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Quantum Homomorphic Signature with Repeatable Verification 
Tao Shang1, ∗, Zhuang Pei2, Ranyiliu Chen3 and Jianwei Liu1

Abstract: In January 2015, the first quantum homomorphic signature scheme was proposed
creatively. However, only one verifier is allowed to verify a signature once in this scheme.
In order to support repeatable verification for general scenario, we propose a new quantum
homomorphic signature scheme with repeatable verification by introducing serial verifica-
tion model and parallel verification model. Serial verification model solves the problem of
signature verification by combining key distribution and Bell measurement. Parallel verifi-
cation model solves the problem of signature duplication by logically treating one particle
of an EPR pair as a quantum signature and physically preparing a new EPR pair. These
models will be beneficial to the signature verification of general scenarios. Scheme analysis
shows that both intermediate verifiers and terminal verifiers can successfully verify signa-
tures in the same operation with fewer resource consumption, and especially the verified
signature in entangled states can be used repeatedly.

Keywords: Quantum homomorphic signature, repeatable verification, serial model, paral-
lel model, bell measurement.

1 Introduction
With the rapid development of quantum computing technology [Liu, Xu, Yang et al. (2018)]
and the feasibility of new quantum bit preparation technologies [Wang, Yang and Mousoli
(2018)], quantum cryptographic protocols like quantum signature can play the full role of
unconditional security. Quantum signature is a combination of quantum theory and classi-
cal digital signature. Unlike quantum-secure signatures which are based on classical hard
problems against quantum adversaries, quantum signature can provide unconditionally se-
cure signature by taking advantage of quantum effects. It has been paid much attention and
many quantum signature schemes have been proposed.
In 2001, Gottesman et al. [Gottesman and Chuang (2001)] proposed the first quantum
signature scheme based on quantum one-way functions and quantum Swap-test. In this
scheme, the public key can only be used once for signing merely one bit of message each

1 
School of Cyber Science & Technology, Beihang University, Beijing, 100083, China.

2 Institut Fresnel, Ecole Centrale de Marseille, Marseille, 13451, France.
3 School of Electronic & Information Engineering, Beihang University, Beijing, 100083, China.
*Corresponding Author: Tao Shang. Email: shangtao@buaa.edu.cn.

CMC. doi:10.32604/cmc.2019.05360      www.techscience.com/cmc



150 Copyright c© 2019 Tech Science Press CMC, vol.59, no.1, pp.149-165, 2019

time. In 2002, Zeng et al. [Zeng and Keitel (2002)] proposed a pioneering arbitrated
quantum signature (AQS) protocol which can be used to sign both classical message and
quantum one. This scheme uses the correlation of Greenberger-Horne-Zeilinger (GHZ)
triplet states and quantum one-time pads to ensure the security. As a necessary and impor-
tant technique, probabilistic comparison of two unknown quantum states [Barnett, Chefles
and Jex (2003); Filippov and Ziman (2012)] was also introduced to verify the validity of a
signature. This work provides an elementary model to sign a quantum message. Although
it was mentioned that both known and unknown quantum states could be signed, there were
some corresponding comments about whether it was suitable for unknown messages [Curty
and Lutkenhaus (2008); Zeng (2008)]. Then a variety of quantum signature schemes were
proposed.
As a kind of efficient signature, homomorphic signature [Johnson, Molnar, Song et al.
(2002)] allows intermediate verifiers to generate a new signature by directly manipulating
the original signatures of received messages without encryption operation. It has drawn
much attention and many schemes have been proposed in classical cryptography. Classical
homomorphic signature schemes are used to protect classical information in communica-
tion networks. However, it is believed that homomorphic signature of quantum information
is more meaningful and difficult than its counterpart in classical cryptography. In 2015,
Shang et al. [Shang, Zhao, Wang et al. (2015)] creatively treated entanglement swapping
as a homomorphic operation and proposed the first quantum homomorphic signature (QH-
S) scheme. The scheme is additively homomorphic and can generate quantum signatures
for classical messages, but only one verifier is allowed to verify the signature once in this
scheme. In 2017, Shang et al. [Li, Shang and Liu (2017)] further proposed the quantum
homomorphic signature scheme for continuous variables. In 2018, Shang et al. [Shang, Li
and Liu (2018)] analyzed the measurement-device independency of the signature scheme.
In fact, it is actually required that more than one verifier needs to verify a signature many
times. The solution to such problems will be beneficial to the application of quantum ho-
momorphic signature to general scenarios.
In this paper, from the viewpoint of repeatable verification of quantum signature in gener-
al scenarios, we propose a new quantum homomorphic signature scheme with repeatable
verification which assures intermediate verifiers as well as terminal verifiers can verify
signatures repeatedly.

