

Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.181-198, 2019

CMC. doi:10.32604/cmc.2019.05813 www.techscience.com/cmc

CM-Droid: Secure Container for Android Password Misuse
Vulnerability

Wen Zhang1, Keyue Li1, *, Tianyang Li1, Shaozhang Niu1 and Zhenguang Gao2

Abstract: Android applications are associated with a large amount of sensitive data,
therefore application developers use encryption algorithms to provide user data
encryption, authentication and data integrity protection. However, application developers
do not have the knowledge of cryptography, thus the cryptographic algorithm may not be
used correctly. As a result, security vulnerabilities are generated. Based on the previous
studies, this paper summarizes the characteristics of password misuse vulnerability of
Android application software, establishes an evaluation model to rate the security level of
the risk of password misuse vulnerability and develops a repair strategy for password
misuse vulnerability. And on this basis, this paper designs and implements a secure
container for Android application software password misuse vulnerability: CM-Droid.

Keywords: Password misuse, evaluation model, secure container, dynamic repair.

1 Introduction
With the development of mobile Internet and the popularity of smart phones, smart
phones have become an indispensable part of most people’s lives. According to the smart
phone system share report released by market research organization Gartner [Wang
(2017)], in the first quarter of 2017, the sales of Android devices reached 327 million
units, and the corresponding Android system share reached 86.1%, an increase of 2%
over the same period last year. Since the number of applications in the Google Play app
store exceeded 1 million in 2015, it has maintained a rapid growth trend. By January
2017, the number of applications has increased to 2.7 million.
In order to provide users with more software features, the Android system provides
developers with interfaces such as reading geographic information, contact lists and other
private data. In addition, users often need to input personal information such as account
number and password in the process of using application software, which causes Android
applications associating a large amount of user sensitive data. Developers use encryption
algorithms to provide data encryption, authentication and integrity protection in

1 Beijing Key Lab of Intelligent Telecommunication Software and Multimedia, Beijing University of Posts

and Telecommunications, Beijing, 100876, China.
2 Department of Computer Science, Framingham State University, 100 State St, Framingham, Massachusetts,

MA 01702, USA.
* Corresponding Author: Keyue Li. Email: likeyue@bupt.edu.cn.

182 Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.181-198, 2019

applications. However, in the analysis report of Veracode [Danhieux (2016)] in 2015,
87% of Android applications have encryption problems, which is 36% higher than the
51% in 2013. In the 2016 Annual Report published by Aliju Security, the Top10 Android
application software of 18 industries in 2016 was analyzed. Among the 14798 bugs
detected, 3174 (21.4%) were password misuse loopholes. This shows the phenomenon of
password misuse is very common in Android applications.
This paper summarizes the characteristics of password misuse vulnerability of Android
application software, establishes an evaluation model to rate the security level of the risk
of password misuse vulnerability and develops a repair strategy for password misuse
vulnerability. And on this basis, this paper designs and implements a secure container for
Android application software password misuse vulnerability: CM-Droid. The container is
able to quickly locate password misuse vulnerabilities in Android apps and fixes
vulnerabilities through flexible security policies.

2 Previous work
In the early stages, the research on password misuse vulnerability of Android platform is
mainly concentrated in the direction of SSL/TLS protocol. In 2008, Bhargavan et al.
[Bhargavan, Fournet, Corin et al. (2008)] showed how to use detection tools to analyze
the security of the use process of cryptographic protocols. In 2012, Georgiev et al.
[Georgiev, Iyengar, Jana et al. (2012)] used a man-in-the-middle attack to detect whether
an SSL security vulnerability exists in the application. In 2014, Sounthiraraj and others
[Sounthiraraj, Sahs, Greenwood et al. (2014)] proposed the SMV-HUNTER system,
which could automatically identifies SSL/TLS man-in-the-middle attacks vulnerability
for large-scale Android applications. In 2015, Onwuzurike [Onwuzurike and De
Cristofaro (2015)] conducted research on information leakage and SSL vulnerabilities in
Android applications. However, the above work only studies the password misuse
problem of the protocol, and does not systematically detect the password misuse
vulnerability existing in the entire application software. In 2013, Egele et al. [Egele,
Brumley, Fratantonio et al. (2013)] systematically analyzed the password misuse
vulnerability of Android applications. In 2014, Shao et al. [Shao, Dong, Guo et al. (2014)]
established a password misuse detection system CMA, which uses a combination of
dynamic and static methods to detect password misuse vulnerability in Android programs.
In 2015, Chatzikonstantinou et al. [Chatzikonstantinou, Ntantogian and Karopoulos
(2015)] chose to use weak encryption, weak implementation, weak key and weak
encryption parameters as detection items to detect Android application password misuse
vulnerability. In 2018, Li et al. [Li, Luo, Zhao et al. (2018)] proposed a provably secure
APK redevelopment authorization scheme in the standard model.
In addition, González et al. [González, Esparza, Muñoz et al. (2015)] analyzed the
encryption algorithms and encryption structures provided by Android in the research.
They found that the encryption algorithms provided were not the same in multiple system
versions of Android. Somak et al. [Somak, Gopal, King et al. (2014)] studied encryption
libraries including programming languages such as C, C++, Java, Python and Go.
However, the above research only detects whether the application has a password misuse
security problem, and cannot fix the existing vulnerability in the program. Ma et al. [Ma,

