

Copyright © 2019 Tech Science Press CMC, vol.59, no.3, pp.885-901, 2019

CMC. doi:10.32604/cmc.2019.05612 www.techscience.com/cmc

An Algorithm for Mining Gradual Moving Object Clusters
Pattern From Trajectory Streams

Yujie Zhang1, Genlin Ji1, *, Bin Zhao1 and Bo Sheng2

Abstract: The discovery of gradual moving object clusters pattern from trajectory
streams allows characterizing movement behavior in real time environment, which
leverages new applications and services. Since the trajectory streams is rapidly evolving,
continuously created and cannot be stored indefinitely in memory, the existing
approaches designed on static trajectory datasets are not suitable for discovering gradual
moving object clusters pattern from trajectory streams. This paper proposes a novel
algorithm of gradual moving object clusters pattern discovery from trajectory streams
using sliding window models. By processing the trajectory data in current window, the
mining algorithm can capture the trend and evolution of moving object clusters pattern.
Firstly, the density peaks clustering algorithm is exploited to identify clusters of different
snapshots. The stable relationship between relatively few moving objects is used to
improve the clustering efficiency. Then, by intersecting clusters from different snapshots,
the gradual moving object clusters pattern is updated. The relationship of clusters
between adjacent snapshots and the gradual property are utilized to accelerate updating
process. Finally, experiment results on two real datasets demonstrate that our algorithm is
effective and efficient.

Keywords: Trajectory streams, pattern mining, moving object clusters pattern, discovery
of moving clusters pattern.

1 Introduction
The increasing pervasiveness of object tracking leads to huge volumes of spatio-temporal
data collected in the form of trajectory streams. Discovering gradual moving object
clusters pattern [Hai, Ienco, Poncelet et al. (2012)] (i.e., GC-Pattern) from these streams
is an important mining problem. GC-Pattern is a list of clusters and adjacent clusters need
to satisfy time threshold, object containment relationship and clusters size threshold
requirements. GC-Pattern was proposed to capture the gradual object moving trend.
The discovery of GC-Pattern from trajectory streams is critical for real time applications. For
example: traffic jam discovery in transportation management, event detection in public
security and invasion monitor in military surveillance [Zhou, Liang, Li et al. (2018)].
Despite of the wide applications, the discovery of GC-Pattern from trajectory streams is not

1 School of Computer Science and Technology, Nanjing Normal University, Nanjing, 210023, China.
2 Department of Computer Science, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston,

MA, USA.
* Corresponding Author: Genlin Ji. Email: glji@njnu.edu.cn.

886 Copyright © 2019 Tech Science Press CMC, vol.59, no.3, pp.885-901, 2019

efficiently supported in existing systems, partly due to the following challenges:
Instantaneity: Trajectory streams arrives rapidly in a short period of time and its size
keeps growing as time goes. Therefore, the algorithm for discovering GC-Pattern from
trajectory streams needs to be designed with low computation cost and memory limitation.
Parameter insensitivity: The distribution of trajectory streams is unknown and
constantly change. Hence it is difficult to set an appropriate threshold value of pa-
rameters when clustering moving objects. So the mining algorithm should be insensitive
to the parameter setting.
Pattern updating: The GC-Patterns at previous time window include a lot of valuable
information. This information usually can be utilized to reduce the repeated computation,
save the cost of the computation, and boost the efficiency of the mining algorithm. Hence,
when trajectory streams arrive, there is no need to process past data. By taking full use of
the GC-Patterns discovered earlier, the mining algorithm of GC-Pattern should be
effective to update patterns.
However, since the existing mining algorithms of GC-Pattern are designed for static
trajectory datasets, it cannot effectively deal with the problems mentioned above. In this
paper, we propose a GC-Pattern mining algorithm, which contains three phases: (1)
Clustering moving objects, (2) obtaining all related-clusters in current time window, (3)
updating GC-Pattern.
The main contributions of the paper are as follows:
(1) GC-Pattern mining algorithm DStream-GC is proposed to discover GC-Pattern from
large scale trajectory streams.
(2) Density Peaks (DP) Clustering [Rodriguez and Laio (2014)] is introduced to
clustering moving objects since the algorithm is not sensitive to the parameter. Moreover,
a data structure named moving micro-group is used to speed up the clustering tasks.
(3) GC-Pattern updating algorithm Update-GC is proposed. The related-clusters and two
pruning rules are developed to accelerate the updating process.
The remaining of the paper is organized as follows. Section 2 introduces the related
works. The definition of GC-Pattern is given in Section 3. The algorithm for discovering
GC-Pattern is presented in Section 4. Experiments testing effectiveness and efficiency are
shown in Section 5. Finally, our research is concluded in Section 6.

2 Related works
GC-Pattern [Hai, Ienco, Poncelet et al. (2012)] is a special type of moving clusters
pattern that models the behavior of the moving objects travelling together. There are a
bunch of works on mining moving clusters pattern from moving object trajectories. These
works can be categorized into two aspects of research:
Moving clusters pattern discovery from static trajectory data. One of the earliest
works is Flock [Benkert, Gudmundsson, Hübner et al. (2010)] discovery. Flock is defined
as a group of moving objects moving in a disc of a fixed size for k consecutive
timestamps. Another similar definition, Moving Cluster [Kalnis, Mamoulis and Bakiras
(2005)], tries to find a group of moving objects which have considerably portion of