2 Related works
2.1 Quantum homomorphic signature scheme

It is crucial for Shang et al.’s scheme [Shang, Zhao, Wang et al. (2015)] to treat one particle
of an EPR pair as a quantum signature and entanglement swapping as a quantum homo-
morphic operation. The signed message is classical information and the corresponding
signature is quantum information.
As shown in Fig. 1, the messages that the signers A1 and A2 want to send are the classical
bits X1 and X2, respectively. The messages and the corresponding signatures will first be
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Figure 1: Quantum homomorphic signature scheme

sent to the aggregatorM1. By performing entanglement swapping on the received quantum
signatures, M1 can generate the homomorphic signature of the encoded information X1 ⊕
X2. The encoded information and its signature will finally be sent to the verifier M2 for
verification.
The scheme consists of four algorithms, namely Setup, Sign, Combine and Verify.
(1) Setup
Step 1: quantum key distribution. A1 (A2) chooses two classical bits Y1 (Y2) as its secret
key and shares this key with M2 by the quantum key distribution protocol. Here, an im-
proved BB84 protocol with authentication [Beige, Englert and Kurtsiefer (2002)] is used
to ensure the security.
Step 2: EPR pair distribution. M1 prepares two EPR pairs:

∣∣φ+〉
12

=
1√
2
(|00〉+ |11〉)12∣∣φ+〉

34
=

1√
2
(|00〉+ |11〉)34

(1)

M1 sends particles 2 and 4 (namely |ϕ〉2 and |ϕ〉4) to A1 and A2, respectively.
(2) Sign
After receiving the particle from M1, A1 (A2) chooses a unitary operator according to the
result of X1 ⊕ Y1 (X2 ⊕ Y2), and performs a corresponding operation on the particle 2 (4).
The particle 2 (4) after the operation is viewed as the signature of the information X1 (X2).
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The unitary operator corresponding to the result of Xi ⊕ Yi is chosen as follows:

Xi ⊕ Yi = 00 → I =

[
1 0
0 1

]
Xi ⊕ Yi = 01 → σx =

[
0 1
1 0

]
Xi ⊕ Yi = 10 → σz =

[
1 0
0 −1

]
Xi ⊕ Yi = 11 → −iσy =

[
0 −1
1 0

]
(2)

After the phase of Sign, the two EPR pairs become:∣∣ψ′〉
12

= U(X1 ⊕ Y1)(2)
∣∣φ+〉

12∣∣ψ′〉
34

= U(X2 ⊕ Y2)(4)
∣∣φ+〉

34

(3)

(3) Combine
Step 1: A1 (A2) sends the encrypted information X1⊕Y1 (X2⊕Y2) and its signature |ψ′〉2
(|ψ′〉4), namely the particle 2 (4), to the aggregator M1.
Step 2: M1 performs a Bell measurement on the particles (1, 3), the measurement result
is noted as |ψ′′〉13. According to entanglement swapping, the particles (2, 4) will fall into
a certain state |ψ′′〉24. Here, the particle 4, namely |ψ′′〉4, is exactly the signature of the
information X1 ⊕X2.
Step 3: M1 sends the classical information X1 ⊕ Y1 ⊕X2 ⊕ Y2 and the particles (1, 2, 3,
4) (namely |ψ′′〉13 ⊗ |ψ′′〉24) to the verifier M2.
(4) Verify
When M2 gets the classical information and all the particles from M1, it can verify the
signature in the following steps:
Step 1: M2 first performs a Bell measurement on the particles (1, 3) to get |ψ′′〉13, and then
performs a Bell measurement on the particles (2, 4) to get |ψ′′〉24.
Step 2: By comparing |ψ〉24 and |ψ′′〉24, M2 will get a unitary operator U(Z) such that
|ψ′′〉24 = c(Z) · U(Z)(4) |ψ〉24, in which |c(Z)| = 1. |ψ〉24 is the result of entanglement
swapping without performing unitary operators on the particles 2 and 4.
Step 3: M2 compares Z with X1⊕Y1⊕X2⊕Y2. If Z = X1⊕Y1⊕X2⊕Y2, M2 accepts
the signature; otherwise, M2 denies the signature.