CM-Droid: Secure Container for and Roid Password Misuse Vulnerability 183

Lo, Li et al. (2016)] implemented an automatic repair tool CDRep for Android application
password misuse vulnerability. But there are two problems with this scheme: 1. Only use
static detection to detect password misuse vulnerabilities in the application, so there may be
a false positive. 2. The re-packaging method is used to complete the bug fix. This method
cannot be applied to the application software with anti-repackaging function. It can be seen
that there is still a significant gap in the security protection research for Android application
password misuse vulnerability, which is also the focus of this paper.

3 Android application password misuse vulnerability analysis
3.1 Analysis of the current situation of Android software password usage
We downloaded Top30 applications in the five categories of wealth management,
communication, music, entertainment, and reading from the Yingyongbao app store, and
then analyzed the use of encryption algorithms for these applications. The analysis results
are shown in Tab. 1. Through analysis of these 30 APPs, we found that the category with
the highest ratio of using encryption algorithms is the reading class, which has achieved
57% usage. In addition, most applications that use encryption algorithms use three types
of encryption algorithms at the same time. There are few applications that use only one or
two types of algorithms. This illustrates the need to detect password misuse
vulnerabilities in Android apps from multiple dimensions.

Table 1: Statistics table of the usage of encryption algorithm in various applications

Application
category Amount

Symmetric
encryption
algorithm

Asymmetric
encryption
algorithm

Hash
encryption
algorithm

wealth
management 15 15 15 15

communication 13 12 13 13
news 15 14 14 15
music 13 13 13 12
reading 17 14 15 17
total 73 68 70 72

3.2 Android password misuse vulnerability risk rating
3.2.1 Quantitative analysis of the risks
For the classification of application software password misuse, CWE [CWE (2018)] lists
more than 20 security vulnerabilities that developers need to pay attention to during the
application development process, but the CWE classification is not specifically analyzed
for the Android platform. Based on the CWE classification, we also refer to the method
of Shuai [Shao, Dong, Guo et al. (2014)], and divide the password misuse vulnerability of
Android application software into four categories: symmetric encryption algorithm class,
asymmetric encryption algorithm class, hash algorithm class and password management
class. We quantify the security impact of these vulnerabilities. For the convenience of
explanation, in the following analysis process, We use m, n for the length of the

184 Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.181-198, 2019

encryption key, l for the output length of the hash function, and k for the constant,and
there are m, n, l, k∈N, m<n, 0<k<n. See Appendix 1, where L(n) stands for

 (1)

Symmetric encryption algorithm (SE): symmetric encryption algorithms provided by
the Android platform include DES, AES, etc. Symmetric encryption algorithm class
vulnerabilities include three subclasses: encryption mode misuse, initial vector misuse,
and encryption algorithm misuse.
Asymmetric Encryption Algorithm (ASE): The asymmetric encryption algo-rithm
provided by the Android platform is mainly the RSA algorithm. The vulnerabilities of
asymmetric encryption algorithms include four subclasses: key length misuse, low
decryption index misuse, padding mode misuse, and certificate validation vulnerabilities.
Hash Algorithm (HA): The hash algorithm is a one-way algorithm. The user can
generate a unique hash value of a specific length by using a hash algorithm. Hash
algorithm class vulnerabilities include two subclasses: cryptographic algorithm misuse
and input parameter misuse. Tab. 4 lists the quantitative analysis of vulnerabilities.
Key Management (KM): A key management class vulnerability is when an application
software stores or passes an encryption key in an unsecure manner. Key management class
vulnerabilities mainly include key storage vulnerabilities and key generation vulnerabilities.

