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Abstract: In this paper, we propose an asymmetric controlled bidirectional transmission 
protocol. In the protocol, by using the thirteen-qubit entangled state as the quantum 
channel, Alice can realize the transmission of a two-qubit equatorial state for Bob and 
Bob can transmit a four-qubit equatorial state for Alice under the control of Charlie. 
Firstly, we give the construction of the quantum channel, which can be done by 
performing several H and CNOT operations. Secondly, through implementing the 
appropriate measurements and the corresponding recovery operations, the desired states 
can be transmitted simultaneously, securely and deterministically. Finally, we analyze the 
performance of the protocol, including the efficiency, the necessary operations and the 
classical communication costs. And then, we describe some comparisons with other 
protocols. Since our protocol does not require auxiliary particles and additional 
operations, the classic communication costs less while achieving the multi-particle 
bidirectional transmission, so the overall performance of the protocol is better. 
 
Keywords: Controlled, asymmetric, bidirectional quantum state transmission, remote 
state preparation. 

1 Introduction 
By using the quantum entanglement resources, a variety of quantum communication 
protocols were put forward to solve the problem of quantum information transmission, 
such as quantum secure direct communication [Wang, Deng, Li et al. (2005)], quantum 
secret sharing [Lin, Guo, Xu et al. (2016); Chen, Tang, Xu et al. (2018)], quantum key 
management [Xu, Chen, Duo et al. (2015); Liu, Xu, Yang et al. (2018)], quantum 
steganography [Wei, Chen, Niu et al. (2015); Qu, Cheng, Liu et al. (2018); Qu, Chen, Ji 
et al (2018)], quantum teleportation (QT) [Fortes and Rigolin (2017); Bennett, Brassard, 
Crépeau et al. (1993); Tan, Li and Yang (2018)] and remote state preparation (RSP) [Pati 
(2000); Cavaillès, Le Jeannic, Raskop et al. (2017]. In a RSP, the sender (Alice) can 
prepare a known state for a remote receiver (Bob) via a shared quantum channel and 
some classical communications. So far, many different protocols were proposed, such as 
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controlled RSP [Huang and Zhao (2017); Chen, Ma, Su et al. (2012); Liu and Hwang 
(2014); Wang, Zeng and Li (2015)], joint RSP [Choudhury and Dhara (2015); An (2010); 
Chen, Xia, Song et al. (2010)], deterministic RSP [Xu, Chen, Dou, et al. (2016); Chen, Su, 
Xu et al. (2014), Luo, Chen, Ma et al. (2010); Qu, Wu, Wang et al. (2017)] and low-
entanglement RSP [Devetak and Berger (2001)]. In the CRSP protocol, some re-searchers 
also pay attention to the related research of controller’s power [Li and Shohini (2017)] 
while introducing the controller. After that, some variants of quantum teleportation and 
RSP protocols were proposed: bidirectional teleportation [Kiktenko, Popov and Fedorov 
(2016); Li, Li, Sang et al. (2013)], hierarchical RSP [Shukla, Thapliyal and Pathak (2017)] 
and controlled bidirectional RSP (CBRSP) [Cao and Nguyen (2013); Sharma, Shukla, 
Banerjee et al. (2015); Peng, Bai and Mo (2015); Wang and Mo (2017); Zhang, Zha, Duan 
et al. (2016a, 2016b); Sang (2017); Song, Ni, Wang et al. (2017); Wu, Zha and Yang 
(2018); Chen, Sun, Xu et al. (2017); Sang and Nie (2017); Fang and Jiang (2018); Ma, 
Chen, Li et al. (2017)], for example. There are also some related quantum communication 
protocols that have been experimentally implemented [Zhang, Goebel, Wagenknecht et al. 
(2006); Sisodia, Shukla, Thapliyal et al. (2017); Rådmark, Wieśniak, Żukowski et al. 
(2013); Luo, Chen, Yang et al. (2012); Liu, Gao, Yu et al. (2018); Liu, Wang, Yuan et al. 
(2016)]. In this paper, we focus on the study of CBRSP. 
Cao et al. [Cao and Nguyen (2013)] presented the first CBRSP protocol, which realizes 
the bidirectional transmission of the single-qubit state through some classical 
communications and local operations. After that, by using different entangled states as 
the quantum channel, many protocols [Sharma, Shukla, Banerjee et al. (2015); Peng, Bai 
and Mo (2015); Wang and Mo (2017); Zhang, Zha, Duan et al.  (2016a, 2016b); Sang 
(2017); Song, Ni, Wang et al. (2017); Wu, Zha and Yang (2018)] can achieve the 