2.2 Main problems

For the quantum homomorphic signature scheme, there still exist several problems for gen-
eral scenarios.
(1) An intermediate verifier cannot verify signatures.
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Figure 2: Successive signature verification

Figure 3: Signature duplication

As shown in Fig. 1, the aggregator M1 in this scheme can also be viewed as an interme-
diate verifier. While it can generate a quantum homomorphic signature from two received
signatures S1 and S2, it cannot verify the latter ones in advance. If the message Xi ⊕ Yi
or its signature Si was changed during transmission, this change will not be found until
all information arrives at the terminal verifier M2. Such problem is not evident in Shang
et al’s scheme since the information passes through only two verifiers. As the number of
intermediate verifiers increases, the problem will become really serious.
As we can see in Fig. 2, the signer A first generates a signature S1 of the information
X1, then the information and its signature passes through a series of intermediate verifiers
(or verifier groups) till they finally arrive at the terminal verifier Vn. Since the intermediate
verifiers (verifier groups) cannot verify the signatures, all errors during the transmission can
only be found by the terminal verifier Vn, which not only causes the waste of resources,
but also reduces the efficiency of communication. The more intermediate verifiers (verifier
groups) there are, the more serious the problem will be.
(2) The duplication of quantum signature is not provided.
Let us take a look at the case of Fig. 3. Here, we add a terminal verifier M3. Since the
classical information X1⊕ Y1⊕X2⊕ Y2 could be easily duplicated, M1 can send it to M2

and M3 at the same time. However, as there is only one share of quantum particles, just
one verifier (M2 or M3) can fulfill the verification of a signature. In order to assure that
multiple verifiers can verify signatures, we should introduce the duplication of quantum
signatures.
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(3) The signature between M1 and M2 can be forged.
Assume that an attacker can intercept the classical information X1⊕Y1⊕X2⊕Y2 and the
particles (1, 2, 3, 4), then it can forge the signature. Here we take an example to illustrate
it.
Example 1: Suppose that the state of the particles (1, 3) after the entanglement swapping
is |ψ′′〉13 = |ψ+〉13, as a result |ψ′′〉24 = c ·U(X1⊕ Y1⊕X2⊕ Y2)(4) |ψ+〉24. The verifier
accepts the signature as long as the received classical message Z matches the Bell state
|ψ′′〉24 = c · U(Z)(4) |ψ+〉24 (here, Z = X1 ⊕ Y1 ⊕X2 ⊕ Y2). For this reason, an attacker
can forge the signature in a simple way.
An attacker just needs to replace the classical bits X1 ⊕ Y1 ⊕X2 ⊕ Y2 by a corrupt data E
while preparing two entangled particles (5, 6) such that |ψ〉56 = c · U(E)(4) |ψ+〉24. Obvi-
ously, the verifier would confirm the signature according to the received information E and
the particles (1, 3, 5, 6). In other words, the attacker has forged the signature successfully.

3 Proposed QHS scheme
With regard to the problems in Section 2, we provide corresponding solutions. Firstly, we
construct the serial verification model, and introduce key distribution and Bell measure-
ment for intermediate verifiers to verify signatures. Secondly, we construct the parallel
verification model, and realize the duplication of signatures by logically treating one parti-
cle of an EPR pair as a quantum signature and physically preparing a new EPR pair.

3.1 Serial verification model

Generally, in a homomorphic signature scheme, an intermediate verifier must verify the
received signatures at first before generating a new homomorphic signature. For this reason,
we intend to realize the verification of quantum homomorphic signature for intermediate
verifiers. Unlike classical homomorphic signatures who use public and private key pairs,
the original quantum homomorphic signature scheme cannot take effect in that way. So we
introduce key distribution to guarantee the verification of quantum homomorphic signature
for intermediate verifiers.
We define serial verification as the case in which a message and its signature successively
pass through a series of intermediate verifiers (or verifier groups) and finally reach terminal
verifiers. In general, the serial verification model has an inverted pyramid-shaped structure
as shown in Fig. 4.
As we can see in Fig. 4, A1, A2 and A3 are the signers; B1 and B2 are the intermediate
verifiers (the first intermediate verifier group); C1 is the terminal verifier (the second in-
termediate verifier group). The signed messages and their signatures will pass through the
intermediate verifiers and finally arrive at the terminal verifier.
Compared to the original quantum homomorphic signature scheme, our scheme has made
some changes. The main ideas are described as follows:
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Figure 4: Serial verification model