3.2.2 Threat rating
According to the research results, the attack complexity of the encryption algorithm can
be divided into five categories: constant order, linear order, polynomial order, sub-
exponential order, and exponential order according to the order of magnitude. This article
uses M (magnitude) to represent the order of magnitude of complexity: M1 represents a
constant order and the attack complexity belonging to M1 is O(1); M2 represents a linear
order and the attack complexity belonging to M2 is O(n); M3 represents a polynomial
order, and the attack complexity belonging to M3 is O(p(n)); M4 represents the sub-
exponential order, and the attack complexity belonging to M4 is O(L(n)); M5 represents
the exponential order, and the attack complexity belonging to M5 is O(2n/2) and O(2n).
We classify the security threat level of password misuse vulnerability into three levels,
namely high risk, medium risk and low risk. The criteria for judging are shown in Tab. 2.

Table 2: Security threat level standard

Threat level Complexity change Description

High risk [M5, M2], [M5, M1]
The attack complexity is reduced from
exponential to linear or constant.

Intermediate risk [M5, M3] The attack complexity is reduced from
exponential to polynomial.

Low risk [M5, M5], [M5, M4]
The attack complexity is reduced from
exponential to exponential or sub-
exponential.

CM-Droid: Secure Container for and Roid Password Misuse Vulnerability 185

At low-risk levels, the complexity of the vulnerability is of the same order of magnitude,
or is reduced from an exponential step to a sub-exponential order. Attackers use the
vulnerability to gain less benefit, and the attack process still requires complex
calculations or takes a long time, so such vulnerabilities are relatively less threatening to
the application.
At the medium-risk level, the attack complexity after exploiting the vulnerability is a
polynomial order. The use of such vulnerabilities can significantly reduce the amount of
attackers’ calculations, and may even cause attacks that previously took several months
to complete in a relatively short and acceptable time, so such vulnerabilities pose a
significant hazard to the application.
At high risk levels, the attack complexity after exploiting the vulnerability is reduced to a
linear order or a constant order. That is, the algorithm itself is very secure, but after the
vulnerability occurs, the attacker can use the external factors in the algorithm to complete
the attack very easily. Such vulnerability seriously affects the security of the application.
Based on the above definition of security threat levels for password misuse vulnerabilities,
we rated and summarized the security risks of various types of password misuse
vulnerabilities. The specific rating results are shown in Tab. 3.

Table 3: Password misuse security threat rating

Vulnerability
number Quantization formula Complexity

change Threat level

SE-MM SE-MM-[O(2n), O(n)] [M5, M2] High risk
SE-IM SE-IM-[O(2n), O(n)] [M5, M2] High risk
SE-AM SE-AM-[O(2n), O(2n-k)] [M5, M5] low risk
ASE-KLM ASE-KLM-[O(2n/2), L(n)] [M5, M4] low risk

ASE-LDEM ASE-LDEM-[O(2n/2), O(p(n))] [M5, M3] intermediate
risk

ASE-PM ASE-PM-[O(2n/2), O(n)] [M5, M2] High risk
ASE-CVV ASE-CVV-[O(2n/2), O(1)] [M5, M1] High risk
HA-AM HA-AM-[O(2l/2), O(2(l-k)/2)] [M5, M5] low risk
HA-IM HA-IM-[O(2l/2), O(2(l-k)/2)] [M5, M5] low risk
KM-KSV KM-KSV-[O(2n) /O(2n/2), O(1)] [M5, M1] High risk
KM-KGV KM-KGV-[O(2n)/ O(2n/2), O(1)] [M5, M1] High risk

3.3 Android password misuse vulnerability repair model
3.3.1 Password misuse causes
According to the principle of password misuse vulnerability, we summarize the reasons
for the password misuse vulnerability in the development process. We abstract three main
causes, algorithm selection errors, algorithm parameter setting errors, and password
usage process errors, as described below:
R1, the algorithm selection is wrong. It mainly means that when using the cryptographic
algorithm, the developer selects a cryptographic algorithm that has been proven to be unsafe.

