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Abstract: The discovery of gradual moving object clusters pattern from trajectory 
streams allows characterizing movement behavior in real time environment, which 
leverages new applications and services. Since the trajectory streams is rapidly evolving, 
continuously created and cannot be stored indefinitely in memory, the existing 
approaches designed on static trajectory datasets are not suitable for discovering gradual 
moving object clusters pattern from trajectory streams. This paper proposes a novel 
algorithm of gradual moving object clusters pattern discovery from trajectory streams 
using sliding window models. By processing the trajectory data in current window, the 
mining algorithm can capture the trend and evolution of moving object clusters pattern. 
Firstly, the density peaks clustering algorithm is exploited to identify clusters of different 
snapshots. The stable relationship between relatively few moving objects is used to 
improve the clustering efficiency. Then, by intersecting clusters from different snapshots, 
the gradual moving object clusters pattern is updated. The relationship of clusters 
between adjacent snapshots and the gradual property are utilized to accelerate updating 
process. Finally, experiment results on two real datasets demonstrate that our algorithm is 
effective and efficient. 
 
Keywords: Trajectory streams, pattern mining, moving object clusters pattern, discovery 
of moving clusters pattern. 

1 Introduction 
The increasing pervasiveness of object tracking leads to huge volumes of spatio-temporal 
data collected in the form of trajectory streams. Discovering gradual moving object 
clusters pattern [Hai, Ienco, Poncelet et al. (2012)] (i.e., GC-Pattern) from these streams 
is an important mining problem. GC-Pattern is a list of clusters and adjacent clusters need 
to satisfy time threshold, object containment relationship and clusters size threshold 
requirements. GC-Pattern was proposed to capture the gradual object moving trend.  
The discovery of GC-Pattern from trajectory streams is critical for real time applications. For 
example: traffic jam discovery in transportation management, event detection in public 
security and invasion monitor in military surveillance [Zhou, Liang, Li et al. (2018)]. 
Despite of the wide applications, the discovery of GC-Pattern from trajectory streams is not 
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efficiently supported in existing systems, partly due to the following challenges: 
Instantaneity: Trajectory streams arrives rapidly in a short period of time and its size 
keeps growing as time goes. Therefore, the algorithm for discovering GC-Pattern from 
trajectory streams needs to be designed with low computation cost and memory limitation.  
Parameter insensitivity: The distribution of trajectory streams is unknown and 
constantly change. Hence it is difficult to set an appropriate threshold value of pa-
rameters when clustering moving objects. So the mining algorithm should be insensitive 
to the parameter setting.  
Pattern updating: The GC-Patterns at previous time window include a lot of valuable 
information. This information usually can be utilized to reduce the repeated computation, 
save the cost of the computation, and boost the efficiency of the mining algorithm. Hence, 
when trajectory streams arrive, there is no need to process past data. By taking full use of 
the GC-Patterns discovered earlier, the mining algorithm of GC-Pattern should be 
effective to update patterns.  
However, since the existing mining algorithms of GC-Pattern are designed for static 
trajectory datasets, it cannot effectively deal with the problems mentioned above. In this 
paper, we propose a GC-Pattern mining algorithm, which contains three phases: (1) 
Clustering moving objects, (2) obtaining all related-clusters in current time window, (3) 
updating GC-Pattern. 
The main contributions of the paper are as follows: 
(1) GC-Pattern mining algorithm DStream-GC is proposed to discover GC-Pattern from 
large scale trajectory streams. 
(2) Density Peaks (DP) Clustering [Rodriguez and Laio (2014)] is introduced to 
clustering moving objects since the algorithm is not sensitive to the parameter. Moreover, 
a data structure named moving micro-group is used to speed up the clustering tasks.  
(3) GC-Pattern updating algorithm Update-GC is proposed. The related-clusters and two 
pruning rules are developed to accelerate the updating process. 
The remaining of the paper is organized as follows. Section 2 introduces the related 
works. The definition of GC-Pattern is given in Section 3. The algorithm for discovering 
GC-Pattern is presented in Section 4. Experiments testing effectiveness and efficiency are 
shown in Section 5. Finally, our research is concluded in Section 6. 

2 Related works  
GC-Pattern [Hai, Ienco, Poncelet et al. (2012)] is a special type of moving clusters 
pattern that models the behavior of the moving objects travelling together. There are a 
bunch of works on mining moving clusters pattern from moving object trajectories. These 
works can be categorized into two aspects of research: 
Moving clusters pattern discovery from static trajectory data. One of the earliest 
works is Flock [Benkert, Gudmundsson, Hübner et al. (2010)] discovery. Flock is defined 
as a group of moving objects moving in a disc of a fixed size for k consecutive 
timestamps. Another similar definition, Moving Cluster [Kalnis, Mamoulis and Bakiras 
(2005)], tries to find a group of moving objects which have considerably portion of 
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overlap at any two consecutive timestamps. A recent research by Jeung et al. [Jeung, Shen 
and Zhou (2008); Jeung, Yiu, Zhou et al. (2010)] proposes Convoy, an extension of flock, 
where spatial clustering is based on density. Comparing with all these definitions, Swarm [Li, 
Ding, Han et al. (2010)] is a more general one that does not require k consecutive 
timestamps. More recently, Gathering [Zheng, Zheng, Yuan et al. (2013)] was proposed to 
capturing groups where a part of objects were allowed to change. However, all the above 
methods cannot capture the moving trends of objects which can be very useful for better 
understanding the natural moving behavior in various real world applications. 
Moving clusters pattern discovery from trajectory streams. Vieira et al. [Vieira, 
Bakalov and Tsotras (2009)] propose an algorithm to discover the existing pattern Flock 
from trajectory streams. Flock requires moving objects to continuously move in a circular 
area of a given radius. In order to reduce computation load, the index technique is 
introduced. Tang et al. [Tang, Zheng, Yuan et al. (2012); Tang, Zheng, Yuan et al. (2014)] 
propose the discovering algorithm of Traveling Companion. Traveling Companion 
requires moving objects to be connected in density on consecutive timestamps. In order 
to improve the efficiency of clustering algorithm, a special data structure named traveling 
buddy is proposed to store and maintain the relationship between moving objects. Li et al. 
[Li, Ceikute, Jensen et al. (2013)] propose Group pattern, that is, the moving objects are 
connected in density for a period of time. Since the Group pattern limits time strictly, 
information such as the direction and speed of the moving objects is used to judge 
whether it is necessary to update the pattern when the trajectory streams arrives. In 
addition, Zheng et al. [Zheng, Zheng, Yuan et al. (2014)] use the existing traveling buddy 
structure to implement the algorithm of Gathering [Zheng, Zheng, Yuan et al. (2013)] 
discovery. Lan et al. [Lan, Yu, Cao et al. (2017)] further propose an online Evolving 
Groups discovery algorithm. Both Gathering and Evolving Groups pattern require the 
moving objects stay stable, and thus they adopt an approximate approach to reduce 
invalid operations. However, since GC-Pattern requires adjacent clusters to satisfy time 
threshold and object containment relationship, the above methods are not applicable to 
discover GC-Pattern from trajectory streams.  