bidirectional transmission of single-qubit state. Sharma et al. [Sharma, Shukla, Banerjee 
et al. (2015)] gave three protocols, including the probabilistic, the deterministic and the 
joint CBRSP protocols. In Peng et al. [Peng, Bai and Mo (2015); Wang and Mo (2017)], 
two five-party joint CBRSP protocols were presented via the eight-and seven-qubit 
entangled state as the quantum channel, respectively. Furthermore, in these protocols 
[Cao and Nguyen (2013); Sharma, Shukla, Banerjee et al. (2015); Zhang, Zha, Duan et al. 
(2016a, 2016b); Sang (2017); Song, Ni, Wang et al. (2017)], the participants need the 
help of auxiliary particles and additional operations to complete the transmission task. 
Specifically, two controlled bidirectional hybrid of RSP and QT protocols were proposed 
by Sang [Sang (2017)] and Wu et al. [Wu, Zha and Yang (2018)], respectively. In 2017, 
by using thirteen-qubit entangled state as the quantum channel, a CBRSP protocol was 
presented by Chen et al. [Chen, Sun, Xu et al. (2017)], where Alice and Bob can transmit 
an arbitrary three-qubit state to each other simultaneously.  
The above CBRSP protocols are symmetric. Moreover, there are many asymmetric 
protocols. Song et al. [Song, Ni, Wang et al. (2017)] put forward an asymmetric 
bidirectional RSP protocol to prepare single- and two-qubit state. An asymmetric 
bidirectional hybrid of RSP and QT protocol was proposed by Sang et al. [Sang and Nie 
(2017)], where Alice teleports a single-qubit state to Bob and Bob prepares a two-qubit 
state to Alice at the same time. Fang et al. [Fang and Jiang (2018)] investigated two 
asymmetric protocols for bidirectional hybrid of RSP and QT, where also studied 
bidirectional transmission of single- and two-qubit state. Further-more, in Ma et al. [Ma, 
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Chen, Li et al. (2017)], the senders complete the bidirectional transmission of a four-qubit 
cluster-type state and a single-qubit state. However, in these protocols [Song, Ni, Wang 
et al. (2017); Fang and Jiang (2018); Ma, Chen, Li et al. (2017)], the sender or receiver 
require the auxiliary particles and additional operations. And the multi-qubit state 
prepared by protocol in Ma et al. [Ma, Chen, Li et al. (2017)] is only a special form. Chen 
et al. [Chen, Su, Xu et al. (2014)] investigated the quantum state secure transmission of 
equatorial and general state, respectively. Wei et al. [Wei, Shi, Zhu et al. (2018)] 
presented a protocol for remotely preparing an arbitrary n-qubit equatorial state via n 
two-qubit maximally entangled states as the quantum channel. Inspired by their protocols, 
we study the bidirectional transmission of two- and four-qubit equatorial state. 
In this paper, we propose a controlled bidirectional transmission protocol. With the control 
of Charlie, Alice and Bob can realize the bidirectional transmission of two- and four-qubit 
equatorial state. First, by using several H and CNOT operations, the thirteen-qubit 
entangled state can be constructed as the quantum channel. Second, through carrying out 
the proper measurement and recovery operations, Alice and Bob can recover the prepared 
state simultaneously, securely and deterministically. In the end, we analyze the 
performance of the protocol and describe some comparisons with other protocols, including 
the efficiency, the necessary operations and the classical communication costs. After that, 
since our protocol does not require auxiliary particles and additional operations, the classic 
communication costs less while achieving the bidirectional transmission of two- and four-
qubit equatorial state, so the protocol has the better overall performance. 
The paper is structured as follows. We propose a controlled bidirectional transmission 
protocol in Section 2. Then, in Section 3, some discussions are given. In the end, we 
describe the conclusions in Section 4. 

2 The controlled bidirectional quantum state transmission protocol 
In this section, we describe the CBRSP protocol in detail. In the protocol, under the 
control of Charlie, Alice transmits a two-qubit equatorial state to Bob and Bob transmits 
a four-qubit equatorial state to Alice by using the thirteen-qubit entangled state as the 
quantum channel. We give the construction of the quantum channel at first. Then, the 
CBRSP protocol is described. 

