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Abstract: Propagation characteristics of Rayleigh-type wave in a piezoelectric layered 

system are theoretically investigated. The piezoelectric layer is considered as a cubic 

crystal with finite thickness rotated about Y-axis and is imperfectly bonded onto a 

semi-infinite dielectric substrate. The imperfect interface between the two constituents is 

assumed to be mechanically compliant and dielectrically weakly conducting. The exact 

dispersion relations for electrically open or shorted boundary conditions are obtained. 

The numerical results show that the phase velocity of Rayleigh-type wave is symmetric 

with respect to the cut orientation of 45° and can achieve the maximum propagation speed 

in this orientation. The mechanical imperfection plays an important role in the dispersion 

relations, further the normal imperfection can produce a significant reduction of phase 

velocity comparing with the tangential imperfection. Comparing with the mechanical 

imperfection the electrical imperfection makes a relatively small reduction of phase 

velocity of Rayleigh-type wave. The obtained results can provide some fundamentals for 

understanding of piezoelectric semiconductor and for design and application of 

piezoelectric surface acoustic wave devices.  

 

Keywords: Piezoelectric cubic crystal, Rayleigh-type wave, imperfect interface, cut 

orientation, dispersion relation. 

1 Introduction 

Due to being able to achieve the conversion between mechanical energy and electrical 

energy, surface acoustic wave (SAW) devices made of piezoelectric materials are widely 

used as resonators, tunable filters, delay lines, sensing devices, energy harvesters and 

micro-electro-mechanical systems [Jakoby and Vellekoop (1997); Garner and Ohkawa 

(2002); Campbell and Jones (1968); Ma and Wu (2009); Ghasemi, Park and Rabczuk 

(2017); Ghasemi, Park and Rabczuk (2018); Hamdia, Ghasemi, Zhuang et al. (2018); 

Nanthakumar, Lahmer, Zhuang et al. (2016); Nanthakumar, Zhuang, Park et al. (2017); 

Nguyen, Nanthakumar, Zhuang et al. (2018); Thai, Rabczuk and Zhuang (2018)]. Studies 

of wave propagation in piezoelectric media and structures have been the subject of 

increasing research activity for about 50 years. At the earliest, Bluestein [Bleustein 

(1968)] and Gulyaev [Gulyaev (1968)] almost concurrently discovered that a shear 

horizontal (SH) surface wave can propagate in the hexagonal 6mm piezoelectric 
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half-space when its surface is electrically shorted or open to the vacuum, and thus be 

commonly termed as Bleustein-Gulyaev (BG) wave. BG wave is a non-dispersive surface 

wave which exists only in piezoelectric materials. Like the Love wave its particle motion 

is entirely transverse and parallel to the surface, but it is confined to the surface by the 

piezoelectric effect rather than by a layer of a different material. These characteristics of 

non-dispersive and large penetration depth of BG wave greatly restricts its practical 

applications in acoustic and microwave devices. But if the piezoelectric half-space is 

replaced by a layered structure, such disadvantages of BG wave can be dramatically 

alleviated [Curtis and Redwood (1973); Sun and Cheng (1974)]. Many efforts therefore 

have been made to explore the propagation of surface waves in piezoelectric layered 

structures in recent decades. According to the material properties and stacking sequence 

of the covering layer and the substrate, piezoelectric layered systems can be classified 

into three forms, i.e., elastic layer/piezoelectric substrate [Curtis and Redwood (1973); 

Zhang and Feng (2012)], piezoelectric layer/elastic substrate [Qian, Jin and Hirose (2011); 

Qian and Hirose (2012); Nie, Liu and Li (2015); Singh, Parween, Kumar et al. (2018); 

Singh, Das, Mistri et al. (2017)], and piezoelectric layer/piezoelectric substrate [Morocha 

(2010); Zakharenko (2005); Singh, Kumar and Chattopadhyay (2015)]. Most of the 

published results on piezoelectric surface waves are for polarized ceramics and quartz for 

transducer and acoustic wave resonator or sensor. One of the most common types of 

piezoelectric crystals is the cubic crystal system which possesses the same form of 

macroscopic symmetry to the piezoelectric semiconductor. So, study on wave 

propagation in cubic crystals can offer some fundamentals for the understanding and 

application of piezoelectric semiconductor, such as acoustic wave amplification, stress 

and strain sensing, energy harvesting and conversion [Chen, Wang, Du et al. (2016)]. 