An Algorithm for Mining Gradual Moving Object Clusters Pattern 887

overlap at any two consecutive timestamps. A recent research by Jeung et al. [Jeung, Shen
and Zhou (2008); Jeung, Yiu, Zhou et al. (2010)] proposes Convoy, an extension of flock,
where spatial clustering is based on density. Comparing with all these definitions, Swarm [Li,
Ding, Han et al. (2010)] is a more general one that does not require k consecutive
timestamps. More recently, Gathering [Zheng, Zheng, Yuan et al. (2013)] was proposed to
capturing groups where a part of objects were allowed to change. However, all the above
methods cannot capture the moving trends of objects which can be very useful for better
understanding the natural moving behavior in various real world applications.
Moving clusters pattern discovery from trajectory streams. Vieira et al. [Vieira,
Bakalov and Tsotras (2009)] propose an algorithm to discover the existing pattern Flock
from trajectory streams. Flock requires moving objects to continuously move in a circular
area of a given radius. In order to reduce computation load, the index technique is
introduced. Tang et al. [Tang, Zheng, Yuan et al. (2012); Tang, Zheng, Yuan et al. (2014)]
propose the discovering algorithm of Traveling Companion. Traveling Companion
requires moving objects to be connected in density on consecutive timestamps. In order
to improve the efficiency of clustering algorithm, a special data structure named traveling
buddy is proposed to store and maintain the relationship between moving objects. Li et al.
[Li, Ceikute, Jensen et al. (2013)] propose Group pattern, that is, the moving objects are
connected in density for a period of time. Since the Group pattern limits time strictly,
information such as the direction and speed of the moving objects is used to judge
whether it is necessary to update the pattern when the trajectory streams arrives. In
addition, Zheng et al. [Zheng, Zheng, Yuan et al. (2014)] use the existing traveling buddy
structure to implement the algorithm of Gathering [Zheng, Zheng, Yuan et al. (2013)]
discovery. Lan et al. [Lan, Yu, Cao et al. (2017)] further propose an online Evolving
Groups discovery algorithm. Both Gathering and Evolving Groups pattern require the
moving objects stay stable, and thus they adopt an approximate approach to reduce
invalid operations. However, since GC-Pattern requires adjacent clusters to satisfy time
threshold and object containment relationship, the above methods are not applicable to
discover GC-Pattern from trajectory streams.

3 Problem statement
Let O = {𝑜𝑜1,⋯ , 𝑜𝑜𝑛𝑛} be a set of moving objects where each object 𝑜𝑜𝑖𝑖 reports its positions
in fixed interval of time. We assume that the position of each object is reported at the
same timestamp and term the positions of all objects at a single timestamp as a snapshot.
Thus, we consider trajectory streams S as a sequence of snapshots {s1,⋯ , 𝑠𝑠𝑖𝑖,⋯ }. A
database of clusters C = {𝐶𝐶1, … ,𝐶𝐶𝑖𝑖,⋯ } is a collection of the moving object clusters at
snapshots{s1,⋯ , 𝑠𝑠𝑖𝑖,⋯ }. The cluster 𝐶𝐶𝑖𝑖 is defined as the clustering results of density-
based clustering at snapshot 𝑠𝑠𝑖𝑖. Given a cluster 𝑐𝑐 ∈ 𝐶𝐶𝑖𝑖, |c| and t(c) are respectively used to
denote the number of objects belonging to cluster c and the timestamp that c involved in.
Let 𝑠𝑠𝑡𝑡−𝑤𝑤+1, 𝑠𝑠𝑡𝑡−𝑤𝑤+2,⋯ , 𝑠𝑠𝑡𝑡 be the set of snapshots in current window [𝑡𝑡 − 𝑤𝑤 + 1, 𝑡𝑡] where
𝑤𝑤 is the length of the time window. The window slides by one snapshot that removes the
snapshot of time instance 𝑡𝑡 − 𝑤𝑤 + 1 and includes the snapshot of time instance 𝑡𝑡 + 1 in
current window. Tab. 1 lists the notations used throughout this paper.

888 Copyright © 2019 Tech Science Press CMC, vol.59, no.3, pp.885-901, 2019

Table 1: List of Notations

Notation Definition
S trajectory streams
𝑠𝑠𝑖𝑖 trajectory streams at current snapshot
𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 the time threshold
γ the radius threshold
𝑑𝑑𝑐𝑐 the cutoff distance threshold
𝑤𝑤 the time window threshold
C the cluster set
𝐺𝐺𝐶𝐶𝑐𝑐′ the GC-Pattern candidate set in previous time window
𝐺𝐺𝐶𝐶′ the GC-Pattern set in previous time window
GC the GC-Pattern set in current time window
𝐺𝐺′ the moving micro-group set at previous snapshot
G the moving micro-group set at current snapshot
RC the related-cluster set in current time window

Definition 1 (GC-Pattern). Given a list of clusters 𝐶𝐶∗ = {𝑐𝑐1,⋯ , 𝑐𝑐𝑛𝑛} , a minimum
threshold 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡, a time window size 𝑤𝑤. 𝐶𝐶∗ is a GC-Pattern if:

 𝐶𝐶∗ = 𝐺𝐺𝐶𝐶:

⎩
⎪
⎨

⎪
⎧

(1): |𝐶𝐶∗| ≥ 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 .
(2):∀𝑚𝑚 ∈ {1,⋯ ,𝑚𝑚 − 1}, 𝑐𝑐𝑖𝑖 ⊆ 𝑐𝑐𝑖𝑖+1.
(3): |𝑐𝑐𝑛𝑛| > |𝑐𝑐1|.

 (4):∀𝑚𝑚 ∈ {1,⋯ ,𝑚𝑚 − 1}: 1 ≤ 𝑡𝑡(𝑐𝑐𝑖𝑖+1) − 𝑡𝑡(𝑐𝑐𝑖𝑖) < 𝑤𝑤.

 (1)

Let s1, s2,⋯ , st be the series of snapshots that have arrived so far. If 𝐶𝐶∗ = {𝑐𝑐1,⋯ , 𝑐𝑐𝑛𝑛} is a
GC-Pattern and the last element of 𝐶𝐶∗ belongs to the newly arrived snapshot, i.e., 𝑡𝑡(𝑐𝑐𝑛𝑛) =
𝑡𝑡, then 𝐶𝐶∗ is a GC-Pattern in current time window.
Fig. 1 illustrates an example of GC-Pattern. There are 6 objects, S = {s1,⋯ , s6}, C =
�{c1}, {c2}, {c4}, {c6}� . Let mint = 3 , w = 3 , C1 = {c1, c2, c4} and C2 = {c1, c2, c4, c6}
are GC-Patterns. C2 = {c1, c2, c4, c6} is also a GC-Pattern in current time window.

Figure 1: An example of GC-Pattern
Problem Definition: Let s1, s2,⋯ , st be the series of snapshots that have arrived so far.
The problem is to discover all the GC-Patterns in current time window[t − w + 1, t].