2.1 Quantum channel 
The quantum channel is constructed according to the principles in Thapliyal et al. 
[Thapliyal, Verma and Pathak (2015)]. The thirteen-qubit product state  ψ  is used as an 
input state, where  

1 2 3 4 5 6 7 8 9
= 0 0 0 0 0 0 0 0 0 0 0 0 0

a b c d
ψ  .                                                  

(1) 
We construct the thirteen-qubit entangled state as the quantum channel by using H and 
CNOT operations as follows.  
Firstly, we implement an H operation on particle 1. ψ  is transformed to 1ψ : 
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1
1 2 3 4 5 6 7 8 9

( 0 1 )
= 0 0 0 0 0 0 0 0 0 0 0 0

2 a b c d
ψ

+
 .     (2) 

Secondly, six CNOT operations are operated on the particle pairs (1, 2), (1, 4), (1, 6), (1, 
8), (1, a), (1, c), where the particle 1 is used as the controlled particle and each of six 
particles 2, 4, 6, 8, a, c are used as the target particles. 1ψ  is transformed to 2ψ : 

2 123456789
1= ( 0000000000000 1111111111111 )
2 abcdψ +  .                                    (3) 

Thirdly, after executing six H operations on the particles 2, 4, 6, 8, a, c, we carry out six 
CNOT operations on the particle pairs (2, 3), (4, 5), (6, 7), (8, 9), (a, b), (c, d), where the 
particles 2, 4, 6, 8, a, c are used as the controlled particles and 3, 5, 7, 9, b, d are used as 
the target particles, respectively.  

Finally, we can construct the thirteen-qubit entangled state ψ ′  as the quantum channel: 

1 23 45 67 89

1 23 45 67 89

1= ( 0
2

1 ),

ab cd

ab cd

ψ + + + + + +

− − − − − −

′ Φ Φ Φ Φ Φ Φ

+ Φ Φ Φ Φ Φ Φ
                                                     (4) 

where 1= ( 00 11 )
2

+Φ + and 1= ( 00 11 )
2

−Φ − . 

The generation and maintenance of the multi-qubit entangled state is a difficult task, but 
even so, some experiments results [Zhang, Goebel, Wagenknecht et al. (2006); Sisodia, 
Shukla, Thapliyal et al. (2017); Rådmark, Wieśniak, Żukowski, et al. (2013); Luo, Chen, 
Yang et al. (2012)] have been put forward to study the multi-qubit entangled state. As a 
consequence, by using some advanced technology, this task can be completed no longer 
difficult. Moreover, the bidirectional transmission task can be performed through the 
controlled bidirectional teleportation and preparation protocol. It is shown that the task 
can be performed with only Bell states [Thapliyal and Pathak (2015)]. In this paper, we 
mainly research the CBRSP. That is to say, the controller is needed in our protocol. Here, 
we use this thirteen-qubit entangled state as the quantum channel to accomplish the 
bidirectional preparation of two- and four-qubit states. 

2.2 The controlled bidirectional quantum state transmission protocol 
In this section, inspired by protocols [Chen, Su, Xu et al. (2014); Wei, Shi, Zhu et al. 
(2018)], we study the bidirectional transmission of two-and four-qubit equatorial state 
and will describe our CBRSP protocol in detail. The process of our protocol is 
graphically described in Fig. 1.  
In the protocol, Alice can transmit two-qubit equatorial state 2Aφ  to Bob and Bob can 
transmit four-qubit equatorial state 4Bφ  to Alice, where 

( )31 2
2

1 00 01 10 11
2

ii i
A e e e θθ θφ = + + + ,                                                                    (5) 
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3 51 2 4

6 7 8 9 10

13 1511 12 14

4
1 ( 0000 0001 0010 0011 0100 0101
4

0110 0111 1000 1001 1010

1011 1100 1101 1110 1111 ),
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B
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i ii i i

e e e e e
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β ββ β β

β β β β β

β ββ β β

φ = + + + + +

+ + + + +

+ + + + +

             (6) 

here ,i jθ β are real, 0 , 2 , 1,2,3, 1, 2, ...,15i j i jθ β π≤ ≤ = = . 

[A-1] Three participants pre-share the thirteen-qubit entangled state ψ ′ . Specifically, 
Charlie holds the particle 1. The particles 2, 4, 6, 8, a, c belong to Alice and the particles 
3, 5, 7, 9, b, d belong to Bob. 
[A-2] Alice makes two-qubit measurement on her own particles 2, 4. The measurement 
basis 0 1 2 3{ , , , }A A A A  is  

31 2

31 2

31 2

31 2

0

1

2

3

001
0111
102 1
111

T Tii i

ii i

ii i

ii i

A e e e
A ie e ie
A e e e
A ie e ie

θθ θ

θθ θ

θθ θ

θθ θ

−− −

−− −

−− −

−− −

    
    