Many researchers focused on the various wave propagating in piezoelectric cubic crystals. 

Tseng [Tseng (1970)] demonstrated that the elastic Rayleigh waves and the SH-PE 

surface wave can propagate in piezoelectric cubic crystals of 43m  and 23 classes along 

the [110] direction on the (110)  surface and their equivalent orientation, and the 

velocity equations for the piezoelectric surface wave and elastic surface wave were 

derived. Bright and Hunt [Bright and Hunt (1989)] explored an analytical solution for BG 

piezoelectric surface wave in cubic crystals. A general formulation of the boundary-value 

problem and the equation of power carried by the BG wave were presented. The 

existence of BG wave in six kinds of piezoelectric cubic crystals was demonstrated in 

their numerical examples. Rio et al. [Rio and Velasco (1985)] studied the surface wave 

propagating on the (100) and (110) surfaces of piezoelectric cubic crystal by using the 

surface Green function matching method. They found that there is no BG wave can 

propagate along the [100] and [110] symmetry directions on the (100) surface, while on 

the (110) surface BG wave can propagate along the [110]  symmetry direction and a 

piezoelectric Rayleigh wave along the [001]  direction. Zakharenko [Zakharenko 

(2005)] investigated the propagation of Love wave in layered half-space systems 

consisting of two class-23 cubic piezoelectric media, and the dispersion relations for 

seven partial Love-type waves were obtained numerically. Zakharenko [Zakharenko 

(2010)] gave a further study on interfacial SH wave propagating along the interface of 
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two piezoelectric cubic crystals of 43m  and 23 classes. It was found that this kind of 

interfacial SH wave can always propagate along the interface of two identical 

piezoelectric crystals with opposite polarization. 

In the studies mentioned above, the interface existing in layered system or bi-material 

space was considered as a perfect bonding. It is well known that the interfacial 

imperfection can weaken the stiffness and continuity of layered system, and further 

affects the wave propagation behaviors [Nie, Liu and Liu (2016)]. Considering interface 

imperfection, many efforts have been made on the propagation of surface waves [Liu, 

Wang and Wang (2010); Fan, Yang and Xu (2006);  Li and Jin (2012); Singh, Chaki, 

Hazra et al. (2017); Singh, Kumar and Kumari (2018)] and interfacial waves [Chen, Hu 

and Yang (2008); Xu, Fan, Chen et al. (2006); Fan, Yang and Xu (2006); Huang and Li 

(2011)] in various layered structures or bi-material systems with a constituent of 

piezoelectric media. However, the interfacial imperfection mentioned was restricted to 

pure mechanical imperfection while the electrical imperfection was not considered. In 

fact, defects and damages to the interface are often inevitable due to electro-mechanical 

coupling and fatigue. Therefore, the effects of both mechanical and electrical 

imperfection are interesting for piezoelectric devices. Recently, Li et al. [Li, Wei and Guo 

(2016)] studied the propagation of Rayleigh wave in a system consisting of an elastic 

half-space carrying a piezoelectric gradient covering layer. Five types of gradient profiles 

and two types of imperfect interfaces were considered and the effects of the mechanical 

and dielectric interface parameters on surface wave speed are discussed. Similarly, Li et 

al. [Li and Lee (2010)] investigated SH wave propagating in a cylindrical piezoelectric 

sensor with both mechanically and electrically interfacial imperfection. 

This work is firstly motivated by the growing interest in piezoelectric semiconductors 

which are common cubic crystals. For the design and application of piezoelectric 

semiconductor devices, knowledge of the electric field accompanying mechanical 

deformation or acoustic waves from a piezoelectric analysis is fundamental. However, 

available theoretical results for cubic crystals are limited and most of them are for 

anti-plane problems. Rayleigh waves, however, are free plane waves propagating along 

the surface of a semi-infinite solid which were first theoretically predicted in 1885. While 

the traction forces must vanish on the boundary and the energy must decay with increased 

depth. Since the middle of the 20th century, Rayleigh waves were widely employed in a 

number of areas of science and technology, including ultrasonic nondestructive testing, 

structural health monitoring, electronic circuitry and other surface acoustic waves devices 

[Lewis (1995)]. On the other hand, the interface of layered system consisting of two types 

of materials is always imperfect bonding in most practical case due to various causes 

such as the microdefect and porosity processed in solid-state sintering, the aging of the 

glue, the corrosion of constituent materials, the accumulated damage or the local debond 

under harsh working circumstances, and so on [Lavrentyev and Rokhlin (1998); Vig and 

Ballato (1998)]. The imperfect bonding can greatly affect the performances of layered 

composites or devices. In this paper, we study the Rayleigh-type wave propagating in 

piezoelectric layered systems of cubic crystal. A declination angle between the direction 

of Rayleigh-type wave propagation and the crystallographic axis is considered. Effects of 

the mechanical and electrical interface parameters on dispersion curve and phase velocity 
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are discussed based on the numerical results. 