An Algorithm for Mining Gradual Moving Object Clusters Pattern 889

4 Discovery of GC-Pattern
4.1 The algorithm for mining GC-Pattern from trajectory streams using sliding window
models
This paper proposes algorithm DStream-GC to discover GC-Pattern from trajectory
streams. First, the definition of the GC-Pattern candidate is given.
Definition 2 (GC-Pattern Candidate). Given a list of clusters 𝐶𝐶∗ = {𝑐𝑐1,⋯ , 𝑐𝑐𝑛𝑛} , a
minimum threshold 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡, a time window size 𝑤𝑤. 𝐶𝐶∗ is a GC-Pattern candidate if:

 𝐶𝐶∗ = 𝐺𝐺𝐶𝐶′:

⎩
⎪
⎨

⎪
⎧

(1): |𝐶𝐶∗| < 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡.
(2):∀𝑚𝑚 ∈ {1,⋯ ,𝑚𝑚 − 1}, 𝑐𝑐𝑖𝑖 ⊆ 𝑐𝑐𝑖𝑖+1.
(3): |𝑐𝑐𝑛𝑛| > |𝑐𝑐1|.
(4):∀𝑚𝑚 ∈ {1,⋯ ,𝑚𝑚 − 1}: 1 ≤ 𝑡𝑡(𝑐𝑐𝑖𝑖+1)− 𝑡𝑡(𝑐𝑐𝑖𝑖) < 𝑤𝑤.

 (2)

If 𝐶𝐶∗ = {𝑐𝑐1,⋯ , 𝑐𝑐𝑛𝑛} is a GC-Pattern candidate and the last element of 𝐶𝐶∗ belongs to the
snapshots in current time window[𝑡𝑡 − 𝑤𝑤 + 1, 𝑡𝑡], i.e., 𝑡𝑡(𝑐𝑐𝑛𝑛) > 𝑡𝑡 − 𝑤𝑤 + 1, then 𝐶𝐶∗ is a
GC-Pattern candidate in current time window. Intuitively, the GC-Pattern candidate does
not require duration greater than time threshold. In the trajectory streams, data continues
to arrive. For the GC-Pattern with shorter duration, its lasting time is likely to increase
continuously, and meets the time requirement as time goes by. Therefore, when trajectory
streams arrive, the previous GC-Pattern candidates are updated. Once the duration meets
the requirement, it will be reported as a GC-Pattern in current time window.
Algorithm DStream-GC includes the following three stages.
(1) clustering moving objects
The clustering method based on the density peaks is used to cluster the moving objects at
current snapshot si.The clustering results are a set of clusters Ci.
(2) obtaining related-clusters in current time window
The related-clusters in current time window of every cluster in Ci are obtained by using
the relationship between clusters at adjacent snapshots.
(3) updating GC-Pattern
The updating operation of GC-Pattern is implemented by intersecting every cluster in Ci
with GC-Patterns and GC-Pattern candidates in previous time window. The related-
clusters are used to speed up the updating process. Finally, all the updated GC-Patterns
satisfying the conditions are returned.
The process of GC-Pattern discovery from trajectory streams is shown as algorithm
DStream-GC. When the snapshot si arrives, the moving objects are gathered into clusters
(line 3). Then the related-clusters in current time window of every clusters of si is
obtained (line 4). By intersecting each cluster of si with GC-Patterns and GC-Pattern
candidates in previous time window, the pattern updating operation is conducted (line 5).
After that, GC-Pattern candidates in current time window is updated (line 6). Finally,
GC-Patterns that meet the time requirement are returned (lines 7-10).
Algorithm DStream-GC
Input: S, 𝐺𝐺𝐶𝐶𝑐𝑐′, 𝐺𝐺𝐶𝐶′, 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 , γ, 𝑑𝑑𝑐𝑐, 𝑤𝑤

890 Copyright © 2019 Tech Science Press CMC, vol.59, no.3, pp.885-901, 2019

Output: GC
1. 𝐺𝐺𝐶𝐶𝑐𝑐′ ← ∅;
2. 𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆 do
3. 𝐶𝐶𝑖𝑖 ← DPCluster-MMG(𝑠𝑠𝑖𝑖, 𝛾𝛾,𝑑𝑑𝑐𝑐); // clustering based on moving micro-groups
4. 𝑅𝑅𝐶𝐶𝑖𝑖 ←Obtain-RC(𝐶𝐶𝑖𝑖,𝑤𝑤); // obtaining the related-clusters in current time

window
5. 𝐺𝐺𝐶𝐶∗ ←Update-GC(𝐶𝐶𝑖𝑖,𝑅𝑅𝐶𝐶𝑖𝑖,𝐺𝐺𝐶𝐶𝑐𝑐′,𝐺𝐺𝐶𝐶′,𝑤𝑤);// Updating GC-Patterns

// Updating GC-Pattern candidates in current time window
6. 𝐺𝐺𝐶𝐶𝑐𝑐′ ← 𝑈𝑈𝑈𝑈𝑑𝑑𝑈𝑈𝑡𝑡𝑈𝑈(𝐺𝐺𝐶𝐶𝑐𝑐′,𝐺𝐺𝐶𝐶′,𝐺𝐺𝐶𝐶∗);

 // Identifying GC-Patterns satisfying the conditions
7. 𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑔𝑔𝑐𝑐𝑖𝑖 ∈ 𝐺𝐺𝐶𝐶∗ 𝐝𝐝𝐟𝐟
8. 𝐢𝐢𝐟𝐟 |𝑔𝑔𝑐𝑐𝑖𝑖| > 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
9. add 𝑔𝑔𝑐𝑐𝑖𝑖 to 𝐺𝐺𝐶𝐶;
10. 𝐟𝐟𝐭𝐭𝐭𝐭𝐫𝐫𝐟𝐟𝐭𝐭 𝐺𝐺𝐶𝐶;

For the three stages of algorithm DStream-GC, this paper proposes corresponding
algorithms to improve the discovering efficiency. The algorithm designed for each stage
is described below.