− −    =    − −
        − −    

,           (7) 

Bob implements four-qubit measurement on his own particles 7, 9, b, d. The 
measurement basis { | 0,1,2,...,15}h hΒ =  is 

 

1 2 3 4

5 6 7 8

9 10 11 12

2 3 4
8 8 8 8

5 6 7 8
8 8 8 8

9 10 11 12
8 8 8 8

13

1 ( 0000 0001 0010 0011 0100
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0101 0110 0111 1000

1001 1010 1011 1100

h i h i h i h ii i i i

h

h i h i h i h ii i i i

h i h i h i h ii i i i

h

e e e e

e e e e

e e e e

e

π π π πβ β β β

π π π πβ β β β

π π π πβ β β β

− − − −

− − − −

− − − −

Β = + + + +

+ + + +

+ + + +

+
13 14 15

14 15
8 8 81101 1110 1111 ).

i h i h ii i i
e e

π π πβ β β− − −
+ +

      (8) 

We can rewrite the quantum channel ψ ′as: 
3 15

1 2,4 3,5 7,9, , 6,8, ,
0 0

3 15

1 2,4 3,5 7,9, , 6,8, ,
0 0

1= { 0 [ ( ) ( )]
8 2

1 [ ( ) ( )]},

m m h hb d a c
m h

m m h hb d a c
m h

A P B Q

A P B Q

ψ
= =

= =

′

′ ′+

∑ ∑

∑ ∑

                                            

(9) 

Where 
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Alice’s and Bob’s measurement results are { 0,1,2,3m hA B m =,  and 0,1,...,15}h = . 
They will announce their measurement results through the classical channel. 
[A-3] Charlie will measure his particle 1 in the basis{ 0 , 1 }. Then, he announces his 
measurement result through the classical channel. 
[A-4] If Charlie’s measurement result is 0 , Alice obtains 4Bφ  by performing the 
unitary operations ,6 ,8 , ,h h h a h cU U U U⊗ ⊗ ⊗  and Bob obtains 2Aφ  by carrying out the 
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unitary operations ,3 ,5m mU U⊗ , where 

,6 ,8 , ,
82 46

8

1 01 0 1 01 0
= ,

0 0 0 0
h ih i h ih h h a h c h i

a c

U U U U
e e e e

ππ ππ

          ⊗ ⊗ ⊗ ⊗ ⊗ ⊗              
 (10) 

,3 ,5
23

5

1 01 0
= , 0,1,2,3.

0 0
m im m m iU U m

e e
ππ

    ⊗ ⊗ =      
                                                  (11) 

If Charlie’s measurement result is 1 , the unitary operations of Alice and Bob are 

,6 ,6 ,8 ,8 , ,8 , ,h h h h h a h h c h cU Z U Z U Z U Z⊗ ⊗ ⊗  and ,3 ,3 ,5 ,5m m m mU Z U Z⊗ , respectively. 

In the protocol, by using the technique of RSP, the security of quantum state transmission 
can be ensured. Moreover, Charlie as the controller, after Alice and Bob announcing their 
measurement results, measures his own particle and announces his result, which ensure 
the simultaneity, that is, Alice and Bob recover the desired state at the same time. The 
classical communication costs are 7 cbits. Furthermore, the success probability of our 
protocol can be calculated as 

1 3 15
2 2 2

0 0 0

1 1 1[( ) ( ) ( ) ] 1.
2 4 2success

j m h
P

= = =

= =∑∑∑
        

                                                             (12) 

Therefore, through implementing our protocol, the desired states can be transmitted 
securely, simultaneously and deterministically. 

1

2 4 6

3 57

 sender receivercontroller

Alice

Bob
Charli

e

Alice

Bob

8 a
c

9 b
d

 
Figure 1: The process of our CBRSP protocol. Each solid point represents a particle, and 
the solid line represents an entanglement between particles. Dotted rectangle indicates the 
measurement. Solid rectangle indicates the unitary operation 

3 Discussions 
In this section, we discuss the efficiency and the necessary operations of our proto-col at 
first. Furthermore, some comparisons with other protocols are given. 

3.1 Efficiency 
The efficiency [Yuan, Liu, Zhang et al. (2008)] is an important factor in measuring 
protocol performance, which can be calculated as  
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= s

u t

q
q b

η
+

,                                                                                                      (13) 

where sq  denotes the number of qubits that consist of the quantum information to be 
prepared, uq  is the number of the qubits that is used as the quantum channel and tb is the 
classical bits transmitted. 
Therefore, the efficiency of our protocol is calculated as 

6= =30%
13 7

η
+

.                                                                                               (14) 

3.2 The necessary operations 
In our protocol, the necessary operations only used in constructing the quantum channel 
are seven H operations and twelve CNOT operations. Furthermore, no additional 
operations are needed. 