3 Problem statement 
Let O = {𝑜𝑜1,⋯ , 𝑜𝑜𝑛𝑛} be a set of moving objects where each object 𝑜𝑜𝑖𝑖 reports its positions 
in fixed interval of time. We assume that the position of each object is reported at the 
same timestamp and term the positions of all objects at a single timestamp as a snapshot. 
Thus, we consider trajectory streams S as a sequence of snapshots {s1,⋯ , 𝑠𝑠𝑖𝑖,⋯ }. A 
database of clusters C = {𝐶𝐶1, … ,𝐶𝐶𝑖𝑖,⋯ } is a collection of the moving object clusters at 
snapshots{s1,⋯ , 𝑠𝑠𝑖𝑖,⋯ }. The cluster 𝐶𝐶𝑖𝑖  is defined as the clustering results of density-
based clustering at snapshot 𝑠𝑠𝑖𝑖. Given a cluster 𝑐𝑐 ∈ 𝐶𝐶𝑖𝑖, |c| and t(c) are respectively used to 
denote the number of objects belonging to cluster c and the timestamp that c involved in. 
Let 𝑠𝑠𝑡𝑡−𝑤𝑤+1, 𝑠𝑠𝑡𝑡−𝑤𝑤+2,⋯ , 𝑠𝑠𝑡𝑡 be the set of snapshots in current window [𝑡𝑡 − 𝑤𝑤 + 1, 𝑡𝑡] where 
𝑤𝑤 is the length of the time window. The window slides by one snapshot that removes the 
snapshot of time instance 𝑡𝑡 − 𝑤𝑤 + 1 and includes the snapshot of time instance 𝑡𝑡 + 1 in 
current window. Tab. 1 lists the notations used throughout this paper. 
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Table 1: List of Notations 

Notation Definition 
S trajectory streams 
𝑠𝑠𝑖𝑖 trajectory streams at current snapshot 
𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 the time threshold  
γ the radius threshold  
𝑑𝑑𝑐𝑐 the cutoff distance threshold 
𝑤𝑤 the time window threshold  
C the cluster set 
𝐺𝐺𝐶𝐶𝑐𝑐′ the GC-Pattern candidate set in previous time window 
𝐺𝐺𝐶𝐶′ the GC-Pattern set in previous time window 
GC the GC-Pattern set in current time window   
𝐺𝐺′ the moving micro-group set at previous snapshot  
G the moving micro-group set at current snapshot 
RC the related-cluster set in current time window 

 
Definition 1 (GC-Pattern). Given a list of clusters 𝐶𝐶∗ = {𝑐𝑐1,⋯ , 𝑐𝑐𝑛𝑛} , a minimum 
threshold 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡, a time window size 𝑤𝑤. 𝐶𝐶∗ is a GC-Pattern if:  

 𝐶𝐶∗ = 𝐺𝐺𝐶𝐶:

⎩
⎪
⎨

⎪
⎧

                                                          
(1): |𝐶𝐶∗| ≥ 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 .                                                          
(2):∀𝑚𝑚 ∈ {1,⋯ ,𝑚𝑚 − 1}, 𝑐𝑐𝑖𝑖 ⊆ 𝑐𝑐𝑖𝑖+1.                            
(3): |𝑐𝑐𝑛𝑛| > |𝑐𝑐1|.                                                             

 (4):∀𝑚𝑚 ∈ {1,⋯ ,𝑚𝑚 − 1}: 1 ≤ 𝑡𝑡(𝑐𝑐𝑖𝑖+1) − 𝑡𝑡(𝑐𝑐𝑖𝑖) < 𝑤𝑤.

                                                    (1) 

Let s1, s2,⋯ , st be the series of snapshots that have arrived so far. If 𝐶𝐶∗ = {𝑐𝑐1,⋯ , 𝑐𝑐𝑛𝑛} is a 
GC-Pattern and the last element of 𝐶𝐶∗ belongs to the newly arrived snapshot, i.e., 𝑡𝑡(𝑐𝑐𝑛𝑛) =
𝑡𝑡, then 𝐶𝐶∗ is a GC-Pattern in current time window. 
Fig. 1 illustrates an example of GC-Pattern. There are 6 objects, S = {s1,⋯ , s6}, C =
�{c1}, {c2}, {c4}, {c6}� . Let mint = 3 ,  w = 3 ,   C1 = {c1, c2, c4}  and C2 = {c1, c2, c4, c6} 
are GC-Patterns. C2 = {c1, c2, c4, c6} is also a GC-Pattern in current time window. 