1) In the original quantum homomorphic signature scheme, the EPR pairs are prepared by
the first verifier group (e.g.,M1 in Fig. 1). On one hand, this means that the members of the
first verifier group must be trusted nodes. On the other hand, this causes the dissimilarity of
the verification operation between the verifiers. In order to assure the repeatability of our
scheme, i.e., all the verifiers can fulfill the verification of signatures in the same operation,
the EPR pairs are prepared by the original signers. In fact, such change makes no difference
to the generation of signatures and does not affect the properties of our scheme.
2) To solve the forgery problem in the original quantum homomorphic signature scheme,
we transmit the encrypted classical information EPri(Xi) instead of Xi ⊕ Yi. Here, Pri is
the private key of a signer for signing the message Xi and E is the encryption algorithm.
To fulfill the verification of a signature, a signer has to send its public key Pbi to its cor-
responding verifier so that the verifier can get Xi = DPbi(EPri(Xi)) with the decryption
algorithm D. In our scheme, (Pri, P bi) is called a signature key pair, and Yi is called an
encryption key.
According to the serial verification model, our quantum homomorphic signatures scheme
can be described in the following steps.
(1) Setup
Step 1: secret key generation and distribution. The signer first generates a signature key
pair (Pri, P bi). Then it keeps the private key Pri and sends the public key Pbi to its
corresponding verifier by the quantum key distribution protocol such as an improved BB84
protocol with authentication [Beige, Englert and Kurtsiefer (2002)]. In particular, A1 sends
its public key Pb1 to B1; A2 sends Pb2 to B1 and B2; A3 sends Pb4 to B2. In order to
simplify the description and help the understanding of our scheme, we number the secret
key pairs according to the messages. For example, the signerA2 only needs to generate one
secret key pair (Pr2, P b2), but we also call it (Pr3, P b3) when it is used to encrypt and
decrypt the information X3. In the following part, we will not point out this usage unless
necessary.
The encryption key Yi is used for the confidentiality of a message and can also be shared
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by an improved BB84 protocol with authentication.
Step 2: EPR pair preparation. A1 prepares an EPR pair |φ+〉12; A2 prepares two EPR pairs

|φ+〉34 and |φ+〉56; A3 prepares an EPR pair |φ+〉78. Here, |φ+〉 = 1√
2
(|00〉+ |11〉).

(2) Sign
A1 calculates the result of X1 ⊕ Y1, and according to this result it performs a unitary oper-
ation on the particle 2. After this operation, the particle 2 can be viewed as the signature of
X1 (Note that the particles 1 and 2 are still entangled). Similarly, we can get the signatures
of X2, X3, and X4.
After the phase of Sign, the states of the entangled particles become∣∣ψ′〉

12
= U(X1 ⊕ Y1)(2)

∣∣φ+〉
12∣∣ψ′〉

34
= U(X2 ⊕ Y2)(4)

∣∣φ+〉
34∣∣ψ′〉

56
= U(X3 ⊕ Y3)(6)

∣∣φ+〉
56∣∣ψ′〉

78
= U(X4 ⊕ Y4)(8)

∣∣φ+〉
78

(4)

The signers then send the encrypted information EPri(Xi) and the signature particles to
their corresponding verifiers. To be concrete, A1 sends the classical information EPr1(X1)
and the quantum particles (1, 2) to B1; A2 sends EPr2(X2) and the particles (3, 4) to B1;
A2 sends EPr3(X3) and the particles (5, 6) to B2; A3 sends EPr4(X4) and the particles (7,
8) to B2.
(3) Verify original signatures
When B1 receives the information EPr1(X1) and its signature S1 (namely the particles (1,
2)), it first gets the informationX1 = DPb1(EPr1(X1)) with the help of the public key Pb1
and calculates the exclusive OR result X1 ⊕ Y1. Then it performs a Bell measurement on
the particles (1, 2). If the measurement result equals to U(X1 ⊕ Y1)(2) |φ+〉12, B1 accepts
the signature; otherwise, it denies the signature.
B1 and B2 can verify the other signatures in the same way.
(4) Combine
After the intermediate verifiers have verified the received signatures, they can generate the
quantum homomorphic signature of the encoded message by entanglement swapping. The
details of entanglement swapping are described in Shang et al. [Shang, Zhao, Wang et al.
(2015)].
While B1 measures the particles (1, 3) to get |ψ′′〉13, the particles (2, 4) will collapse to a
certain state |ψ′′〉24. Here, |ψ′′〉4 is the generated quantum homomorphic signature which
is also the signature of the message X5 = X1 ⊕X2.
B2 can generate the signature of X6 = X3 ⊕X4 in the same way.
(5) Verify homomorphic signatures
Step 1: generation and distribution of secret keys. B1 calculates a new encryption key
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Y5 = Y1⊕Y2 and shares it with C1 by the improved quantum key distribution protocol. B1

generates a signature key pair (Pr5, P b5), then it keeps the private key Pr5 and sends the
public key Pb5 to C1 by the improved quantum key distribution protocol.
Step 2: translation from quantum states to classical bits. B1 translates the Bell measure-
ment result of the particles (1, 3) to classical bits according to the following rules:∣∣φ+〉