2 Problem formulations and basic equations 

Consider a piezoelectric layered structure as shown in Fig. 1. The covering layer is a 

piezoelectric cubic crystal with finite thickness h and imperfectly bonding onto an 

isotropic dielectric substrate. Let the XYZ coordinate system aligns with the 

crystallographic axes of piezoelectric cubic crystal. Cut the piezoelectric crystal along a 

plane containing the Y-axis and rotating an angle  with the XY plane so that a new 

rectangular Cartesian coordinate system x1x2x3 can be obtained. We suppose that Rayleigh 

wave propagate along the x1-axis in the x1x3 plane and hence a plane strain state can be 

produced. For convenience, the rotated coordinate system x1x2x3 is adopted in the 

following analysis. 

 

Figure 1: Geometry of a rotated piezoelectric layered system 

According to the plane strain assumption, all field variables are independent on 

coordinate x2 and the mechanical displacement components can be reduced to 

two-dimensional case with u1=u1(x1,x3,t) and u3=u3(x1,x3,t). The electric potential is 

=(x1,x3,t). According to the quasi-static approximation, in the absence of body forces 

and free charges, the equations of motion and the electric field equations in the sagittal 

plane are given by 
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where  ， and  are the stress components, D1 and D3 are the electric displacements, 

 is the mass density. A superimposed dot represents the differentiation with respect to 
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following constitutive relations [Tseng (1970)]: 

( )

( )

11 11 1,1 13 3,3 31 ,3

33 13 1,1 33 3,3

13 44 1,3 3,1 15 ,1

1 15 1,3 3,1 11 ,1

3 31 1,1 11 ,3

=c u c u e

c u c u

c u u e
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D e u

 



 

 

 
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= +

= + +

= + −

= −

                                              (2) 

where c11, c13, c33 and c44 are elastic constants, e31 and e15 are the piezoelectric constants, 

11 is the dielectric constant. The above material constants are related to the 

corresponding quantities 11c , 12c , 44c , 14e , 11   in the crystallographic coordinate 

system XYZ and can be obtained through tensor transformations as 

( )4 4 2 2 2

11 11 12 44

13 12 33 11 44 44 11 11

15 14 31 14
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 

 

  = + +

   = = = =

 = =

                    (3) 

where  is the cutting angle of piezoelectric cubic crystal. 

By substituting Eq. (2) into Eq. (1) we can obtain the governing equations for 

piezoelectric cubic crystal as 

( ) ( )

( )

( ) ( )
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                        (4) 

Considering a dielectric substrate occupying 0>x3>-∞, the mechanical displacement and 

electric potential must satisfy the equation of motion and Laplace’s equation according to 

the general theory of elasticity. Let 
1u , 

3u  and   denote the mechanical 

displacement and electric potential in the dielectric substrate, then the governing 

equations for dielectric media can be obtained as 

( )

( )

( )

11 1,11 44 1,33 13 44 3,13 1
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                                    (5) 

where 
11c , 

13c  and 
44c  are the elastic constant of dielectric media, 

11  and   are 

dielectric constant and mass density. A short line lying on the variables denotes the fields 

of dielectric substrate, hereafter. 

On the top of the piezoelectric layer, the mechanical traction-free conditions are 

( ) ( )13 1 33 1, 0 , 0x h x h = =，                                            (6) 
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At the same time, two kinds of electrical boundary conditions existing in practical 

applications are proposed to restraint the normal electric displacement or electric 

potential of the piezoelectric surface, i.e. 

( )3 1, 0D x h =                                                          (7) 

for electrically open case and 

( )1, 0x h =                                                           (8) 

for electrically shorted case. 