 

Figure 1: An example of GC-Pattern  
Problem Definition: Let s1, s2,⋯ , st be the series of snapshots that have arrived so far. 
The problem is to discover all the GC-Patterns in current time window[t − w + 1, t]. 
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4 Discovery of GC-Pattern 
4.1 The algorithm for mining GC-Pattern from trajectory streams using sliding window 
models 
This paper proposes algorithm DStream-GC to discover GC-Pattern from trajectory 
streams. First, the definition of the GC-Pattern candidate is given. 
Definition 2 (GC-Pattern Candidate). Given a list of clusters 𝐶𝐶∗ = {𝑐𝑐1,⋯ , 𝑐𝑐𝑛𝑛} , a 
minimum threshold 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡, a time window size 𝑤𝑤. 𝐶𝐶∗ is a GC-Pattern candidate if:  

 𝐶𝐶∗ = 𝐺𝐺𝐶𝐶′:

⎩
⎪
⎨

⎪
⎧

                                             
(1): |𝐶𝐶∗| < 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡.                                                           
(2):∀𝑚𝑚 ∈ {1,⋯ ,𝑚𝑚 − 1}, 𝑐𝑐𝑖𝑖 ⊆ 𝑐𝑐𝑖𝑖+1.                             
(3): |𝑐𝑐𝑛𝑛| > |𝑐𝑐1|.                                                              
(4):∀𝑚𝑚 ∈ {1,⋯ ,𝑚𝑚 − 1}: 1 ≤ 𝑡𝑡(𝑐𝑐𝑖𝑖+1)− 𝑡𝑡(𝑐𝑐𝑖𝑖) < 𝑤𝑤.

                                      (2) 

If 𝐶𝐶∗ = {𝑐𝑐1,⋯ , 𝑐𝑐𝑛𝑛} is a GC-Pattern candidate and the last element of 𝐶𝐶∗ belongs to the 
snapshots in current time window[𝑡𝑡 − 𝑤𝑤 + 1, 𝑡𝑡], i.e., 𝑡𝑡(𝑐𝑐𝑛𝑛) > 𝑡𝑡 − 𝑤𝑤 + 1, then 𝐶𝐶∗  is a 
GC-Pattern candidate in current time window. Intuitively, the GC-Pattern candidate does 
not require duration greater than time threshold. In the trajectory streams, data continues 
to arrive. For the GC-Pattern with shorter duration, its lasting time is likely to increase 
continuously, and meets the time requirement as time goes by. Therefore, when trajectory 
streams arrive, the previous GC-Pattern candidates are updated. Once the duration meets 
the requirement, it will be reported as a GC-Pattern in current time window. 
Algorithm DStream-GC includes the following three stages. 
(1) clustering moving objects  
The clustering method based on the density peaks is used to cluster the moving objects at 
current snapshot si.The clustering results are a set of clusters Ci. 
(2) obtaining related-clusters in current time window 
The related-clusters in current time window of every cluster in Ci are obtained by using 
the relationship between clusters at adjacent snapshots.  
(3) updating GC-Pattern  
The updating operation of GC-Pattern is implemented by intersecting every cluster in Ci 
with GC-Patterns and GC-Pattern candidates in previous time window. The related-
clusters are used to speed up the updating process. Finally, all the updated GC-Patterns 
satisfying the conditions are returned. 
The process of GC-Pattern discovery from trajectory streams is shown as algorithm 
DStream-GC. When the snapshot si arrives, the moving objects are gathered into clusters 
(line 3). Then the related-clusters in current time window of every clusters of si  is 
obtained (line 4). By intersecting each cluster of si  with GC-Patterns and GC-Pattern 
candidates in previous time window, the pattern updating operation is conducted (line 5). 
After that, GC-Pattern candidates in current time window is updated (line 6). Finally, 
GC-Patterns that meet the time requirement are returned (lines 7-10).  
Algorithm DStream-GC 
Input: S, 𝐺𝐺𝐶𝐶𝑐𝑐′, 𝐺𝐺𝐶𝐶′,  𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 , γ, 𝑑𝑑𝑐𝑐, 𝑤𝑤 
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Output: GC                     
1. 𝐺𝐺𝐶𝐶𝑐𝑐′ ← ∅; 
2. 𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆 do   
3.     𝐶𝐶𝑖𝑖 ← DPCluster-MMG(𝑠𝑠𝑖𝑖, 𝛾𝛾,𝑑𝑑𝑐𝑐); // clustering based on moving micro-groups 
4.    𝑅𝑅𝐶𝐶𝑖𝑖 ←Obtain-RC( 𝐶𝐶𝑖𝑖,𝑤𝑤 ); // obtaining the related-clusters in current time 

window 
5.    𝐺𝐺𝐶𝐶∗ ←Update-GC(𝐶𝐶𝑖𝑖,𝑅𝑅𝐶𝐶𝑖𝑖,𝐺𝐺𝐶𝐶𝑐𝑐′,𝐺𝐺𝐶𝐶′,𝑤𝑤);// Updating GC-Patterns 

// Updating GC-Pattern candidates in current time window 
6.    𝐺𝐺𝐶𝐶𝑐𝑐′ ← 𝑈𝑈𝑈𝑈𝑑𝑑𝑈𝑈𝑡𝑡𝑈𝑈(𝐺𝐺𝐶𝐶𝑐𝑐′,𝐺𝐺𝐶𝐶′,𝐺𝐺𝐶𝐶∗); 