13
→ 00∣∣φ−〉

13
→ 01∣∣ψ+

〉
13
→ 10∣∣ψ−〉

13
→ 11

(5)

Assume that the measurement result of the particles (1, 3) in the entanglement swapping is
|ψ′′〉13 = |ψ+〉13, then the state of the particles (2, 4) will be |ψ′′〉24 = c·U(X1⊕Y1⊕X2⊕
Y2)

(4) |ψ+〉24. In this case, the measurement result of the particles (1, 3) will be translated
into the classical bits 10.
By sending the classical bits, B1 only needs to send 2 particles other than 4 particles to
the terminal verifier C1, so does B2. We can imagine that no matter how many verifiers
there are, each intermediate verifier just needs to send 2 particles to its successor. Thus the
number of quantum particles is reduced along with the verification of signatures.
Step 3: transmission of related information. First, B1 sends the classical bits 10 to C1.
To ensure the security, we use the improved quantum key distribution protocol. Then,
B1 sends the encoded and encrypted information EPr5(X5) = EPr5(X1 ⊕ X2) and the
signature particles (2, 4) to C1.
Step 4: verification of quantum homomorphic signature. As we just mentioned, if the state
of the particles (1, 3) is |ψ′′〉13, the particles (2, 4) will be in the corresponding state |ψ′′〉24.
According to the classical bits shared with B1, C1 can easily derive |ψ′′〉13. C1 calculates
X5 = DPb5(EPr5(X5)) and X5 ⊕ Y5 = X1 ⊕ Y1 ⊕ X2 ⊕ Y2. Then it performs a Bell
measurement on the particles (2, 4). If the result equals to |ψ′′〉24, it accepts the signature;
otherwise, it denies the signature.
The signature of X6 = X3 ⊕X4 can be verified in the same way.
When the number of verifiers in the serial verification model increases, we just need to
repeat the above process and all verifiers can fulfill the verification of signatures.

3.2 Parallel verification model

As we mentioned earlier, the original scheme lacks the duplication of signatures, which
makes it impossible for all verifiers to realize the verification in the case where an interme-
diate verifier is followed by more than one successors. So we add the operation of signature
duplication and construct the parallel verification model. Here parallel verification refers to
the situation in which a message and its signature have to be sent to more than one verifiers
at the same time.
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Figure 5: Parallel verification model

Fig. 5 shows a scenario of the parallel verification model. Here, we have ignored the signers
and some intermediate verifiers to make the model more clear. M is an intermediate verifier
and has N successors T1, T2, · · · , Tn.
Assume that, after the combination of signatures, M holds an encoded and encrypted mes-
sageX1

∗ = EPr1(X1), a new encryption key Y1, and two pairs of entangled particles (1, 3)
and (2, 4), with the particle 4 representing X1’s signature S1. Here, Pr1 is the private key
of M and the corresponding public key is Pb1. By the steps of Verify, all the n successors
of M can achieve the verification of the signature S1.
The signature scheme for the parallel verification model is similar to that for the serial
verification model. The first four algorithms of Setup, Sign, Verify original signatures, and
Combine, are the same, and only the algorithm Verify homomorphic signatures is different.
So we just present the algorithm Verify* homomorphic signatures.
(5) Verify* homomorphic signatures
Step 1: distribution of secret keys. M shares the key Y1 and its public key Pb1 with its n
successors by the improved quantum key distribution protocol.
Step 2: translation from quantum states to classical bits. Assume that the state of the
particles (1, 3) is |ψ〉13 = |ψ+〉13, then it will be translated to be the classical bits 10.
Step 3: signature duplication. As the signature S1 is represented by the quantum particle
4, we cannot copy it independently without destroying it. However, if we treat the particles
(2, 4) as a whole, we can duplicate the signature by preparing new EPR pairs in the same
state.
According to the assumption of Step 2, the state of the particles (2, 4) will be |ψ〉24 =

c ·U(X1 ⊕ Y1)(4) |ψ+〉24. Then we just need to prepare n− 1 new EPR pairs such that the
state of the ith EPR pair is |ψ〉iab = |ψ〉24, with i ∈ [2, n]. Now we have n shares of the
signature particles, so all the n successors of the intermediate verifier M can achieve the
verification of the signature S1.
Step 4: transmission of related information. First, M sends the encoded and encrypted
information X1

∗ and the classical bits 10 to its n successors. Then, it sends the ith EPR
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Figure 6: The situation of receiving more than two signatures

pair to its successive verifier Ti. Here, i ∈ [1, n].

