC increases and there are no sufficient smooth blocks, the small 
blocks can be merged into 2×4, 4×2, or 4×4 pixel blocks to obtain a smaller prediction 
error and maintain higher PSNR.  
Peng et al.’s scheme [Peng, Li and Yang (2014)] is an extension of Li et al.’s work. In 
their work, bin0 was introduced into the embedding scheme and larger blocks were 
utilized to guarantee sufficient EC. Peng et al.’s scheme achieved a better performance 
than the PVO-based scheme [Li, Li, Li et al. (2013)]. According to Fig. 3, the proposed 
method achieves a substantial improvement in PSNR for every image regardless of the 
EC. Considering the results in Tab. 2 and Tab. 3, the PSNR improves by utilizing the 
proposed method when the capacities of the 10,000 bits and 20,000 bits are 0.29 dB and 
0.36 dB, respectively. The maximum EC of the proposed method is almost the same as 
that of Peng et al.’s scheme. For a relatively large EC, the proposed method produces 
higher PSNR. The reason is that the capacity-dependent block strategies [Peng, Li and 
Yang (2014)] tend to use smaller blocks such as 2×2 or 3×3 when increasing the EC. 
Hence, it derives PNSR decreases, whereas a merging strategy is adopted in the proposed 
method to better exploit the correlations within a block and yields greater gain in the 
PSNR for the large capacity cases. 
Sachnev et al.’s scheme [Sachnev, Kim, Nam et al. (2009)] is well known for its highly 
accurate prediction and has been verified better than many state-of-the-art works. As 
shown in Fig. 3, the proposed method outperforms Sachnev et al.’s in most cases, except 
when the EC approaches its maximum (e.g., 9300 bits for Baboon, 48000 bits for 
Airplane, and 29000 bits for Barbara). This is because the numbers of rough blocks have 
to be employed when aiming for maximum EC. However, the proposed scheme achieves 
superiority over Sachnev et al.’s scheme for a moderate EC. From Tab. 2 and Tab. 3, it is 
clear that the proposed scheme improves Sachnev et al.’s by 2.25 dB on average for an 
EC of 10000 bits and 1.74 dB for an EC of 20000 bits. 
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Figure 3: Performance comparison between the proposed method and the three methods 
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of Sachnev et al. [Sachnev, Kim, Nam et al. (2009)], Li et al. [Li, Li, Li et al. (2013)], 
and Peng et al. [Peng, Li and Yang (2014)] 

Table 2: Comparison of PSNR (in dB) between the methods of Peng et al. [Peng, Li and 
Yang (2014)], Sachnev et al. [Sachnev, Kim, Nam et al. (2009)], and Li et al. [Li, Li, Li 
et al. (2013)], and the proposed approach for an EC of 10,000 bits 

Image Lena Baboon Barbara Airplane Peppers Boat Elaine Lake Average 
Proposed 60.74 53.84 60.79 63.58 59.16 58.53 57.42 59.21 59.16 

Peng, Li 
and 
Yang 
(2014) 

60.47 53.55 60.55 62.96 58.98 58.27 57.36 58.87 58.87 

Sachnev, 
Kim, 
Nam et 
al. 
(2009) 

59.19 54.15 58.14 60.34 55.56 56.14 56.13 56.65 56.91 

Li, Li, Li 
et al. 
(2013) 

59.76 53.96 59.67 63.18 57.19 57.42 57.39 58.08 58.33 

Table 3: Comparison of PSNR (in dB) between the methods of Peng et al. [Peng, Li and 
Yang (2014)], Sachnev et al. [Sachnev, Kim, Nam et al. (2009)], and Li et al. [Li, Li, Li 
et al. (2013)], and the proposed approach for an EC of 20,000 bits, for a capacity of 
20,000 bits. The results for Baboon are eliminated herein because the proposed methods 
of Peng et al. and Li et al. cannot achieve such a payload 

Image Lena Babo
on Barbara Airplane Peppers Boat Elaine Lake Average 

Proposed  56.58 - 56.45 59.89 55.05 54.16 52.76 54.26 55.59 

Peng, Li 
and Yang 
(2014) 

56.54 - 56.20 59.07 54.77 53.84 52.61 53.60 55.23 

Sachnev, 
Kim, 
Nam et 
al. 
(2009) 

55.04 55.04 55.04 57.31 52.29 52.64 51.99 52.70 53.85 

Li, Li, Li 
et al. 
(2013) 

56.14 - 56.24 59.45 53.39 53.12 52.31 52.66 54.76 
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5 Conclusion 
A reversible data hiding method that combined the PVO-based method with the block 
merging strategy was presented. Instead of uniform blocks, 2×2 blocks were adopted in 
smooth regions while 2×4, 4×2, or 4×4 blocks were employed in the rough regions in the 
embedding procedure. The proposed method increased the embedding capacity and reduced 
the distortions efficiently. Compared with three state-of-the-art reversible watermarking 
algorithms, the proposed method could well exploit the advantages of block correlation by 
adaptively selecting blocks of different sizes according to the image characteristics, hence 
demonstrating excellent performance. Based on this research, the best compromise between 
embedding performance and complexity can be further studied in the future. 
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