   // Identifying GC-Patterns satisfying the conditions  
7.    𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑔𝑔𝑐𝑐𝑖𝑖 ∈ 𝐺𝐺𝐶𝐶∗ 𝐝𝐝𝐟𝐟  
8.        𝐢𝐢𝐟𝐟 |𝑔𝑔𝑐𝑐𝑖𝑖| > 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 
9.       add 𝑔𝑔𝑐𝑐𝑖𝑖 to 𝐺𝐺𝐶𝐶; 
10. 𝐟𝐟𝐭𝐭𝐭𝐭𝐫𝐫𝐟𝐟𝐭𝐭 𝐺𝐺𝐶𝐶; 

For the three stages of algorithm DStream-GC, this paper proposes corresponding 
algorithms to improve the discovering efficiency. The algorithm designed for each stage 
is described below. 

4.1.1 Clustering moving objects 
The algorithm for discovering GC-Pattern from static trajectory data needs to carry out 
density-based clustering (DBSCAN) at every snapshot. The time complexity of this 
operation is O(n2), where n is the number of moving objects. Subsequently, if the number is 
large, the method cannot meet the timeliness requirement of trajectory streams processing.  
Tang et al. [Tang, Zheng, Yuan et al. (2012)] proposed a traveling buddy data structure to 
store and maintain the relationship between moving objects. By utilizing traveling buddy 
structure, the algorithm saves the cost of the computation effectively and improves the 
clustering efficiency. However, when updating the center point of the traveling buddy, 
the accumulation of the offset increases the sensitivity of outliers of the algorithm. Gong 
et al. [Gong, Zhang and Yu (2017)] used a cluster-cell data structure in data stream 
clustering to represent a set of close points. However their methods cannot apply to 
discover the movement pattern directly due to the time series property of spatio-temporal 
data. In this paper, the moving micro-group concept is proposed to represent the small 
group of moving objects with stable structure. When the trajectory streams arrive, the 
algorithm accelerates the clustering process by maintaining the information of moving 
micro-group and avoiding re-clustering moving objects. 
Definition 3 (Moving Micro-Group): A moving micro-group g represents a group of 
moving objects staying closer, which can be described by a three-tuple �𝑟𝑟𝑔𝑔,𝜌𝜌𝑔𝑔, 𝛿𝛿𝑔𝑔�: 
 (1) rg is the representative object of a moving micro-group g. The moving micro-group g 
represented by rg summarizes a set of objects Pg satisfying: (a) 𝑟𝑟𝑔𝑔 = 𝑈𝑈𝑟𝑟𝑔𝑔min

𝑟𝑟𝑘𝑘∈𝑅𝑅
(|𝑈𝑈𝑖𝑖, 𝑟𝑟𝑘𝑘|), 

where 𝑈𝑈𝑖𝑖 ∈ 𝑃𝑃𝑔𝑔 and R is the set of the representative object; (b) for ∀𝑈𝑈𝑖𝑖 ∈ 𝑃𝑃𝑔𝑔, �𝑈𝑈𝑖𝑖, 𝑟𝑟𝑔𝑔� ≤
γ ,where γ is the radius threshold. 
(2) 𝜌𝜌𝑔𝑔  is the density of a moving micro-group g, which is defined as the number of 
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moving objects contained in the moving micro-group g, i.e., 𝜌𝜌𝑔𝑔 = �𝑃𝑃𝑔𝑔�. 
(3) 𝛿𝛿𝑔𝑔 is the dependent distance from rg to its nearest moving micro-group representative 
object with higher density, i.e., 𝛿𝛿𝑔𝑔 = min

𝑔𝑔′:𝜌𝜌𝑔𝑔′>𝜌𝜌𝑔𝑔
��𝑟𝑟𝑔𝑔, 𝑟𝑟𝑔𝑔′��. 

During the initialization phase of moving micro-groups, each moving object is assigned 
to a moving micro-group that meets two conditions in (1). The initialization step only 
needs to be carried out once and the moving micro-groups are dynamically maintained 
along the stream. 
There are two kinds of operations to maintain moving micro-groups on the trajectory 
streams: updating representative objects and updating the other moving objects. The 
updating process of the moving micro-groups is shown as algorithm Update-MMG. 
When the trajectory streams arrive, the representative objects at the last snapshot are 
updated (lines 1-5), and then the remaining moving objects are assigned to the 
corresponding moving micro-group using definition 3 (lines 6-8). After that, the 
algorithm assigns the new arriving objects at current snapshot to the corresponding moving 
micro-group (line 9). Finally the updated moving micro-groups are returned (line 10).  
Algorithm Update-MMG 
Input：𝑠𝑠𝑖𝑖, G′, γ 
Output: G                        

1. 𝐟𝐟𝐟𝐟𝐟𝐟 each  𝑔𝑔𝑖𝑖,𝑔𝑔𝑗𝑗 ∈ G′,𝑔𝑔𝑖𝑖 ≠ 𝑔𝑔𝑗𝑗 do 
  // updating representative objects 

2.   𝐢𝐢𝐟𝐟 𝑑𝑑𝑚𝑚𝑠𝑠𝑡𝑡 �𝑟𝑟𝑔𝑔𝑖𝑖 , 𝑟𝑟𝑔𝑔𝑗𝑗� ≤ γ 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭  

3.      merge 𝑔𝑔𝑖𝑖,𝑔𝑔𝑗𝑗 as 𝑔𝑔𝑖𝑖; 
4.      remove 𝑔𝑔𝑗𝑗 and add 𝑔𝑔𝑖𝑖 to G; 
5.   else add 𝑔𝑔𝑖𝑖,𝑔𝑔𝑗𝑗 to G; 