Step 5: signature verification. After receiving the information and the EPR pair |ψ〉iab from
M , Ti first derives the state |ψ+〉13 according to the classical bits 10. Then it calculates
X1 = DPb1(X1

∗) andX1⊕Y1, and performs a Bell measurement on the received EPR pair
|ψ〉iab. If |ψ〉iab = |ψ〉24 = c · U(X1 ⊕ Y1)(b) |ψ+〉iab, Ti accepts the signature; otherwise, it
denies the signature. Thus, all the n successors of M can verify the signature of X1.

3.3 Application to general scenarios

Apart from the serial verification model and the parallel verification model, we should also
consider the situation in which an intermediate verifier receives more than two signatures
at the same time. Although this situation has already been discussed [Shang, Zhao, Wang
et al. (2015)], there is still need to illuminate it in our scheme.
As shown in Fig. 6, A1, A2 and A3 are the signers or the intermediate verifiers, M1 is
an intermediate verifier, and M2 is a successor of M1. The messages sent to M1 are X1,
X2 and X3 with their corresponding signature particles (1, 2), (3, 4) and (5, 6). In this
situation, M1 can generate the quantum homomorphic signature by the following steps.
Step 1: M1 receives the messages and signatures from A1, A2 and A3, and then verifies the
signatures by Bell measurement. Now the particles (1, 2), (3, 4) and (5, 6) are all in Bell
states.
Step 2: M1 performs a Bell measurement on the particles (1, 3) to get |ψ′′〉13, then the state
of the particles (2, 4) will be |ψ′′〉24 = c1 · U(X1 ⊕ Y1 ⊕X2 ⊕ Y2)(4) |ψ〉24.
Step 3: M1 performs a Bell measurement on the particles (2, 5) to get |ψ′′〉25, then the state
of the particles (4, 6) will be |ψ′′〉46 = c1 · c2 ·U(X1⊕ Y1⊕X2⊕ Y2⊕X3⊕ Y3)(6) |ψ〉46.
Now the particle 6 is the signature of the encoded message X1 ⊕ X2 ⊕ X3. Then it can
send the particles (4, 6) and the classical bits related to |ψ′′〉25 to M2 for verification.
Based on the above models, we can apply our quantum homomorphic signature scheme to
general scenarios now.
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Figure 7: General scenario

Fig. 7 shows a general scenario based on serial verification model and parallel verification
model. Let us have a look at how the quantum homomorphic signature scheme can be
accomplished in this situation.
(1) Setup
Step 1: secret key generation and distribution. A1 generates a signature key pair (Pr1, P b1)
and sends its public key Pb1 toC1. Similarly,A1,A2 share their public keys Pb2, Pb3 with
B1, respectively. A2 shares its public key Pb4 with B2. Then A3 shares the public keys
Pb5, Pb6, and Pb7 with B1, B2 and C3, respectively. Similarly, the signers share an
encryption key Yi with their corresponding signer.
Step 2: EPR pair preparation. A1 prepares two EPR pairs |φ+〉12, |φ+〉34. A2 prepares two
EPR pairs |φ+〉56, |φ+〉78. A3 prepares three EPR pairs |φ+〉9,10, |φ+〉11,12, and |φ+〉13,14.
(2) Sign
A1 performs a unitary operation on the particle 2 according to the result of X1 ⊕ Y1 to
generate the signature of X1. Similarly, A1, A2, A3 can generate the signatures of X2,
X3, · · · , X7. Then the signers send the encrypted information Xi

∗ = EPri(Xi) and the
signature particles (2i− 1, 2i) to their corresponding verifiers.
(3) Verify original signatures
After receiving the classical information and the quantum particles from A1, C1 calculates
X1 = DPb1(EPr1(X1)) andX1⊕Y1. Then it performs a Bell measurement on the particles
(1, 2). If the measurement result is |ψ′′〉12 = c · U(X1 ⊕ Y1)

(2) |φ+〉12, C1 accepts the
signature of X1; otherwise, it denies the signature.
The signatures of X2, X3, · · · , X7 can be verified in the same way.
(4) Combine
B1 receives three signatures at the same time. Then it can generate the signature of the
encoded information X2 ⊕X3 ⊕X5 by applying the method in Fig. 6 after verifying the
received signatures. B2 can generate the signature of the encoded information X4 ⊕X6 in
the same way.
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(5) Verify* homomorphic signatures
When B1 and B2 have generated the homomorphic signatures, they have to send them to
the terminal verifiers for verification. Note that bothB1 andB2 has two successors, so their
signatures need to be duplicated. Then the terminal verifiers can achieve the verification of
signatures by the same steps as those in the parallel verification model.
Actually, serial verification model can also be found in this scenario. If C1 and C3 were
ignored, the rest part can be treated as serial verification model.