For a piezoelectric layered system, the interface between two constituents is usually 

assumed to be a perfect bonding interface for simplification which means that all the 

fields including the mechanical displacement, the stress, the electric potential and the 

electric displacement are continuous across the interface. However, the interface is 

always imperfect in most practical applications due to the various causes as mentioned in 

the previous section. It should be pointed out that not only the mechanical imperfection 

but also the electrical imperfection may occur at the interface of piezoelectric layered 

system. Jumps in mechanical or electrical quantities, or both, can occur at the imperfect 

interface [Li, Wei and Guo (2016)]. Instead of usual interface continuity conditions, we 

here consider a kind of interface possessing the special property of the mechanically 

compliant and dielectrically weakly conducting. In this case, the stresses and electric 

displacement are assumed to be continuous and the mechanical displacements and 

electric potential are discontinuous, that is 

( )

( )

( )

13 13 1 1
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3 3

= T
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K u u

K u u

D D K

 
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= −

= = −

= = −

                                                (9) 

where KT and KN are the tangential and normal interface parameters describing the 

bonding strength of mechanical fields, respectively, while the parameter K corresponds 

to the electrical imperfection. From Eq. (9), it is clear that the interface should be 

considered as perfect bonding when all the three interfacial parameters take infinite 

values. On the contrary, the covering layer and the substrate will be divorced from each 

other as the mechanically interfacial parameters KT and KN decreasing to zero. Physically 

speaking, the interface can be considered as an insulated interface when the electrical 

parameter K equals to zero. In addition, the mechanical displacement and electric 

potential in the substrate tend to zero far from the interface along the negative x3 direction, 

i.e., 

1 3 30,   0,   0.    as   u u x→ → → → −                                 (10) 

3 General solutions and dispersion relations 

In this section, we search for the solutions of Rayleigh-type wave satisfying Eqs. (4) and 

(5) under the conditions (6)-(10). Based on the partial wave method [Cheng and Sun 

(1975)], the solution of Eq. (4) can be assumed as 
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where k is the wavenumber, and v stands for the phase velocity of Rayleigh-type wave. A, 

B and C are unknown wave amplitudes, b is an undetermined parameter. 

Substituting Eq. (11) into Eq. (4), we can obtain 
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For the above system of equations, to obtain a nontrivial solution of the resulting system, 

the determinant of the coefficient matrix must vanish, i.e., 
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Eq. (13) is a six-order equation in b with the phase velocity v as an unknown parameter. 

So for a given value of v, there are six roots satisfying Eq. (13) which denoted by bi 

(i=1-6). Substituting the six roots of bj into the last two equations of (12), the amplitude 

ratios Bi=iAi and Ci=iAi can be obtained, where 
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. 

The complete solutions of piezoelectric crystal must contain all of the six roots of b, so 

the displacements and electric potential can be obtained as 
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By applying the constitutive relations, the stresses and electric displacement can be 

obtained as 
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For the dielectric substrate, the solutions to Eq. (5) have the following formulations 

3
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where A , B  and C  are unknown wave amplitudes, b  and b  are attenuation 

coefficients in the substrate to be determined. 

Substituting Eq. (16) into Eq. (5), we can obtain 

 
( ) ( )

( ) ( )
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44 11 13 44

2 2

13 44 44 11
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0
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( )2

11 1 0b C  − =                                                      (18) 

Eq. (18) corresponds to the electric potential wave propagating in the dielectric substrate 

and decouples with the mechanical fields governed by Eq. (17). Since 0C  , the 

electric attenuation parameter b  can be solved form Eq. (18) as a pair of real roots with 

opposite signs, i.e., 1b =  . It means that the electric potential wave in the dielectric 

media decays away (for 1b = ) or increases away (for 1b = − ) from the interface as x3 

increases. Here, the positive root 1b =  should be retained since the electric potential in 

the substrate must decay with increasing depth. To obtain a nontrivial solution of Eq. (17), 

the determinant of the coefficient matrix must vanish, i.e., 
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( )
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For a given value of v, the above equation yields four roots for b  in the substrate. The 

two positive values of b  should be retained in consideration of decaying wave modes 

in the substrate, which are denoted by  ( =7-8)jb j . Thus, the complete solutions of 

dielectric substrate can be obtained as 
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where 
( )
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The stresses and electric displacement can be produced by taking account of the general 

elastic constitutive relations, as follows 
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So far, the solutions for rotated cubic piezoelectricity and dielectric substrate are 

completely obtained. By taking advantage of the electro-mechanical conditions of the 

surface as well as the interfacial imperfection, a set of nine-order liner homogenous 

system with unknown constants An (n=1-8) and C  can be obtained as 

   
9 9

0S X


=                                                         (22) 

where  
T

,  nX A C=    , and the components of matrix S are listed in Appendix. 