// updating the remaining moving objects 
6. 𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑔𝑔𝑖𝑖 ∈ G 𝐝𝐝𝐟𝐟  
7.    𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑈𝑈𝑗𝑗 ∈ 𝑔𝑔𝑖𝑖& 𝑈𝑈𝑗𝑗 ∈ 𝑠𝑠𝑖𝑖 𝐝𝐝𝐟𝐟  
8.         findMMG(𝑈𝑈𝑗𝑗 , G);// definition 3 
9. updateNewARR(𝑠𝑠𝑖𝑖, G);  
10. 𝐟𝐟𝐭𝐭𝐭𝐭𝐫𝐫𝐟𝐟𝐭𝐭 G; 

An example of updating moving micro-groups is shown in Fig. 2. There are three moving 
micro-groups at snapshot 𝑠𝑠1 . The representative objects of 𝑔𝑔1 ,𝑔𝑔2 ,𝑔𝑔3  are 1, 5, and 8 
respectively. When the snapshot 𝑠𝑠2 arrives, the moving micro-groups at snapshot 𝑠𝑠1 are 
updated. Moving micro-groups 𝑔𝑔1,𝑔𝑔2 have changed, with object 4 in 𝑔𝑔1 moving to 𝑔𝑔2. 
The updated moving micro-groups are 𝑔𝑔1′ ,𝑔𝑔2′ ,𝑔𝑔3′ . 
When the snapshot arrives, the algorithm updates the moving micro-groups at previous 
snapshot, and then conducts the clustering operation with the updated moving micro-
group as a basic unit. Algorithm DBSCAN is employed in existing methods based on 
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static trajectory datasets to obtain the clusters on current snapshot. However, DBSCAN is 
not well used to clustering moving objects on trajectory streams due to the property of 
sensitivity to parameters.  

 
Figure 2: An example of updating Moving Micro-Groups 

In 2014, Rodriguez et al. proposed a density-based clustering algorithm (DP) [Rodriguez 
and Laio (2014)]. Since the algorithm only needs one parameter and is insensitive to this 
parameter, it has been widely used in the industry and academia [Sun, Geng and Ji 
(2015); Chen, Lai, Qi et al. (2016)]. In this paper, algorithm DP is exploited to complete 
the clustering operation of moving objects.  
Let m be the average number of moving micro-groups and n be the number of moving 
objects. The time complexity of the moving micro-groups updating algorithm is O(m2 +
mn), and the time complexity of the DP algorithm based on moving micro-groups is 
O(m2). Even in the worst case, if the objects are sparse and each of them is a moving 
micro-group, where m = n. The time cost of the clustering process is still O(n2). In fact, 
the value of m is much smaller than n, so the clustering algorithm proposed in this paper 
is effective. 

4.1.2 Obtaining related-clusters in current time window 
After completing the clustering operation, the discovering algorithm needs to update the 
pattern. The basic method is to intersect each cluster at current snapshot with each GC-
Pattern and GC-Pattern candidate in previous time window respectively. Let the average 
number of objects in cluster be n, the size of the time window be w, and the average 
number of GC-Pattern candidates at each snapshot in the time window is m. The time 
complexity of intersection operation is O(wmn). 
In this paper, we develop new techniques to improve the efficiency of intersection 
operation. By utilizing the connections between clusters at adjacent snapshots, the 
concept of related-cluster is proposed. The related-clusters are helpful for reducing the 
number of the intersection. The concept of related-cluster is given below.  
Definition 4 (Related-Cluster): Let current time window be [𝑡𝑡 − 𝑤𝑤 + 1, 𝑡𝑡]. Given a 
cluster c at snapshot 𝑠𝑠𝑡𝑡 , if the cluster 𝑐𝑐′ at snapshot 𝑠𝑠𝑗𝑗(𝑡𝑡 − 𝑤𝑤 + 1 ≤ 𝑗𝑗 < 𝑡𝑡) contains at 
least one object of cluster c, then cluster 𝑐𝑐′ is related with cluster c, that is, cluster 𝑐𝑐′ is a 
related-cluster in current time window of cluster c. 
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As shown in Fig. 3, there are four snapshots 𝑠𝑠1 , 𝑠𝑠2 , 𝑠𝑠3 , 𝑠𝑠4 . The ellipses in the figure 
represent the clusters generated by clustering operation. Assuming w=3, the related-clusters 
in current time window at snapshots 𝑠𝑠1 , 𝑠𝑠2 , 𝑠𝑠3 , 𝑠𝑠4  is listed at the bottom respectively. 
Where 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗 represents the set of related-clusters of cluster 𝑐𝑐𝑖𝑖 at snapshot 𝑠𝑠𝑗𝑗.  
 

 
Figure 3: An example of obtaining Related-Clusters 

Before updating patterns, the related-clusters in current time window of the clusters at 
current snapshot are obtained by a small amount of calculations. The process of obtaining 
related-clusters is shown as algorithm Obtain-RC. First, the algorithm obtains the related-  
clusters 𝑐𝑐𝑖𝑖. 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1 of cluster 𝑐𝑐𝑖𝑖 at snapshot 𝑠𝑠𝑗𝑗, with moving micro-groups as basic units. If 
the elements of the moving micro-group are unchanged, the algorithm only need to add 
the cluster which the moving micro-group belonged to snapshot 𝑠𝑠𝑗𝑗−1 to 𝑐𝑐𝑖𝑖. 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1  (lines 1-
3). Otherwise, the clusters which the changed elements belong to snapshot 𝑠𝑠𝑗𝑗−1 are also 
added to 𝑐𝑐𝑖𝑖. 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1(lines 4-9). After obtaining 𝑐𝑐𝑖𝑖. 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1 , the algorithm obtains the related-
clusters in current time window 𝑐𝑐𝑖𝑖. 𝑟𝑟𝑐𝑐𝑠𝑠𝑊𝑊  with excepts of related-clusters at snapshot 
𝑠𝑠𝑗𝑗−1(lines 10-14). Finally, the related-cluster set RC in current time window of all clusters 
at snapshot 𝑠𝑠𝑗𝑗 is returned (lines 16).   
Algorithm Obtain-RC 
Input：𝐺𝐺, 𝐶𝐶, 𝑤𝑤 
Output: RC               