186 Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.181-198, 2019

R2, the algorithm parameter setting is wrong. It mainly means that when the password
algorithm is used by the developer, the wrong password parameter is set or the password
parameter is generated in an unsafe manner.
R3, the key usage process is wrong. It mainly means that when the cryptographic
algorithm is used by the developer, there are obvious problems in the process of
generating, storing, and transmitting the key, which causes the attacker to obtain the key
under a very low attack condition.

3.3.2 Repair strategy
This article divides the application data into two categories according to the scope of the
encrypted data, namely local data (L) and shared data (S). Local data refers to data stored
only in the local sandbox or external storage area and used only within the application,
which support the local business needs of the application software, but will not leave the
scope covered by the application software. Shared data refers to data that is shared with
external systems by applications such as inter-process communication, file sharing, and
network communication. According to the cause of the Android password misuse
vulnerability and the data type of the application software, this paper proposes five repair
strategies: parameter fix, storage fix, key fix, block fix, and warning fix.
Parameter Fix (PF): When there are R1 and R2 password misuse holes in the encryption
and decryption process, the vulnerability is replaced by replacing the calling parameters
of the encryption API to avoid security risks. Since the repair strategy modifies key
factors such as encryption algorithms and algorithm parameters in the data encryption
process, it will affect the decryption process of the data. This policy can only fix
password misuse holes in local data when it is executed independently.
Storage Fix (SF): When there is a password misuse vulnerability of the R3 class key
storage problem during the encryption and decryption process, the vulnerability is
repaired by modifying the storage path of the data to avoid security risks. This fix policy
fixes the vulnerability mainly by changing the access rights of the local key file, so it
only applies to the password misuse vulnerability of local data.
Key Fix (KF): When there is a password misuse vulnerability of the R3 class key
generation problem during the encryption and decryption process, the vulnerability repair is
completed by modifying the key generation method to avoid the occurrence of security risks.
Block Fix (BF): When there is a high-risk password misuse vulnerability in the
encryption and decryption process, the vulnerability is fixed by forcibly blocking the
encryption and decryption process of the data to avoid the occurrence of security risks.
This repair strategy can be applied to password misuse vulnerabilities of local data and
shared data, but it will affect the data execution logic of the application software, thus
requiring user authorization and licensing.
Warning Fix (WF): When there is a password misuse vulnerability in the encryption and
decryption process, by prompting the user to risk, the user actively chooses to stop the
business logic to fix the vulnerability and avoid the occurrence of security risks. This
repair strategy can also be applied to password misuse vulnerabilities of local data and
shared data, but does not hinder the original business logic throughout the process.

CM-Droid: Secure Container for and Roid Password Misuse Vulnerability 187

3.3.3 CFMM model
CMFM adopts three repair strategies: parameter fix, storage fix and key fix. It will
securely repair the encryption algorithm, encryption mode, encryption parameters, stored
procedure, and key generation process used in the encryption and decryption process.
CMFM abstracts the repair strategy of each vulnerability by repairing the vector-based
four-dimensional tuple, including vulnerability number, vulnerability cause, encrypted
data type, and repair strategy. Among them, each dimension element represents the key
elements in the process of policy instantiation, as shown in Fig. 1.

Figure 1: Four repair strategies

Therefore, the repair of the password misuse vulnerability through CMFM can make the
encryption and decryption process in the application have no vulnerability of constant order
and linear order attack complexity, effectively avoid the security risk introduced by the
password misuse vulnerability, and greatly improve the security of data in the application.

4 Design of CM-Droid
Based on the repair model set in the previous chapter, this chapter proposes a secure
container based on the application layer: CM-Droid. The container performs real-time
monitoring on the execution process of the Android application invoking the encryption
library, and through the flexible reinforcement policy configuration, the password misuse
vulnerability of the application software is repaired to prevent the attacker from
exploiting the password misuse vulnerability and prevent implementing key extraction,
man-in-the-middle attacks, and encrypted data cracking of application software.

4.1 System architecture
The system architecture of CM-Droid consists of two parts, the server and the client. The
server is responsible for analyzing the static code of the application and completing the

188 Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.181-198, 2019

generation, storage and management of the policy; the client is the main body of the CM-
Droid, which implements the secure running environment of the application, and is
responsible for monitoring the encryption API and The repair of the vulnerability. The
system architecture of CM-Droid is shown in Fig. 2.