For the existence of a nontrivial solution of Eq. (22), if and only if the determinant of the 

coefficient matrix must vanish, and this leads to the dispersion relation as 

det( ) 0S =                                                            (23) 
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4 Numerical results and discussions 

In this section, numerical calculations are carried out to show the propagation 

characteristic of Rayleigh-type waves in piezoelectric layered systems of cubic crystals 

with electrically and mechanically interfacial imperfections. The piezoelectric cubic 

crystal is considered as Indium Arsenide (InAs) and the substrate is selected as Diamond. 

The material parameters of the InAs in the crystallographic coordinate system XYZ are 

[Auld (1973)]: 11 8.392c = (1010 N/m2), 12 4.526c = (1010 N/m2), 44 3.959c =

(1010N/m2), 14 0.045e = − (C/m2), 11 12.8 = (10-11 C2/Nm2), =5700 (kg/m3). The 

material parameters of the Diamond are [Benetti, Cannatà, Pietrantonio et al. (2005)]:  

11=115.312c  (1010 N/m2), 
13=8.644c  (1010 N/m2), 

44 =53.334c  (1010 N/m2), 

11=550  (10-11 C2/Nm2), =3512 (kg/m3). For convenience of calculation, three 

non-dimensional parameters are introduced to describe the interfacial imperfection, that 

is, kt=KTh/c44, kn=KNh/c44, k=Kh/11. 

4.1 Effect of electrical boundary condition on dispersion curve 

Dispersion curves of Rayleigh-type wave in InAs/Diamond layered structure under 

electrically open and shorted cases are respectively shown in Figs. 2(a) and 2(b), where 

θ=45
。

, kt=kn=k=5. It is found from Fig. 2 that phase velocity of the first mode starts from 

the Rayleigh wave velocity of Diamond (10937 m/s), monotonically decreases as the 

non-dimensional wavenumber increasing and tends towards the corresponding Rayleigh 

wave velocities of InAs (2237.34 m/s for electrically open circuit and 2237.29 m/s for 

electrically shorted circuit). The indistinct difference of the wave velocity at high 

frequency between the electrically open and shorted cases is because the piezoelectric 

constants of InAs are very small and the electro-mechanical coupling property is also 

weak. For the second mode and above, phase velocities uniformly start from the bulk 

shear wave velocity of Diamond (12322 m/s). These primary propagation characteristics 

of Rayleigh-type wave, e.g. the starting wave velocity at small wavenumber and the 

approaching wave velocity in the range of higher wavenumber, completely coincide with 

those given by Rose [Rose (1999)]. This coincidence can verify the validity of our 

analytical solution and numerical procedure. In view of the insignificant effect of 

electrical boundary conditions on dispersion curve and wave velocity, we thus focus on 

electrically open case in the following discussions. 

4.2 Effect of cutting angle on phase velocity 

Fig. 3 shows the effect of cut orientation on phase velocity of the first mode for selected 

values of non-dimensional wavenumbers. It is clear from Fig. 3 that phase velocity of 

Rayleigh-type wave is symmetric with respect to =45°. The wave velocity reaches the 

maximum value at =45° while minimum for the cases of =0°and 90°. This means that 

if we appropriately set the cut orientation of InAs crystal along the degree of 45° an 

optimal propagation behavior of Rayleigh-type wave can be achieved. For a SAW device, 

operating under a proper wave speed cannot only be an effective help for enhancing 

sensitivity, but also for the miniaturization of device. 
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4.3 Effect of interfacial imperfection on phase velocity 

The effects of the tangential and normal interface parameters kt and kn on phase velocity 

of the first mode are illustrated in Fig. 4, where the cutting angle θ is selected as 45
。

. It 

can be seen from Fig. 4 that both the tangential and normal imperfections consistently 

weaken the wave velocity of Rayleigh-type wave. Physically speaking, wave propagation 

is the propagation of mechanical energy. The interface has higher transmission capability 

of mechanical energy when it is mechanically perfect bonding. On the contrary, a 

mechanically imperfect bonding represents a deformable interface which has less 

stiffness comparing with a perfect interface. The degenerated interface can lead to the 

reduction of wave velocity. It is observed from Fig. 4 that the tangential interface 

parameter has smaller effect on wave velocity comparing with the normal imperfection. 