4.1.1 Clustering moving objects
The algorithm for discovering GC-Pattern from static trajectory data needs to carry out
density-based clustering (DBSCAN) at every snapshot. The time complexity of this
operation is O(n2), where n is the number of moving objects. Subsequently, if the number is
large, the method cannot meet the timeliness requirement of trajectory streams processing.
Tang et al. [Tang, Zheng, Yuan et al. (2012)] proposed a traveling buddy data structure to
store and maintain the relationship between moving objects. By utilizing traveling buddy
structure, the algorithm saves the cost of the computation effectively and improves the
clustering efficiency. However, when updating the center point of the traveling buddy,
the accumulation of the offset increases the sensitivity of outliers of the algorithm. Gong
et al. [Gong, Zhang and Yu (2017)] used a cluster-cell data structure in data stream
clustering to represent a set of close points. However their methods cannot apply to
discover the movement pattern directly due to the time series property of spatio-temporal
data. In this paper, the moving micro-group concept is proposed to represent the small
group of moving objects with stable structure. When the trajectory streams arrive, the
algorithm accelerates the clustering process by maintaining the information of moving
micro-group and avoiding re-clustering moving objects.
Definition 3 (Moving Micro-Group): A moving micro-group g represents a group of
moving objects staying closer, which can be described by a three-tuple �𝑟𝑟𝑔𝑔,𝜌𝜌𝑔𝑔, 𝛿𝛿𝑔𝑔�:
 (1) rg is the representative object of a moving micro-group g. The moving micro-group g
represented by rg summarizes a set of objects Pg satisfying: (a) 𝑟𝑟𝑔𝑔 = 𝑈𝑈𝑟𝑟𝑔𝑔min

𝑟𝑟𝑘𝑘∈𝑅𝑅
(|𝑈𝑈𝑖𝑖, 𝑟𝑟𝑘𝑘|),

where 𝑈𝑈𝑖𝑖 ∈ 𝑃𝑃𝑔𝑔 and R is the set of the representative object; (b) for ∀𝑈𝑈𝑖𝑖 ∈ 𝑃𝑃𝑔𝑔, �𝑈𝑈𝑖𝑖, 𝑟𝑟𝑔𝑔� ≤
γ ,where γ is the radius threshold.
(2) 𝜌𝜌𝑔𝑔 is the density of a moving micro-group g, which is defined as the number of

An Algorithm for Mining Gradual Moving Object Clusters Pattern 891

moving objects contained in the moving micro-group g, i.e., 𝜌𝜌𝑔𝑔 = �𝑃𝑃𝑔𝑔�.
(3) 𝛿𝛿𝑔𝑔 is the dependent distance from rg to its nearest moving micro-group representative
object with higher density, i.e., 𝛿𝛿𝑔𝑔 = min

𝑔𝑔′:𝜌𝜌𝑔𝑔′>𝜌𝜌𝑔𝑔
��𝑟𝑟𝑔𝑔, 𝑟𝑟𝑔𝑔′��.

During the initialization phase of moving micro-groups, each moving object is assigned
to a moving micro-group that meets two conditions in (1). The initialization step only
needs to be carried out once and the moving micro-groups are dynamically maintained
along the stream.
There are two kinds of operations to maintain moving micro-groups on the trajectory
streams: updating representative objects and updating the other moving objects. The
updating process of the moving micro-groups is shown as algorithm Update-MMG.
When the trajectory streams arrive, the representative objects at the last snapshot are
updated (lines 1-5), and then the remaining moving objects are assigned to the
corresponding moving micro-group using definition 3 (lines 6-8). After that, the
algorithm assigns the new arriving objects at current snapshot to the corresponding moving
micro-group (line 9). Finally the updated moving micro-groups are returned (line 10).
Algorithm Update-MMG
Input：𝑠𝑠𝑖𝑖, G′, γ
Output: G

1. 𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑔𝑔𝑖𝑖,𝑔𝑔𝑗𝑗 ∈ G′,𝑔𝑔𝑖𝑖 ≠ 𝑔𝑔𝑗𝑗 do
 // updating representative objects

2. 𝐢𝐢𝐟𝐟 𝑑𝑑𝑚𝑚𝑠𝑠𝑡𝑡 �𝑟𝑟𝑔𝑔𝑖𝑖 , 𝑟𝑟𝑔𝑔𝑗𝑗� ≤ γ 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭

3. merge 𝑔𝑔𝑖𝑖,𝑔𝑔𝑗𝑗 as 𝑔𝑔𝑖𝑖;
4. remove 𝑔𝑔𝑗𝑗 and add 𝑔𝑔𝑖𝑖 to G;
5. else add 𝑔𝑔𝑖𝑖,𝑔𝑔𝑗𝑗 to G;

// updating the remaining moving objects
6. 𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑔𝑔𝑖𝑖 ∈ G 𝐝𝐝𝐟𝐟
7. 𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑈𝑈𝑗𝑗 ∈ 𝑔𝑔𝑖𝑖& 𝑈𝑈𝑗𝑗 ∈ 𝑠𝑠𝑖𝑖 𝐝𝐝𝐟𝐟
8. findMMG(𝑈𝑈𝑗𝑗 , G);// definition 3
9. updateNewARR(𝑠𝑠𝑖𝑖, G);
10. 𝐟𝐟𝐭𝐭𝐭𝐭𝐫𝐫𝐟𝐟𝐭𝐭 G;

An example of updating moving micro-groups is shown in Fig. 2. There are three moving
micro-groups at snapshot 𝑠𝑠1 . The representative objects of 𝑔𝑔1 ,𝑔𝑔2 ,𝑔𝑔3 are 1, 5, and 8
respectively. When the snapshot 𝑠𝑠2 arrives, the moving micro-groups at snapshot 𝑠𝑠1 are
updated. Moving micro-groups 𝑔𝑔1,𝑔𝑔2 have changed, with object 4 in 𝑔𝑔1 moving to 𝑔𝑔2.
The updated moving micro-groups are 𝑔𝑔1′ ,𝑔𝑔2′ ,𝑔𝑔3′ .
When the snapshot arrives, the algorithm updates the moving micro-groups at previous
snapshot, and then conducts the clustering operation with the updated moving micro-
group as a basic unit. Algorithm DBSCAN is employed in existing methods based on

892 Copyright © 2019 Tech Science Press CMC, vol.59, no.3, pp.885-901, 2019

static trajectory datasets to obtain the clusters on current snapshot. However, DBSCAN is
not well used to clustering moving objects on trajectory streams due to the property of
sensitivity to parameters.