Figure 2: The system architecture of CM-Droid

PGS: PGS (Policy Generation Server) is the first module to be executed to prepare for the
dynamic execution of the client. The PGS module first performs static code analysis on
the APP uploaded by the client, including basic feature analysis, deep feature analysis,
and vulnerability extraction.
SRE: SRE (Safe Runtime Environment) is the basic building block of the entire container,
simulating the operating environment of the system to ensure that the application runs in
a safe environment.
PEP: PEP (Policy Enforcement Point) is responsible for monitoring the behavior of the
application runtime, confirming the suspected vulnerability, and repairing the encryption
and decryption process of the confirmed vulnerability in real time.
After receiving the result returned by the PDP, the PEP will perform the corresponding
operation according to the detection result. The PEP will complete the hardening
according to the repair policy returned by the PDP.
PDP: The main role of the PDP (Policy Decision Point) is to perform security diagnosis
on the current operation.

4.2 Key processes
4.2.1 Strategy generation
Policy generation is performed on the PGS (Policy Generation Server) remote server. It
mainly analyzes the application and generates CMRS files. CMRS is used for Section 4.3
dynamic validation and Section 4.4 bug fixes.
The strategy generation mainly includes the following four stages, basic feature

CM-Droid: Secure Container for and Roid Password Misuse Vulnerability 189

extraction, depth feature analysis, dynamic analysis preprocessing and policy generation,
as shown in Fig. 3.

Figure 3: Strategy generation

Basic feature extraction: In PGS, we analyze the decompiled intermediate files by using
the basic parsing of the APK file and combining Androguard to obtain the basic features
of the application software.
Depth feature preprocessing information: In addition to the basic information of Apk,
key API information, we also need to extract the information needed for deep feature
analysis.
Depth feature analysis: Based on the basic features, we obtained some infor-mation,
such as SE-AM. According to the code fragment const-string/jumbo v2, we can know
that some insecure DES algorithm is used in the code. But it can't be linked to the
vulnerability fix point we need: Ljava/crypto/Cipher;-> getInstance (encryption algorithm,
working mode, filling method). We need to perform control flow analysis on the code,
creating a path from the code fragment const-string/jumbo v2 to the bug fix point
Ljava/crypto/Cipher;-> getInstance(). And record the vulnerability fix point.
After basic feature extraction and depth feature analysis, we combine the collected code
features with the definition of the vulnerability to generate a validation vulnerability set,
confirming that the vulnerability set contains the vulnerability name, description, fix
point features, and fix point location.
Dynamic Analysis Preprocessing: Some vulnerabilities we cannot or are difficult to
confirm with static analysis. For example, key length misuse (SE-KLM), the repair point
feature is, Ljavax/crypto/KeyGenerator; -> initialize(I)V. The basic data type in the code

190 Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.181-198, 2019

is difficult to get the actual value, and the actual value of the parameter can only be
obtained when the application is running.
Strategy generation: In the third chapter, we have detailed descriptions of the
vulnerability repair strategy, and we will not make a detailed statement here. Based on
the name of the vulnerability, we generate the corresponding repair strategy and finally
generate a CMRS file.

4.2.2 Dynamic confirmation
The dynamic confirmation of the suspected vulnerability of CM-Droid mainly involves
vulnerabilities in the dynamic execution of suspected vulnerabilities in the policy file to
determine whether the vulnerability exists. Participants in the entire process include the
remote PGS and the local CM-Droid container. The dynamic confirmation process for
suspected vulnerabilities is shown in Fig. 4.

Figure 4: Dynamic confirmation

Install phase: After the application is installed into the container, the PDP module will
first extract the basic information of the application: Apk_name, Apk_Version, Apk_Size.
Communicate with the PGS to obtain the CMRS file of the application from the PGS.
PGS first looks for basic information based on the application. If the remote library
contains eligible CMRS, it will return this CMRS directly. If the Apk does not exist in
the PGS remote library, the Apk is transmitted remotely, and the policy generation
process is executed.
Launch phase: After the application is launched, when it is executed to the key API, it
will be intercepted by the PEP module. The PEP module will collect the feature package
of the Apk at this time: the API of the hook, the API parameters, and the stack
information. The feature is sent to the PDP module, and the PDP module determines the
vulnerability.