4 Scheme analysis
4.1 Security analysis

Our signature scheme should achieve three basic proprieties, i.e., verifiability, undeniability
and unforgeability.
1) Verifiability: A verifier is able to verify the validity of a signature after receiving it from
its corresponding signer.
2) Undeniability: Once a signer has signed a message, it cannot deny its signature later.
3) Unforgeability: No one can generate a valid signature of a certain signer except for itself.
It should be emphasized that in our scheme an intermediate verifier can also be viewed as
a signer for its successive verifiers. When we analyze the security of a signature scheme,
we generally pay attention to two important security requirements, i.e., undeniabiliy and
unforgeability. In this part, the security analysis of our scheme will be based on the serial
verification model, because the only difference between serial verification model and par-
allel verification model is the phase of Verify homomorphic signatures, and such difference
does not affect the security of our scheme.
In order to prove the undeniability and the unforgeability, we first give the following two
lemmas.
Lemma 1: The key Yi and the public key Pbi are shared by a signer and its corresponding
verifier(s) securely.
Proof: In our scheme, a signer shares the key Yi and the public key Pbi with its corre-
sponding verifier(s) by the quantum key distribution protocol such as an improved BB84
protocol with authentication [Beige, Englert and Kurtsiefer (2002)], which has been proved
to be unconditionally secure. Hence the key Yi and Pbi are shared securely. This means
that any attacker cannot capture the key Yi or the public key Pbi.
Lemma 2: It is impossible to calculate the key Yi and the public key Pbi by means of
classical message and its corresponding quantum signature.
Proof: As shown in Fig. 8, there are two cases in which an attacker can capture a classical
message and its corresponding quantum signature particles. We will prove that in both cas-
es the attacker cannot calculate the key Yi or the public key Pbi. The details are described
as follows:
1) If an attacker captures the classical message EPri(Xi) and its corresponding quantum
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Figure 8: Attack model aimed at signature key

signature Si which are sent by an original signer, it cannot obtain the key Yi or the key Pbi.
Assume that an attacker captures the classical message EPr1(X1) and the signature S1.
Here, S1 = Sign(X1) = |ψ′〉12 = c · U(X1 ⊕ Y1)

(2) |φ+〉12. By performing a Bell
measurement on the particles (1, 2), the attacker can getX1⊕Y1. But, with the information
EPr1(X1) and X1 ⊕ Y1, it can get neither Pr1 nor Y1.
2) If an attacker captures the classical message EPri(Xi) and its corresponding quantum
signature Si which are sent by an intermediate signer, it cannot obtain the key Yi or the key
Pbi.
Assume that an attacker captures the classical message EPr5(X5) (remember that X5 =
X1⊕X2) and the signature S5 sent by the intermediate signer B1. Here, S5 = Sign(X1⊕
X2) = |ψ′′〉24 = c1 ·U(X1⊕Y1⊕X2⊕Y2)(4) |ψ〉24. Unlike in the previous case, this time
the attacker cannot even get X1 ⊕ Y1 ⊕ X2 ⊕ Y2 by performing a Bell measurement. In
order to get X1⊕Y1⊕X2⊕Y2, the attacker has to know |ψ〉24, which is the entanglement
swapping result without performing unitary operations on the particles 2 and 4. However,
|ψ〉24 depends on the result of |ψ′′〉13 which is transmitted securely from B1 to C1 by two
classical bits. So it is impossible for the attacker to obtain X1 ⊕ Y1 ⊕X2 ⊕ Y2, much less
the key Y5 = Y1 ⊕ Y2. Obviously, the attacker cannot obtain the public key Pb5, either.
Property 1: Anyone cannot forge a signature.
Proof: As mentioned above, here we consider both the forgery of a third-party attacker and
the forgery of a verifier. Therefore, the proof is divided into two parts.
1) Any third-party attacker cannot forge a signature.
In the original homomorphic signature scheme, the aggregator sends the information X1⊕
Y1⊕X2⊕ Y2 and the particles (1, 2, 3, 4) to the verifier. We have shown that in this case a
third-party attacker can forge the signature by preparing a corrupt data Z and two entangled
particles (5, 6) with |ψ〉56 = c · U(Z)(4) |ψ〉24.
In our scheme, we have made some changes to solve that problem. One is that we transmit
EPri(Xi) instead of Xi⊕ Yi, and the other is that we transmit the Bell measurement result
of an EPR pair by two classical bits. Now we will prove that these changes can prevent any
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third-party attacker from obtaining the secret keys Yi and Pri which are indispensable to
generate a valid signature.
Suppose that a third-party attacker wants to forge a signature of the signer B1. It prepares
a corrupt data Z and two entangled particles (a, b). In order that the corrupt data and
the particles pass the verification, the state of the particles (a, b) should satisfy |ψ〉ab =