3.3 Comparisons with other protocols 
In the previous protocols [Cao and Nguyen (2013); Sharma, Shukla, Banerjee et al. 
(2015); Peng, Bai and Mo (2015); Wang and Mo (2017); Zhang, Zha, Duan et al. (2016a, 
2016b); Sang (2017); Song, Ni, Wang et al. (2017); Wu, Zha and Yang (2018); Sang and 
Nie (2017); Fang and Jiang (2018)], they only achieved symmetric bidirectional 
transmission of single-qubit state or the asymmetric transmission of single-and two-qubit 
state. Even in Ma et al. [Ma, Chen, Li et al. (2017)], they achieved the asymmetric 
bidirectional preparation of single-and four-qubit cluster-type states. However, in fact, 
they only transmit the single-and two-qubit state. And one of the receivers needs two 
local auxiliary qubits and auxiliary operations to recover the four-qubit cluster-type state. 
The results of comparison with the pervious asymmetric protocols are given in Tab. 1.  
Firstly, by using seven H operations and twelve CNOT operations, we give the 
construction of the quantum channel while the previous protocols have not given. 
Secondly, the sender or receiver of some protocols [Cao and Nguyen (2013); Sharma, 
Shukla, Banerjee et al. (2015); Zhang, Zha, Duan et al. (2016a, 2016b); Sang (2017); 
Song, Ni, Wang et al. (2017); Fang and Jiang (2018); Ma, Chen, Li et al. (2017)] needs 
the help of auxiliary particles and additional operations to complete the bidirectional task, 
which are not needed in our protocol. Thirdly, similarly, both protocols prepare four-
qubit states, while the classical communication costs of our protocol are fewer than that 
in Ref. [Ma, Chen, Li et al. (2017)]. Last but not the least, since our protocol can realize 
the bidirectional transmission of two-and four-qubit equatorial states, our protocol is 
more efficient than other protocols.  
The point-to-point quantum communication must be turned to the multi-party quantum 
network communication. These have a wide range of research meanings in some network 
structures [Guo, Zhang, Liu et al. (2017); Pang, Liu, Zhou et al. (2017); Li, Wang, Li et 
al. (2018); Shen, Song, Li et al. (2018)]. As regards the quantum networks, the feasibility 
and construction have been fully verified theoretically [Dong, Zhang, Zhang et al. (2014); 
Jiang, Jiang and Ling (2014); Xu, Chen, Li et al. (2015); Li, Chen, Xu et al. (2015)]. Our 
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scheme do not need the auxiliary resources and have relatively high efficiency, so it can 
be easily incorporated into the design of quantum network communication. 

Table 1: Comparisons with the pervious asymmetric protocols 

Protocol 
Quantum  

Channel 

Prepared  

State 

Auxiliary 
Particles 

Additional 
Operations 

CCCs 
Efficiency 
(%) 

[Song, Ni, Wang 
et al. (2017)] 

Four-qubit cluster 
state+EPR 

Single- and 
Two-qubit 

1 1CNOT 6 23.08% 

[Sang and Nie 
(2017)] 

Seven-qubit 
Entangled State 

Single- and 
Two-qubit 

0 0 5 25% 

[Fang and Jiang 
(2018)] 

Seven-qubit 
Entangled State 

Single- and 
Two-qubit 

2 2CNOTs 7 18.75% 

[Fang and Jiang 
(2018)] 

Seven-qubit 
Entangled State 

Two- and 
Single-qubit 

1 1CNOT 7 20% 

[Ma, Chen, Li et 
al. (2017)] 

Ten-qubit  

Entangled State 

Single- and 
Four-qubit 

5 7CNOTs 8 13.04% 

Ours 
Thirteen-qubit 
Entangled State 

Two- and 
Four-qubit 

0 0 7 30% 

Where CCCs=classical communication costs. 

4 Discussions 
In summary, an asymmetric protocol is proposed for controlled bidirectional quantum 
state transmission. In this protocol, by using the thirteen-qubit entangled state as the 
quantum channel, we can realize the bidirectional transmission of two-and four-qubit 
equatorial states simultaneously, securely and deterministically. In the end, we analyze 
the performance of the protocol and describe some comparisons with other protocols, 
including the efficiency, the necessary operations and the classical communication costs. 
The results show that our protocol has better performance. 
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