CM-Droid: Secure Container for and Roid Password Misuse Vulnerability 191

Verification method: In CM-Droid, the dynamically confirmed vulnerabilities include
ASE-CVV, ASE-LDEM, HA-IM, KM-KSV, etc. These vulnerabilities generate
conditions during the policy generation phase, and we validate the condition. If the
condition is met, the suspected vulnerability is verified and a confirmed vulnerability set
is added.

4.2.3 Vulnerabilities repair
CM-Droid's bug fixes are mainly for the vulnerability of the APP that has been confirmed
in the local policy cache, and are dynamically repaired during the running of the APP.
The entire repair process is divided into two phases, as shown in the Fig. 5

Figure 5: Vulnerabilities repair

Install phase: In the installation phase of vulnerability confirmation, CM-Droid obtains
the CMRS file by PGS or CMRS gained by dynamically confirmed triggered updated.
The PDP module extracts the acknowledgment vulnerability feature from the
acknowledgment vulnerability set and sends it to the PEP module. After receiving the
acknowledgment vulnerability feature, the PEP module extracts the key API and injects it.
Launch phase: After the application is launched, it will be intercepted by the PEP
module when it executes the key API with the confirmation vulnerability. The PEP
module will determine whether the acquired information matches the vulnerability
feature. Once the match is successful, the PEP requests the PDP module for the repair
strategy corresponding to the vulnerability. The PDP sends a corresponding repair policy
according to the vulnerability information, and the PEP module receives the repair policy
and performs the vulnerability repair operation.

5 Experiment and evaluation
This chapter mainly tests and evaluates the CM-Droid-based Android client vulnerability
repair tool designed in this paper, and verifies the accuracy and effectiveness of the tool

192 Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.181-198, 2019

for the repair of password misuse. This chapter firstly deploys the test environment, and
then performs functional tests on CM-Droid. It mainly verifies whether the functions of
CM-Droid can run normally, and then tests the performance of CM-Droid. Finally, the
conclusions of the experimental analysis are obtained, and suggestions for improving
performance are proposed.

5.1 Test process design
This section mainly introduces the design of the test process for CM-Droid, including the
purpose of the test, the configuration of the test environment, the selection of test objects
and the test method.

5.1.1 Test purpose
The purpose of this test is first to verify the feasibility of the CM-Droid, and then to
evaluate some of the performance indicators of the test tool in the actual detection of the
vulnerability.

5.1.2 Test environment
The CM-Droid designed in this paper can be divided into two parts, namely the static
vulnerability scanning part on the server side and the dynamic behavior analysis part in
the client side. In this test, the static vulnerability scanning part was deployed on the 0.4
version of the Santoku system.

5.1.3 Test method
In order to verify the repair effect of CM-Droid, we detected and repaired 15 popular
applications through CM-Droid, manually analyzed the problems of 15 popular
applications, and recorded the time and performance of CM-Droid detection.

5.2 Test results and analysis
5.2.1 Function test
We focus on testing the actual detection and repair capabilities of CM-Droid for 12 types
of password misuse vulnerabilities. We focus on 15 applications on the market, through
PGS-side policy generation, client-side dynamic validation and bug fixes. We have
established the following experimental data:

CM-Droid: Secure Container for and Roid Password Misuse Vulnerability 193

Figure 6: Password misuse vulnerability detection and repair results

For the experimental results, we performed a manual analysis of the missing KM-KSV
vulnerability. After analysis, we believe that the KM-KSV vulnerability does not exist in
popular applications. Popular apps don't store keys locally. At the same time, we analyze the
ASE-CVV2 vulnerability. According to the experimental results, our tool CM-Droid can
effectively detect the password misuse vulnerability in the application. At the same time, due
to the triggering process, we actually fix fewer vulnerabilities than the detected vulnerability.