Figure 2: An example of updating Moving Micro-Groups

In 2014, Rodriguez et al. proposed a density-based clustering algorithm (DP) [Rodriguez
and Laio (2014)]. Since the algorithm only needs one parameter and is insensitive to this
parameter, it has been widely used in the industry and academia [Sun, Geng and Ji
(2015); Chen, Lai, Qi et al. (2016)]. In this paper, algorithm DP is exploited to complete
the clustering operation of moving objects.
Let m be the average number of moving micro-groups and n be the number of moving
objects. The time complexity of the moving micro-groups updating algorithm is O(m2 +
mn), and the time complexity of the DP algorithm based on moving micro-groups is
O(m2). Even in the worst case, if the objects are sparse and each of them is a moving
micro-group, where m = n. The time cost of the clustering process is still O(n2). In fact,
the value of m is much smaller than n, so the clustering algorithm proposed in this paper
is effective.

4.1.2 Obtaining related-clusters in current time window
After completing the clustering operation, the discovering algorithm needs to update the
pattern. The basic method is to intersect each cluster at current snapshot with each GC-
Pattern and GC-Pattern candidate in previous time window respectively. Let the average
number of objects in cluster be n, the size of the time window be w, and the average
number of GC-Pattern candidates at each snapshot in the time window is m. The time
complexity of intersection operation is O(wmn).
In this paper, we develop new techniques to improve the efficiency of intersection
operation. By utilizing the connections between clusters at adjacent snapshots, the
concept of related-cluster is proposed. The related-clusters are helpful for reducing the
number of the intersection. The concept of related-cluster is given below.
Definition 4 (Related-Cluster): Let current time window be [𝑡𝑡 − 𝑤𝑤 + 1, 𝑡𝑡]. Given a
cluster c at snapshot 𝑠𝑠𝑡𝑡 , if the cluster 𝑐𝑐′ at snapshot 𝑠𝑠𝑗𝑗(𝑡𝑡 − 𝑤𝑤 + 1 ≤ 𝑗𝑗 < 𝑡𝑡) contains at
least one object of cluster c, then cluster 𝑐𝑐′ is related with cluster c, that is, cluster 𝑐𝑐′ is a
related-cluster in current time window of cluster c.

An Algorithm for Mining Gradual Moving Object Clusters Pattern 893

As shown in Fig. 3, there are four snapshots 𝑠𝑠1 , 𝑠𝑠2 , 𝑠𝑠3 , 𝑠𝑠4 . The ellipses in the figure
represent the clusters generated by clustering operation. Assuming w=3, the related-clusters
in current time window at snapshots 𝑠𝑠1 , 𝑠𝑠2 , 𝑠𝑠3 , 𝑠𝑠4 is listed at the bottom respectively.
Where 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗 represents the set of related-clusters of cluster 𝑐𝑐𝑖𝑖 at snapshot 𝑠𝑠𝑗𝑗.

Figure 3: An example of obtaining Related-Clusters

Before updating patterns, the related-clusters in current time window of the clusters at
current snapshot are obtained by a small amount of calculations. The process of obtaining
related-clusters is shown as algorithm Obtain-RC. First, the algorithm obtains the related-
clusters 𝑐𝑐𝑖𝑖. 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1 of cluster 𝑐𝑐𝑖𝑖 at snapshot 𝑠𝑠𝑗𝑗, with moving micro-groups as basic units. If
the elements of the moving micro-group are unchanged, the algorithm only need to add
the cluster which the moving micro-group belonged to snapshot 𝑠𝑠𝑗𝑗−1 to 𝑐𝑐𝑖𝑖. 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1 (lines 1-
3). Otherwise, the clusters which the changed elements belong to snapshot 𝑠𝑠𝑗𝑗−1 are also
added to 𝑐𝑐𝑖𝑖. 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1(lines 4-9). After obtaining 𝑐𝑐𝑖𝑖. 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1 , the algorithm obtains the related-
clusters in current time window 𝑐𝑐𝑖𝑖. 𝑟𝑟𝑐𝑐𝑠𝑠𝑊𝑊 with excepts of related-clusters at snapshot
𝑠𝑠𝑗𝑗−1(lines 10-14). Finally, the related-cluster set RC in current time window of all clusters
at snapshot 𝑠𝑠𝑗𝑗 is returned (lines 16).
Algorithm Obtain-RC
Input：𝐺𝐺, 𝐶𝐶, 𝑤𝑤
Output: RC

1. 𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶 𝐝𝐝𝐟𝐟
 // obtaining the related-clusters at snapshot 𝑠𝑠𝑗𝑗−1 of each cluster at current

snapshot 𝑠𝑠𝑗𝑗
2. 𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑔𝑔𝑘𝑘 ∈ 𝑐𝑐𝑖𝑖 𝐝𝐝𝐟𝐟
3. add 𝑔𝑔𝑘𝑘 . 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑗𝑗−1 to 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1;
4. flag = CheckObject(𝑔𝑔𝑘𝑘);
5. 𝐢𝐢𝐟𝐟 flag 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
6. 𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑈𝑈𝑚𝑚 ∈ 𝑔𝑔𝑘𝑘 . 𝑐𝑐ℎ𝑈𝑈𝑚𝑚𝑔𝑔𝑈𝑈𝑈𝑈𝑜𝑜𝑚𝑚𝑚𝑚𝑡𝑡 𝐝𝐝𝐟𝐟
7. 𝐢𝐢𝐟𝐟 𝑈𝑈𝑚𝑚. 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑗𝑗−1 ∉ 𝑐𝑐𝑖𝑖. 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1

894 Copyright © 2019 Tech Science Press CMC, vol.59, no.3, pp.885-901, 2019

8. add 𝑈𝑈𝑚𝑚. 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑗𝑗−1 to 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1;
9. add to 𝑐𝑐𝑖𝑖. 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1 to 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑠𝑠𝑊𝑊 ;

 // obtaining the related-clusters in the time window
10. 𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑐𝑐𝑚𝑚 ∈ 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1 do
11. 𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑐𝑐𝑛𝑛 ∈ 𝑐𝑐𝑚𝑚. 𝑟𝑟𝑐𝑐𝑠𝑠𝑊𝑊 do
12. 𝐢𝐢𝐟𝐟 𝑡𝑡(𝑐𝑐𝑛𝑛) > 𝑗𝑗 − 𝑤𝑤 + 1
13. add 𝑐𝑐𝑘𝑘 to 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑐𝑐𝑛𝑛.𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑡𝑡;
14. add 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑐𝑐𝑛𝑛.𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑡𝑡 to 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑠𝑠𝑊𝑊 ;
15. add 𝑐𝑐𝑖𝑖. 𝑟𝑟𝑐𝑐𝑠𝑠𝑊𝑊 to RC;
16. 𝐟𝐟𝐭𝐭𝐭𝐭𝐫𝐫𝐟𝐟𝐭𝐭 RC;