c ·U(Z⊕Y5)(4) |ψ〉24. However, it is impossible for the attacker to prepare the particles (a,
b) in the right state because Lemma 1 and Lemma 2 show that any attacker cannot obtain
the key Y5. So a third-party attacker cannot forge a signature.
In the second case, we will show that even with the key Y5 an attacker cannot forge a
signature either.
2) Any verifier cannot forge a signature.
Here, suppose that the verifier C1 wants to forge a signature of the signer B1. Compared
with a third-party attacker, the verifier C1 can get the key Y5 and the public key Pb5 of
its corresponding signer B1. With the key Y5, C1 can prepare a corrupt data Z and two
entangled particles (a, b) with |ψ〉ab = c ·U(Z⊕Y5)(4) |ψ〉24. In order that the corrupt data
and the particles pass the verification, C1 needs to process the data Z first before sending it
to a verifier. After receiving the processed dataZ∗ and the particles (a, b) fromC1, a verifier
calculates DPb5(Z

∗) ⊕ Y5 and performs a Bell measurement on the particles (a, b) for
verification. The forged signature will pass the verification if and only if DPb5(Z

∗)⊕Y5 =
Z ⊕ Y5, which means Z∗ = EPr5(Z). This is impossible because the private key Pr5 is
only kept by B1. Thus, any verifier cannot forge a signature.
Property 2: Any signer cannot deny its signature.
Proof: Suppose that a verifier receives an encrypted message X∗ and the corresponding
signature particles from a signer S. The verifier will first calculate DPbi(X

∗)⊕ Yi, where
Pbi is the public key of the signer S. Then it will perform a Bell measurement on the
signature particles to verify the signature of the information Xi. Once the data and the
particles pass the verification, we can derive that DPbi(X

∗)⊕ Yi = Xi ⊕ Yi, which means
that X∗ = EPri(Xi). As the private key Pri is only kept by the signer S and no one can
forge a signature, we can conclude that the message X∗ and the corresponding signature
particles are generated by S. So the signer S cannot deny its signature.
In addition, our quantum signature scheme is also additively homomorphic, which can be
proved just as in Shang et al. [Shang, Zhao, Wang et al. (2015)].

4.2 Resource consumption analysis

We will analyze two types of resource consumption.
(1) Consumption of quantum resource
Here, the quantum resource consumed mainly refers to the EPR pairs. As for our scheme,
new signatures are generated from the old ones, so there is no need to prepare extra EPR
pairs except in the situation where a signature needs to be duplicated. Therefore, the EPR
pairs consumed come from two parts: ne part is the EPR pairs used to generate the original
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signatures, and the other part is those used to duplicate the signatures. Assume that there
arem original messages to be signed at the very beginning and n signatures to be duplicated
during the implementation of the scheme, then the number of the EPR pairs consumed in
our scheme will be m+ n.
By contrast, if we use an ordinary quantum signature scheme other than the homomorphic
one, the consumption of the EPR pairs could be extremely large. Whenever a message is
sent, a signature, namely an EPR pair, is needed. If N messages are sent during the whole
process, the number of the EPR pairs consumed will be N .
Let us take the parallel verification model as an example. In Fig. 5, we can easily obtain
that m+ n = 5, N = 7. In general, N could be much larger than m+ n.
(2) Consumption of secret keys
We will first analyze the consumption of signature key pairs. In fact, every signer in our
scheme has to generate its own signature key pair. Therefore, if there are in total p signers
in our scheme, the number of the signature key pairs consumed will be p. The consumption
of signature key pairs will be the same in an ordinary quantum signature scheme.
Different from the signature key pairs, the number of encryption keys is only determined by
the number of original signers because all the other encryption keys are calculated from the
original ones. Therefore, if there are q original signers in our scheme, the total number of
the signature key pairs consumed will be q. As for an ordinary quantum signature scheme,
the number of the encryption keys consumed could be p or q. If the verifiers calculate new
encryption keys from the original ones, the number of the encryption keys consumed will
be q. However, if the verifiers prepare a new signature key every time, the number will be
p. Generally, p is much larger than q.

5 Conclusion
In this paper, we proposed a new quantum homomorphic signature scheme with repeatable
verification, which can be used in general scenarios. A serial verification model was pro-
vided to solve the problem of signature verification for intermediate verifiers. A parallel
verification model was provided to solve the problem of signature duplication for multiple
terminal verifiers. These models will be beneficial to the signature verification of general
scenarios. Scheme analysis shows that our scheme consumes much less quantum resource
compared with ordinary quantum signature schemes.
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