1. 𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶 𝐝𝐝𝐟𝐟  
 // obtaining the related-clusters at snapshot 𝑠𝑠𝑗𝑗−1  of each cluster at current 

snapshot 𝑠𝑠𝑗𝑗 
2.     𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑔𝑔𝑘𝑘 ∈ 𝑐𝑐𝑖𝑖 𝐝𝐝𝐟𝐟  
3.         add 𝑔𝑔𝑘𝑘 . 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑗𝑗−1 to 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1; 
4.         flag = CheckObject(𝑔𝑔𝑘𝑘); 
5.         𝐢𝐢𝐟𝐟 flag 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 
6.             𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑈𝑈𝑚𝑚 ∈ 𝑔𝑔𝑘𝑘 . 𝑐𝑐ℎ𝑈𝑈𝑚𝑚𝑔𝑔𝑈𝑈𝑈𝑈𝑜𝑜𝑚𝑚𝑚𝑚𝑡𝑡 𝐝𝐝𝐟𝐟  
7.                 𝐢𝐢𝐟𝐟 𝑈𝑈𝑚𝑚. 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑗𝑗−1 ∉ 𝑐𝑐𝑖𝑖. 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1 
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8.                     add 𝑈𝑈𝑚𝑚. 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑗𝑗−1 to 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1; 
9.             add to 𝑐𝑐𝑖𝑖. 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1 to 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑠𝑠𝑊𝑊 ; 

 // obtaining the related-clusters in the time window  
10.    𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑐𝑐𝑚𝑚 ∈ 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑠𝑠𝑗𝑗−1  do 
11.         𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑐𝑐𝑛𝑛 ∈ 𝑐𝑐𝑚𝑚. 𝑟𝑟𝑐𝑐𝑠𝑠𝑊𝑊  do 
12.            𝐢𝐢𝐟𝐟 𝑡𝑡(𝑐𝑐𝑛𝑛) > 𝑗𝑗 − 𝑤𝑤 + 1 
13.                add 𝑐𝑐𝑘𝑘  to 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑐𝑐𝑛𝑛.𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑡𝑡; 
14.        add 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑐𝑐𝑛𝑛.𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑡𝑡 to 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑠𝑠𝑊𝑊 ;      
15. add 𝑐𝑐𝑖𝑖. 𝑟𝑟𝑐𝑐𝑠𝑠𝑊𝑊  to RC;   
16. 𝐟𝐟𝐭𝐭𝐭𝐭𝐫𝐫𝐟𝐟𝐭𝐭 RC; 

4.1.3 Updating GC-Pattern 
Since the discovering algorithm updates the patterns by conducting intersection 
operation, improving the intersection efficiency becomes the most important factors of 
updating process. In Fig. 3, considering the basic intersection method, c9 need to intersect 
with every element of the clusters set {c5, c6, c7, c8} at snapshot s2 and {c1, c2, c3, c4} at 
snapshot s1 respectively. However, it is obvious that only the intersection operations of 
c5, c6 with c9 can produce valid results since c5 and c6 has the same elements with c9. It 
is the same as the snapshot s1 , only the intersection operations of c1 , c2  with c9  are 
effective. In other words, for the intersection operation of the cluster, it is only necessary 
to intersect the cluster with its related-clusters. For those unrelated-clusters, even if the 
intersection is performed, no effective results can be produced. Based on the above 
analysis, this paper uses the related-clusters to reduce intersection computation and 
accelerate the pattern updating process.  
In addition, in order to further improve the intersection efficiency, this paper proposes 
two pruning rules, length pruning rules and backward pruning rules to optimize the 
pattern updating process. Given a cluster ci and its related-cluster cj, if|ci| < �cj�, then cj 
is pruned by length pruning rules. Given a GC-Pattern Candidate C = �c1, c2,⋯ , cj�, if 
there is a cluster c′(t(c′) > t�cj�) at the current snapshot and C∗ = C ∪ c′ satisfies the 
gradual property, then the intersection operation of ck (ck ∈ C & k < j) and c′  can not 
generate qualified candidate(without cj), so ck is pruned by backward pruning rules. 
The process of pattern updating based on the related-clusters and two pruning rules is 
shown as algorithm Update-GC. First, all the related-clusters in current time window of 
each cluster ci at current snapshot are obtained (lines 1-2). For each related-cluster ck, it 
is judged whether it can pass the length-based pruning rule (lines 3-4). If ck is not pruned, 
the algorithm continues to judge whether it can pass the backward pruning rule. If it is 
also not pruned, the algorithm will intersect ci with ck(lines 5-6). If the length of the 
intersection result is greater than or equal to the length of the related-cluster ck , the 
algorithm obtains the set of GC-Patterns and GC-Pattern candidates P whose last cluster 
is ck (lines 7-8). For each GC-Pattern and GC-Pattern candidates of P, it will be updated 
by intersecting with ci . Then the updated GC-Pattern and GC-Pattern candidates are 
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added to the set of GC-Pattern GC∗ in current time window (lines 9-10). Finally GC∗ is 
returned (line 11).     
Algorithm Update-GC 