4.1.3 Updating GC-Pattern
Since the discovering algorithm updates the patterns by conducting intersection
operation, improving the intersection efficiency becomes the most important factors of
updating process. In Fig. 3, considering the basic intersection method, c9 need to intersect
with every element of the clusters set {c5, c6, c7, c8} at snapshot s2 and {c1, c2, c3, c4} at
snapshot s1 respectively. However, it is obvious that only the intersection operations of
c5, c6 with c9 can produce valid results since c5 and c6 has the same elements with c9. It
is the same as the snapshot s1 , only the intersection operations of c1 , c2 with c9 are
effective. In other words, for the intersection operation of the cluster, it is only necessary
to intersect the cluster with its related-clusters. For those unrelated-clusters, even if the
intersection is performed, no effective results can be produced. Based on the above
analysis, this paper uses the related-clusters to reduce intersection computation and
accelerate the pattern updating process.
In addition, in order to further improve the intersection efficiency, this paper proposes
two pruning rules, length pruning rules and backward pruning rules to optimize the
pattern updating process. Given a cluster ci and its related-cluster cj, if|ci| < �cj�, then cj
is pruned by length pruning rules. Given a GC-Pattern Candidate C = �c1, c2,⋯ , cj�, if
there is a cluster c′(t(c′) > t�cj�) at the current snapshot and C∗ = C ∪ c′ satisfies the
gradual property, then the intersection operation of ck (ck ∈ C & k < j) and c′ can not
generate qualified candidate(without cj), so ck is pruned by backward pruning rules.
The process of pattern updating based on the related-clusters and two pruning rules is
shown as algorithm Update-GC. First, all the related-clusters in current time window of
each cluster ci at current snapshot are obtained (lines 1-2). For each related-cluster ck, it
is judged whether it can pass the length-based pruning rule (lines 3-4). If ck is not pruned,
the algorithm continues to judge whether it can pass the backward pruning rule. If it is
also not pruned, the algorithm will intersect ci with ck(lines 5-6). If the length of the
intersection result is greater than or equal to the length of the related-cluster ck , the
algorithm obtains the set of GC-Patterns and GC-Pattern candidates P whose last cluster
is ck (lines 7-8). For each GC-Pattern and GC-Pattern candidates of P, it will be updated
by intersecting with ci . Then the updated GC-Pattern and GC-Pattern candidates are

An Algorithm for Mining Gradual Moving Object Clusters Pattern 895

added to the set of GC-Pattern GC∗ in current time window (lines 9-10). Finally GC∗ is
returned (line 11).
Algorithm Update-GC

Input: C, RC, 𝐺𝐺𝐶𝐶𝑐𝑐′, 𝐺𝐺𝐶𝐶′, 𝑤𝑤
Output: 𝐺𝐺𝐶𝐶∗
1. 𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶 𝐝𝐝𝐟𝐟
2. 𝑔𝑔𝑈𝑈𝑡𝑡 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑠𝑠𝑊𝑊 from RC

 // intersection operation based on related-clusters and pruning rules
3. 𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑐𝑐𝑘𝑘 ∈ 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑠𝑠𝑊𝑊 𝐝𝐝𝐟𝐟
4. 𝐢𝐢𝐟𝐟 LPR(𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑘𝑘) 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
5. 𝐢𝐢𝐟𝐟 BPR(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑘𝑘) 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
6. 𝑐𝑐′ = Intersect(𝑐𝑐𝑘𝑘, 𝑐𝑐𝑖𝑖);
7. 𝐢𝐢𝐟𝐟 |𝑐𝑐′| ≥ 𝑐𝑐𝑘𝑘 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭
8. P=getpattern(𝐺𝐺𝐶𝐶𝑐𝑐′,𝐺𝐺𝐶𝐶′, 𝑐𝑐𝑘𝑘);
9. 𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑈𝑈𝑗𝑗 ∈ 𝑃𝑃 𝐝𝐝𝐟𝐟
10. add 𝑈𝑈𝑗𝑗 ∪ 𝑐𝑐𝑖𝑖 to 𝐺𝐺𝐶𝐶∗;
11. 𝐟𝐟𝐭𝐭𝐭𝐭𝐫𝐫𝐟𝐟𝐭𝐭 𝐺𝐺𝐶𝐶∗;

Figure 4: An example of GC-Pattern discovery

Fig. 4 describes the process of discovering GC-Patterns. When the trajectory streams
arrive, the clustering operation is performed and the moving objects are gathered into
clusters. After that, the related-clusters in current time window of clusters at current
snapshot are obtained. By using the length pruning rule and the backward pruning rule,

896 Copyright © 2019 Tech Science Press CMC, vol.59, no.3, pp.885-901, 2019

those unqualified related-clusters are pruned. In the figure, the clusters in the solid line
frame and the dotted line frame are related-clusters pruned by the length pruning rule and
the backward pruning rule respectively. By intersecting related-clusters passing two
pruning rules with GC-Patterns and GC-Patterns candidates in previous time window, the
discovering algorithm completes the pattern updating tasks. Finally, those qualified GC-
Patterns which bold in the figure is reported.

5 Experiments
5.1 Experimental setting
In this section, the proposed algorithm is evaluated using two real trajectory data sets. The
swainsoni dataset [Hai, Ienco, Poncelet et al. (2012)] contains 43 trajectories of swainsoni
and 764 timestamps. The start timestamp of the dataset is August 18, 1995, and the end
timestamp of the dataset is June 24, 1998. The taxi dataset contains 13000 trajectories of
taxi and 1400 timestamps. It is the GPS data of taxi in Shanghai at April 1, 2015.
Since the discovering algorithm of GC-Pattern from trajectory streams has not been
reported, the proposed algorithm DStream-GC is compared with ClusterGrowth, which is
used to discover GC-Pattern from static trajectory data. DBSCAN algorithm is adopted to
realize clustering procedures of ClusterGrowth. Linear interpolation is used to fill in the
missing data. The experimental parameter settings are shown in Tab. 2, where r is the
radius threshold of the moving micro-group, cutoff distance 𝑑𝑑𝑐𝑐 is the parameter of DP
algorithm, mint is the time threshold of the GC-Pattern. The parameters of DBSCAN are
pts and eps. The experiments are conducted on a PC with Intel 4590 CPU(3.30HZ) and
4GB memory. All the algorithms are implemented in Java.