5.2.2 Repair time assessment
Our main time overhead is fixed in the CM-Droid container for password misuse
vulnerabilities. So we perform a time performance assessment for the bug fix process.
For the performance evaluation of time, we first evaluate the extra time taken by the CM-
Droid container for the repair application. We mainly test the time it takes for each type
to go from repairing the trigger point to repairing the entire process. We tested each type
of vulnerability for 1,000 times.
According to our definition of the repair strategy, the repair methods can be divided into
replacement repair (parameter repair (PF), storage repair (SF), key repair (KF)), block
repair (BF), and early warning repair (WF). We will compare the time between the
vulnerabilities that can be used in these three types of repair methods.
Replacement fix: Due to the substitution of parameters, keys or storage locations, the
repair time is related to the length of the encrypted data, so we use 12 bytes, 105 bytes,
1280 bytes of data for repair operations.
The replacement repair time has a linear relationship with the size of the encrypted data.
In SE-AM, if the repair data is 1280 bytes, the program crashes directly. For practical
reasons, if the encrypted data is too large, we will choose to block the repair and not
replace it.
Blocking fix: When there is a high-risk password misuse vulnerability in the encryption
and decryption process, the vulnerability is fixed by forcibly blocking the data encryption

194 Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.181-198, 2019

and decryption process to avoid security risks. Due to the impact of the normal
application process, we will pop up a dialog box, which is selected by the user.
Warning fix: When there is password misuse vulnerability in the encryption and
decryption process, by prompting the user to risk, the user actively chooses to stop the
business logic to fix the vulnerability and avoid the security risk. The warning fix here is
that we only calculate the time from the discovery of the vulnerability to the pop-up
warning. The user's choice time is not in our consideration.
The warning fix only prompts the user to make a selection, and the repair time is shorter.
This does not hinder the original business logic, but requires the user to make a choice.

5.2.3 Performance evaluation
Our main performance overhead is for the launch and run of the application in the CM-
Droid container. So we perform performance evaluations for the startup and operation of
the application in the CM-Droid. We use the Android Profiler for performance evaluation.
For performance evaluation, an application may have multiple processes.
The experimental results are shown in the Fig. 7, Fig. 8 and Fig. 9 respectively.

Figure 7: Replacement fix

CM-Droid: Secure Container for and Roid Password Misuse Vulnerability 195

Figure 8: Block fix

Figure 9: Warn fix

Memory evaluation: It is an evaluation of memory. We first evaluate the additional
memory footprint of the CM-Droid container for repairing applications. We use the
method of comparative testing. We tested the average memory and peak memory of the
CM-Droid and compared the average memory and peak memory of the application when
the CM-Droid is not running.
After calculation, the average memory running in the CM-Droid is 5.1% more than not
running in the CM-Droid. The peak memory running in the CM-Droid is 7.3% more than
not running in the CM-Droid. The extra memory is consumed in an acceptable range. The
experimental results are shown in the Fig. 10.

196 Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.181-198, 2019

Figure 10: Memory usage result

CPU occupancy assessment: For the evaluation of CPU usage, we first evaluate the
additional CPU usage that the CM-Droid container brings. We use the method of
comparative testing. We tested the average CPU usage and peak CPU usage of the
application in the CM-Droid and compare the average CPU usage and peak CPU usage of
the application when they are not in the CM-Droid.
After calculation, the average CPU usage running in the CM-Droid is 26.4% more than
not running in the CM-Droid. The peak CPU usage running in the CM-Droid is 10.1%
more than not running in the CM-Droid. The CPU usage is relatively high, which is
related to our simulation of system services. The experimental results are shown in the
Fig. 11.

Figure 11: CPU usage result

CM-Droid: Secure Container for and Roid Password Misuse Vulnerability 197

6 Conclusion
This paper mainly summarizes the characteristics of password misuse vulnerability of
Android application software, establishes an evaluation model to rate the security level of
the risk of password misuse vulnerability and develops a repair strategy for password
misuse vulnerability. And on this basis, this paper designs and implements a secure
container for Android application software password misuse vulnerability: CM-Droid.
Through experimentation, the additional time and memory loss increased by CM-Droid is
within a acceptable range and achieves our predicted detection and repair results. But
there are also some problems.
First of all, we are currently only targeting Android systems below 4.4 and 4.4. For
Android systems above 4.4 version which use the ART virtual machine, we have not
conducted research. In further work, we will implement CM-Droid for systems above 4.4.
Secondly, the current PGS end detection has not been fully automated, there are still steps
of manual detection and verification, and there are some errors. In next steps, we are
going to achieve full automation of detection on PGS.

Acknowledgement: This work is supported by The National Natural Science Foundation
of China Nos. U1536121, 61370195).