This is because the tangentially imperfect bonding only results in sliding contact, while 

the normal imperfection maybe leads to an extreme case of interfacial detachment and 

hence strongly affects the propagation behaviors of Rayleigh-type wave. It is also found 

that the interface can be regarded as a perfect bonding when the non-dimensional 

tangential parameter kt is larger than about 20 and the normal parameter kn about 40. On 

the other hand, the mechanical imperfection has great effects on phase velocity at relative 

small wavenumbers. But for higher frequency or large wavenumber, e.g., kh>3, the 

influence of mechanical imperfection on phase velocity gradually decays and thus the 

distinction between normal and tangential parameters turns to disappearance. 

Fig. 5 shows the effect of the electrical interface parameters k on phase velocity, where 

θ=45°. It can be seen from Fig. 5 that the electrical imperfection has very less effect on 

phase velocity comparing with the mechanical imperfection shown in Fig. 4. According 

to our calculation, the electrical imperfection makes a small reduction of wave velocity. 

When the non-dimensional imperfection parameter k decreases from 10 to zero, the 

decrease in phase velocity of Rayleigh-type wave is about within one decimal places. 

This is because the mechanical interaction at the interface of piezoelectric layer and 

dielectric substrate plays a dominant role in the piezoelectric coupling system during the 

propagation of Rayleigh-type waves. Under this special consideration and for the 

InAs/Diamond layered system, we can ignore the effect of electrical imperfection on 

wave velocity and thus focus on the mechanical imperfection in the design and 

application of InAs-based acoustic wave device. 

5 Conclusions 

Propagation of Rayleigh-type waves in layered structures consisting of a rotated 

piezoelectric cubic crystal imperfectly bonding onto a dielectric substrate is investigated 

in this paper. The imperfect interface is assumed as mechanically compliant and 

dielectrically weakly conducting condition. The exact dispersion relations for electrically 

open and shorted boundary conditions are derived in closed form. The numerical results 

show that: 1) the phase velocity is symmetric with respect to the cutting angle of 45° and 

can achieve the maximum propagation speed; 2) the electrical boundary conditions 

applied on the surface of the layered system have less effect on dispersion curves; 3) the 

mechanical imperfection can significantly affect the dispersion curves and then lowers 

the phase velocity because the deformable interface makes the interfacial stiffness 
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weaken. Further, the phase velocity is more sensitive to the normal imperfection 

comparing with that of tangential; 4) the electrical imperfection makes a relatively small 

reduction of phase velocity of Rayleigh-type wave comparing with the mechanical 

imperfection. These results can offer some fundamentals for understanding of 

piezoelectric semiconductor as well as the basis for design and application of 

piezoelectric SAW devices. 
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Figure 2: Dispersion curves of Rayleigh-type wave in InAs/diamond layered structure, 

where θ=45°, kt=kn=k=5. (a) electrically open case, (b) electrically shorted case 



 

 

 

Rayleigh-Type Wave in Piezoelectric Layered Structure                        269 

 

0 10 20 30 40 50 60 70 80 90
4500

5000

5500

6000

6500

7000

7500

kh=0.8

kh=0.6

kh=0.5

kh=0.4

v 
(m

/s
)

 
 

Figure 3: Effects of the cut orientation on phase velocity, where kt=kn=k=5 
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Figure 4: Effects of the mechanical interface parameters kt , kn on phase velocity, where 

θ=45
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Figure 5: Effect of the electrical interface parameter k on phase velocity, where θ=45° 
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Appendix 

The non-zero components of matrix S for electrically open case: 

( )1, tS i k= , ( ) 44 44 44 441, / /t j jS j k c b h c c h c= − − − , ( )2, n iS i k = , 

( ) 11 44 13 442, / /n j j jS j k c b h c c h c = − − + , ( )3, iS i k= , ( )3, 0S j = , 
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( ) 11 113,9 /iS k h  = − + , ( ) 31 114, i iS i e b = − − , ( )4, 0S j = , ( ) 114,9S = , 

( ) 44 44 155, i i iS i c b c e = + + , ( ) 44 445, ,j jS j c b c = − −  ( ) 33 136, i iS i c b c= − ,  

( ) 11 136, j jS j c b c= − + , ( ) ( )44 44 157, e ib kh

i i iS i c b c e = + + , 

( ) ( )33 138, e ib kh

i iS i c b c= − , ( ) ( )31 119, = e ib kh

i iS i e b − − , where i=1~6, j=7~8. 

By replacing the S(9,i) with e ib kh

i  the dispersion relation for electrically shorted case 

can be obtained. 

 