Table 2: Experiment parameters of ClusterGrowth and DStream-GC

Algorithm Dataset γ 𝑑𝑑𝑐𝑐 mint window pts eps

ClusteGrowth
Swainsoni

Taxi
2% 2% 10 100 2 1000
2% 2% 10 30 5 200

DStream-GC
Swainsoni

Taxi
2% 2% 10 100 - -
2% 2% 10 30 - -

5.2 Effectiveness analysis of algorithm DStream-GC
To demonstrate the effectiveness of algorithm DStream-GC, swainsoni dataset is used
during experiments. In the comparison, the algorithm ClusterGrowth is employed.
Tab. 3 demonstrates a GC-Pattern discovered by DStream-GC on swainsoni dataset. The
first row in the table shows the date of moving objects stay together. The second row and
third row illustrate the number of objects traveling together and their location
respectively. It is observed that two objects set out from Colorado, with the scale
increasing continuously to 4, 5, 8, 10, until the number reaching 11 when they arrive in
Colombia through the ocean. It is the same with the result of algorithm ClusterGrowth.

An Algorithm for Mining Gradual Moving Object Clusters Pattern 897

Table 3: An example of GC-Pattern on swainsoni dataset
Date 2/10 6/10 8/10 14/10 17/10 22/10 25/10

Number of swainsonies 2 4 5 8 10 11 11
Lacation of swainsonies Colorado Texas Mexico ElSalvador CostaRica Panama Colombia

5.3 Efficiency analysis of algorithm DStream-GC
In this subsection, we conduct experiments on taxi dataset to evaluate the efficiency of
the algorithms for discovering GC-Pattern.

5.3.1 Efficiency analysis of algorithm DPCluster-MMG
In the first part of experiments, we analyze the efficiency of DP clustering based on
moving micro-groups. In the beginning, we test DPCluster-MMG with different radius
threshold γ from 0.5% to 3%, and record the number of moving micro-groups and the
running time of DPCluster-MMG. One can clearly learn from Fig. 5(a) that the number of
moving micro-groups whose members are changed is at most 25% of the total number of
moving micro-groups, and most of the moving micro-groups remain unchanged.
Furthermore, as the radius threshold γ increases, the number of moving micro-groups
continues to decrease and the number of moving micro-groups stay unchanged shows an
exponentially decline distribution. This is consistent with the theory that the larger scale
of the moving microgroup, the greater probability of change. In addition, in Fig. 5(b), DP
clustering based on moving micro-groups (DPCluster-MMG) is compared with DP
clustering based on moving objects (DPCluster-MO). It is found that the running time of
the DPCluster-MMG algorithm proposed in this paper is much smaller than DPCluster-
MO. Further observations show that DPCluster-MMG has the lowest time overhead when
γ is 2%. On the one hand, when the value of γ is small, the size of the moving micro-
group is small, which can't give full play to advantages of small group. When γ is large,
since there are many members in the moving micro-group, the possibility of change is
larger, which involves high updating overhead. Based on the above analysis, the value of
γ is uniformly selected as 2% in the experiments of efficiency and effectiveness.

(a)number of moving micro-groups w.r.t.
radius threshold γ

(b)running time of DPCluster-MMG and
DPCluster-MO w.r.t. radius threshold γ

Figure 5: Efficiency analysis of algorithm DPCluster-MMG

898 Copyright © 2019 Tech Science Press CMC, vol.59, no.3, pp.885-901, 2019

5.3.2 Efficiency analysis of algorithm Update-GC
In this section, we analyze the efficiency of Update-GC, a pattern updating algorithm
based on intersection operation of clusters. In order to evaluate the effectiveness of the
intersection methods proposed in this paper, the execution time of the four methods is
calculated. They are traditional intersection method (Naive), intersection method based
on related-clusters (RCPR), intersection method based on related-clusters and length
pruning rule (RCPR+LPR) and intersection method based on related-cluster, length
pruning rule and backward pruning rule (RCPR+LPR+BPR) respectively. As shown in
Fig. 6(a), as the number of trajectories increases, the running time of four intersection
methods is obviously increase. Among them, the traditional intersection method grows
exponentially with the increase of trajectory data. The reason is that the increase of
trajectory data will lead to the increase of the number of clusters, which results in high
intersection overhead. In addition, compared with the traditional method, the intersection
method based on the related-cluster increase efficiency by 35%-50%, which proves the
effectiveness of our method. For the two pruning rules, intersecting method based on
related-cluster and length pruning rule increases efficiency by about 13% than using the
intersection method based on the related-clusters alone. However, after adding backward
pruning rule, the improvement of efficiency is not obvious. The main reason is that the
backward pruning rule requires additional computation to analysis whether the cluster
appears in the candidate at previous snapshot.
On the other hand, the size of time window ω in the discovering algorithm also affects
the execution time of the intersection operation. As shown in Fig. 6(b), with the
increasing of the time window size, the execution time of the four intersecting methods is
grow accordingly.