References
Bhargavan, K.; Fournet, C.; Corin, R.; Zalinescu, E. (2008): Cryptographically
verified implementations for TLS. Proceedings of the 15th ACM Conference on
Computer and Communications Security, pp. 459-468.
Bleichenbacher, D. (1998): Chosen ciphertext attacks against protocols based on the
RSA encryption standard PKCS #1. Proceedings of the 18th Annual International
Cryptology Conference on Advances in Cryptology, vol. 1462, pp. 1-12.
Chatzikonstantinou, A.; Ntantogian, C.; Karopoulos, G. (2015): Evaluation of
cryptography usage in Android applications. Proceedings of the 9th EAI International
Conference on Bio-inspired Information and Communications Technologies, vol. 3, no. 9,
pp. 83-90.
Danhieux, P. (2016): Veracode’s state of software security report supplement to vol 6,
fall 2015: application development landscape. http://www.linkedin.com/pulse/veracodes-
state-software-security-report-supplement-vol-danhieux.
Egele, M.; Brumley, D.; Fratantonio, Y.; Kruegel, C. (2013): An empirical study of
cryptographic misuse in Android applications. Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, pp. 73-84.
Georgiev, M.; Iyengar, S.; Jana, S.; Anubhai R. (2012): The most dangerous code in
the world: validating SSL certificates in non-browser software. Proceedings of the 2012
ACM Conference on Computer and Communications Security, pp. 38-49.
González, D.; Esparza, O.; Muñoz, J. L. (2015): Evaluation of cryptographic
capabilities for the Android platform. Future Network Systems and Security, vol. 523,
pp. 16-30.

198 Copyright © 2019 Tech Science Press CMC, vol.59, no.1, pp.181-198, 2019

Kunihiro, N.; Shinohara, N.; Izu, T. (2014): A unified framework for small secret
exponent attack on RSA. Proceedings of the 18th International Conference on Selected
Areas in Cryptography, vol. 7118, pp. 260-277.
Li, D.; Luo, M.; Zhao, B.; Che, X. (2018): Provably secure APK redevelopment
authorization scheme in the standard model. Computers, Materials & Continua, vol. 56,
no. 3, pp. 447-465.
Ma, S.; Lo, D.; Li, T.; Deng R. (2016): CDRep: automatic repair of cryptographic
misuses in Android applications. Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, pp. 711-722.
Onwuzurike, L.; De Cristofaro, E. (2015): Danger is my middle name: experimenting
with SSL vulnerabilities in Android apps. https://arxiv.org/abs/1505.00589.
Shao, S.; Dong, G.; Guo, T.; Yang, T. (2014): Modelling analysis and auto-detection of
cryptographic misuse in Android applications. IEEE 12th International Conference on
Dependable, Autonomic and Secure Computing, pp. 75-80.
Somak, D.; Gopal, V.; King, K.; Venkatraman, A. (2014): IV=0 security
cryptographic misuse of libraries. http://courses.csail.mit.edu/6.857/2014/files/18-das-
gopal-king-venkatraman-IV-equals-zero-security.pdf.
Sounthiraraj, D.; Sahs, J.; Greenwood, G.; Lin, Z. (2014): SMV-HUNTER: large
scale, automated detection of SSL/TLS man-in-the-middle vulnerabilities in Android
apps. Network and Distributed System Security Symposium.
Stevens, M.; Karpman, P.; Peyrin, T. (2016): Freestart collision for full SHA-1.
Advances in Cryptology-EUROCRYPT 2016 (35th Annual International Conference on
the Theory and Applications of Cryptographic Techniques), vol. 9665, pp. 459-483.
Wang, Y. (2017): 2017 Q1 apple IOS system share decreased by 1.1% and Android rose
2%. http://mobile.zol.com.cn/640/6407752.html.

	CM-Droid: Secure Container for Android Password Misuse Vulnerability
	CM-Droid: Secure Container for Android Password Misuse Vulnerability
	Wen Zhang0F , Keyue Li1, *, Tianyang Li1, Shaozhang Niu1 and Zhenguang Gao2
	Wen Zhang0F , Keyue Li1, *, Tianyang Li1, Shaozhang Niu1 and Zhenguang Gao2
	Wen Zhang0F , Keyue Li1, *, Tianyang Li1, Shaozhang Niu1 and Zhenguang Gao2

	References
	References