Input: C, RC, 𝐺𝐺𝐶𝐶𝑐𝑐′, 𝐺𝐺𝐶𝐶′, 𝑤𝑤     
Output: 𝐺𝐺𝐶𝐶∗                  
1. 𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶 𝐝𝐝𝐟𝐟  
2.     𝑔𝑔𝑈𝑈𝑡𝑡 𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑠𝑠𝑊𝑊  from RC 

  // intersection operation based on related-clusters and pruning rules 
3.     𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑐𝑐𝑘𝑘 ∈  𝑐𝑐𝑖𝑖 . 𝑟𝑟𝑐𝑐𝑠𝑠𝑊𝑊  𝐝𝐝𝐟𝐟 
4.         𝐢𝐢𝐟𝐟 LPR(𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑘𝑘) 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 
5.             𝐢𝐢𝐟𝐟 BPR(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑘𝑘) 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 
6.                 𝑐𝑐′ = Intersect(𝑐𝑐𝑘𝑘, 𝑐𝑐𝑖𝑖); 
7.                 𝐢𝐢𝐟𝐟 |𝑐𝑐′| ≥ 𝑐𝑐𝑘𝑘  𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 
8.                         P=getpattern(𝐺𝐺𝐶𝐶𝑐𝑐′,𝐺𝐺𝐶𝐶′, 𝑐𝑐𝑘𝑘); 
9.                      𝐟𝐟𝐟𝐟𝐟𝐟 each 𝑈𝑈𝑗𝑗 ∈ 𝑃𝑃 𝐝𝐝𝐟𝐟  
10.                          add 𝑈𝑈𝑗𝑗 ∪ 𝑐𝑐𝑖𝑖 to 𝐺𝐺𝐶𝐶∗; 
11. 𝐟𝐟𝐭𝐭𝐭𝐭𝐫𝐫𝐟𝐟𝐭𝐭 𝐺𝐺𝐶𝐶∗;    

 
Figure 4: An example of GC-Pattern discovery 

Fig. 4 describes the process of discovering GC-Patterns. When the trajectory streams 
arrive, the clustering operation is performed and the moving objects are gathered into 
clusters. After that, the related-clusters in current time window of clusters at current 
snapshot are obtained. By using the length pruning rule and the backward pruning rule, 
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those unqualified related-clusters are pruned. In the figure, the clusters in the solid line 
frame and the dotted line frame are related-clusters pruned by the length pruning rule and 
the backward pruning rule respectively. By intersecting related-clusters passing two 
pruning rules with GC-Patterns and GC-Patterns candidates in previous time window, the 
discovering algorithm completes the pattern updating tasks. Finally, those qualified GC-
Patterns which bold in the figure is reported.  

5 Experiments 
5.1 Experimental setting 
In this section, the proposed algorithm is evaluated using two real trajectory data sets. The 
swainsoni dataset [Hai, Ienco, Poncelet et al. (2012)] contains 43 trajectories of swainsoni 
and 764 timestamps. The start timestamp of the dataset is August 18, 1995, and the end 
timestamp of the dataset is June 24, 1998. The taxi dataset contains 13000 trajectories of 
taxi and 1400 timestamps. It is the GPS data of taxi in Shanghai at April 1, 2015.  
Since the discovering algorithm of GC-Pattern from trajectory streams has not been 
reported, the proposed algorithm DStream-GC is compared with ClusterGrowth, which is 
used to discover GC-Pattern from static trajectory data. DBSCAN algorithm is adopted to 
realize clustering procedures of ClusterGrowth. Linear interpolation is used to fill in the 
missing data. The experimental parameter settings are shown in Tab. 2, where r is the 
radius threshold of the moving micro-group, cutoff distance 𝑑𝑑𝑐𝑐 is the parameter of DP 
algorithm, mint is the time threshold of the GC-Pattern. The parameters of DBSCAN are 
pts and eps. The experiments are conducted on a PC with Intel 4590 CPU(3.30HZ) and 
4GB memory. All the algorithms are implemented in Java.  

Table 2: Experiment parameters of ClusterGrowth and DStream-GC 

Algorithm Dataset γ     𝑑𝑑𝑐𝑐     mint   window    pts     eps 

ClusteGrowth 
Swainsoni 

Taxi 
2%   2%     10       100         2      1000 
2%   2%     10        30          5       200 

DStream-GC 
Swainsoni 

Taxi 
2%   2%     10       100         -          -  
2%   2%     10       30           -          - 

5.2 Effectiveness analysis of algorithm DStream-GC 
To demonstrate the effectiveness of algorithm DStream-GC, swainsoni dataset is used 
during experiments. In the comparison, the algorithm ClusterGrowth is employed.  
Tab. 3 demonstrates a GC-Pattern discovered by DStream-GC on swainsoni dataset. The 
first row in the table shows the date of moving objects stay together. The second row and 
third row illustrate the number of objects traveling together and their location 
respectively. It is observed that two objects set out from Colorado, with the scale 
increasing continuously to 4, 5, 8, 10, until the number reaching 11 when they arrive in 
Colombia through the ocean. It is the same with the result of algorithm ClusterGrowth. 
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Table 3: An example of GC-Pattern on swainsoni dataset 
Date 2/10 6/10 8/10 14/10 17/10 22/10 25/10 

Number of swainsonies 2 4 5 8 10 11 11 
Lacation of swainsonies Colorado Texas Mexico ElSalvador CostaRica Panama Colombia 

5.3 Efficiency analysis of algorithm DStream-GC 
In this subsection, we conduct experiments on taxi dataset to evaluate the efficiency of 
the algorithms for discovering GC-Pattern.  