(a)intersection execution time w.r.t. number
of trajectories

(b) intersection execution time w.r.t. time
window size

Figure 6: Efficiency analysis of algorithm Update-GC

5.3.3 Efficiency analysis of algorithm DStream-GC
Finally we analyze the efficiency of the GC-Pattern discovery algorithm DStream-GC.
Algorithm ClusterGrowth is used to do the comparison. As shown in Fig. 7(a), When the
number of trajectories is 2000, 4000, 6000, 8000, 10000, the running time of the latter is

An Algorithm for Mining Gradual Moving Object Clusters Pattern 899

13, 34, 39, 51, 52 times as much as the former, which proves the advantages of the
DStream-GC algorithm in trajectory streams processing.
In addition, DStream-GC can be divided into three steps, clustering step, obtaining
related-cluster step (O-Step) and updating pattern step based on intersection operation (I-
Step). Moreover, the clustering step can be further divided into the moving micro-groups
updating step (U-Step) and the DP clustering based on moving micro-groups step (C-
Step). We conduct experiments to calculate the time overhead of each phase and the
proportion of time they occupy. As shown in Fig. 7(b), as the number of trajectories
increases, the execution time of the four phases has significant increases. Among them,
the time cost of obtaining related-cluster phase is the smallest, about take 0.3%-0.5% of
the total running time, and the execution time of the pattern updating costs 5%-8% of the
total time. In contrast, in the traditional intersection operation, the pattern updating
operation spends 16%-22% of the total time. In addition, for the clustering operation, the
updating time of the moving micro-groups accounts for 60%-80% of the total clustering
time, and as the number of trajectories increases, the ratio of the updating time to the total
clustering time becomes smaller and smaller, which means the moving micro-group
updating algorithm is more suitable for large scale trajectory streams.

(a) running time of DStream-GC and
ClusterGrowth w.r.t. number of trajectories

(b) running time of each step w.r.t. number of
trajectories

Figure 7: Efficiency analysis of algorithm DStream-GC

6 Conclusion
In this paper, algorithm DStream-GC is proposed to efficiently discover GC-Patterns
from trajectory streams. The moving micro-group is proposed to improve the efficiency
of clustering and related-cluster is designed to speed up the pattern updating process. We
evaluate the proposed algorithms in extensive experiments on two real trajectory datasets.
The experiment results demonstrate the effectiveness and efficiency of our algorithms. In
the future, we will extend the current discovery algorithm to support other types of
moving clusters pattern.

Acknowledgement: This work is supported by the National Natural Science Foundation
of China under Grants No. 41471371.

900 Copyright © 2019 Tech Science Press CMC, vol.59, no.3, pp.885-901, 2019

References
Benkert, M.; Gudmundsson, J.; Hübner, F.; Wolle, T. (2008): Reporting flock
patterns. Computational Geometry Theory & Applications, vol. 41, no. 3, pp. 111-125.
Chen, Y. W.; Lai, D. H.; Qi, H.; Wang, J. L.; Du, J. X. (2016): A new method to
estimate ages of facial image for large database. Multimedia Tools & Applications, vol.
75, no. 5, pp. 2877-2895.
Gong, S. F.; Zhang, Y. F.; Yu, G. (2017): Clustering stream data by exploring the
evolution of density mountain. Proceedings of the Very Large Database Endowment, vol.
11, no. 4, pp. 393-405.
Hai, P. N.; Ienco, D.; Poncelet, P.; Tesseire, M. (2012): Mining time relaxed gradual
moving object clusters. International Conference on Advances in Geographic
Information Systems, pp. 478-481.
Jeung, H. Y.; Shen, H. T.; Zhou, X. F. (2008): Convoy queries in spatio-temporal
databases. IEEE 24th International Conference on Data Engineering, pp. 1457-1459.
Jeung, H. Y.; Yiu, M. L.; Zhou, X. F.; Jensen, C. S.; Shen, H. T. (2010): Discovery of
convoys in trajectory databases. Computer Science, vol. 1, no. 1, pp. 1068-1080.
Kalnis, P.; Mamoulis, N.; Bakiras, S. (2005): On discovering moving clusters in spatio-
temporal data. Lecture Notes in Computer Science, vol. 3633, pp. 364-381.
Lan, R. S.; Yu, Y. W.; Cao, L.; Song, P.; Wang, Y. J. (2017): Discovering evolving
moving object groups from massive-scale trajectory streams. IEEE International
Conference on Mobile Data Management, pp. 256-265.
Li, X. H.; Ceikute, V.; Jensen, C. S.; Tan, K. L. (2013): Effective online group
discovery in trajectory databases. IEEE Transactions on Knowledge & Data Engineering,
vol. 25, no. 12, pp. 2752-2766.
Li, Z. H.; Ding, B. L.; Han, J. W.; Kays, R. (2010): Swarm: Mining relaxed temporal
moving object clusters. Proceedings of the Very Large Database Endowment, vol. 3, no.
1, pp. 723-734.
Rodriguez, A.; Laio, A. (2014): Clustering by fast search and find of density peaks.
Science, vol. 344, no. 6191, pp. 1492-1496.
Sun, K.; Geng, X. R.; Ji, L. Y. (2015): Exemplar component analysis: A fast band
selection method for hyperspectral imagery. IEEE Geoscience & Remote Sensing Letters,
vol. 12, no. 5, pp. 998-1002.
Tang, L. A.; Zheng, Y.; Yuan, J.; Han, J. W.; Leung, A. et al. (2012): On discovery of
traveling companions from streaming trajectories. IEEE 28th International Conference
on Data Engineering, pp. 186-197.
Tang, L. A.; Zheng, Y.; Yuan, J.; Han, J. W.; Leung, A. et al. (2014): A framework of
traveling companion discovery on trajectory data streams. ACM Transactions on
Intelligent Systems & Technology, vol. 5, no. 1, pp. 1-34.
Vieira, M. R.; Bakalov, P.; Tsotras, V. J. (2009): On-line discovery of flock patterns in
spatio-temporal data. Proceedings of the 17th ACM SIGSPATIAL International
Symposium on Advances in Geographic Information Systems, pp. 286-295.

An Algorithm for Mining Gradual Moving Object Clusters Pattern 901

Zheng, K.; Zheng, Y.; Yuan, N. J.; Shang, S.; Zhou, X. F. (2013): On discovery of
gathering patterns from trajectories. IEEE 29th International Conference on Data
Engineering, pp. 242-253.
Zheng, K.; Zheng, Y.; Yuan, N. J.; Shang, S.; Zhou, X. F. (2014): Online discovery of
gathering patterns over trajectories. IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 8, pp. 1974-1988.
Zhou, S. R.; Liang, W. L.; Li, J. G.; Kim, J. U. (2018): Improved VGG model for road
traffic sign recognition. Computers, Materials & Continua, vol. 57, no. 1, pp. 11-24.

	An Algorithm for Mining Gradual Moving Object Clusters Pattern From Trajectory Streams
	Yujie Zhang0F , Genlin Ji1, *, Bin Zhao1 and Bo Sheng1F

	6 Conclusion
	References