5.3.1 Efficiency analysis of algorithm DPCluster-MMG 
In the first part of experiments, we analyze the efficiency of DP clustering based on 
moving micro-groups. In the beginning, we test DPCluster-MMG with different radius 
threshold γ from 0.5% to 3%, and record the number of moving micro-groups and the 
running time of DPCluster-MMG. One can clearly learn from Fig. 5(a) that the number of 
moving micro-groups whose members are changed is at most 25% of the total number of 
moving micro-groups, and most of the moving micro-groups remain unchanged. 
Furthermore, as the radius threshold γ increases, the number of moving micro-groups 
continues to decrease and the number of moving micro-groups stay unchanged shows an 
exponentially decline distribution. This is consistent with the theory that the larger scale 
of the moving microgroup, the greater probability of change. In addition, in Fig. 5(b), DP 
clustering based on moving micro-groups (DPCluster-MMG) is compared with DP 
clustering based on moving objects (DPCluster-MO). It is found that the running time of 
the DPCluster-MMG algorithm proposed in this paper is much smaller than DPCluster-
MO. Further observations show that DPCluster-MMG has the lowest time overhead when 
γ is 2%. On the one hand, when the value of γ is small, the size of the moving micro-
group is small, which can't give full play to advantages of small group. When γ is large, 
since there are many members in the moving micro-group, the possibility of change is 
larger, which involves high updating overhead. Based on the above analysis, the value of 
γ is uniformly selected as 2% in the experiments of efficiency and effectiveness. 

 
(a)number of moving micro-groups w.r.t. 
radius threshold γ 

 
(b)running time of DPCluster-MMG and 
DPCluster-MO w.r.t. radius threshold γ 

Figure 5: Efficiency analysis of algorithm DPCluster-MMG 
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5.3.2 Efficiency analysis of algorithm Update-GC 
In this section, we analyze the efficiency of Update-GC, a pattern updating algorithm 
based on intersection operation of clusters. In order to evaluate the effectiveness of the 
intersection methods proposed in this paper, the execution time of the four methods is 
calculated. They are traditional intersection method (Naive), intersection method based 
on related-clusters (RCPR), intersection method based on related-clusters and length 
pruning rule (RCPR+LPR) and intersection method based on related-cluster, length 
pruning rule and backward pruning rule (RCPR+LPR+BPR) respectively. As shown in 
Fig. 6(a), as the number of trajectories increases, the running time of four intersection 
methods is obviously increase. Among them, the traditional intersection method grows 
exponentially with the increase of trajectory data. The reason is that the increase of 
trajectory data will lead to the increase of the number of clusters, which results in high 
intersection overhead. In addition, compared with the traditional method, the intersection 
method based on the related-cluster increase efficiency by 35%-50%, which proves the 
effectiveness of our method. For the two pruning rules, intersecting method based on 
related-cluster and length pruning rule increases efficiency by about 13% than using the 
intersection method based on the related-clusters alone. However, after adding backward 
pruning rule, the improvement of efficiency is not obvious. The main reason is that the 
backward pruning rule requires additional computation to analysis whether the cluster 
appears in the candidate at previous snapshot.  
On the other hand, the size of time window ω in the discovering algorithm also affects 
the execution time of the intersection operation. As shown in Fig. 6(b), with the 
increasing of the time window size, the execution time of the four intersecting methods is 
grow accordingly.  

 
(a)intersection execution time w.r.t. number 
of trajectories 

 

(b) intersection execution time w.r.t. time 
window size 

Figure 6: Efficiency analysis of algorithm Update-GC 

5.3.3 Efficiency analysis of algorithm DStream-GC 
Finally we analyze the efficiency of the GC-Pattern discovery algorithm DStream-GC. 
Algorithm ClusterGrowth is used to do the comparison. As shown in Fig. 7(a), When the 
number of trajectories is 2000, 4000, 6000, 8000, 10000, the running time of the latter is 
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13, 34, 39, 51, 52 times as much as the former, which proves the advantages of the 
DStream-GC algorithm in trajectory streams processing.   
In addition, DStream-GC can be divided into three steps, clustering step, obtaining 
related-cluster step (O-Step) and updating pattern step based on intersection operation (I-
Step). Moreover, the clustering step can be further divided into the moving micro-groups 
updating step (U-Step) and the DP clustering based on moving micro-groups step (C-
Step). We conduct experiments to calculate the time overhead of each phase and the 
proportion of time they occupy. As shown in Fig. 7(b), as the number of trajectories 
increases, the execution time of the four phases has significant increases. Among them, 
the time cost of obtaining related-cluster phase is the smallest, about take 0.3%-0.5% of 
the total running time, and the execution time of the pattern updating costs 5%-8% of the 
total time. In contrast, in the traditional intersection operation, the pattern updating 
operation spends 16%-22% of the total time. In addition, for the clustering operation, the 
updating time of the moving micro-groups accounts for 60%-80% of the total clustering 
time, and as the number of trajectories increases, the ratio of the updating time to the total 
clustering time becomes smaller and smaller, which means the moving micro-group 
updating algorithm is more suitable for large scale trajectory streams. 

 
(a) running time of DStream-GC and 
ClusterGrowth w.r.t. number of trajectories 

 

(b) running time of each step w.r.t. number of 
trajectories 

Figure 7: Efficiency analysis of algorithm DStream-GC 

6 Conclusion 
In this paper, algorithm DStream-GC is proposed to efficiently discover GC-Patterns 
from trajectory streams. The moving micro-group is proposed to improve the efficiency 
of clustering and related-cluster is designed to speed up the pattern updating process. We 
evaluate the proposed algorithms in extensive experiments on two real trajectory datasets. 
The experiment results demonstrate the effectiveness and efficiency of our algorithms. In 
the future, we will extend the current discovery algorithm to support other types of 
moving clusters pattern. 
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