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Abstract: In this paper, we propose an efficient method to construct energy-minimizing 

B-spline curves by using discrete mask method. The linear relations between control 

points are firstly derived for different energy-minimization problems, then the 

construction of B-spline curve with minimal internal energy can be addressed by solving 

a sparse linear system. The existence and uniqueness of the solution for the linear system 

are also proved. Experimental results show the efficiency of the proposed approach, and 

its application in 
1G  blending curve construction is also presented. 
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1 Introduction 

Curve and surface modeling is a basic problem in the field of Computer Aided Geometric 

Design. Energy-minimization curve and surface has nice geometric properties, which 

makes it been widely used in fairing curve/ surface design, computer vision and image 

processing [Li, Wang and Zhu (2013)]. Hofer [Hofer (2004)] proposed the application of 

energy-minimizing curves in Manifolds. 

There is a huge body of literature on the energy-minimizing curves in CAGD [Higashi, 

Kaneko and Hosaka (1988); Meier and Nowacki (1987); Qu and Ye (2000); Rando 

(1990); Zhang, Zhang and Cheng (2001)]. Higashi et al. [Higashi, Kaneko, and Hosaka 

(1988)] proposed construction of cubic Bézier curves with smoothly varying curvature 

specified by position, tangent and curvature. Rando proposed the calculation of Bézier 

curve minimizing the variation of the radius of curvature [Rando (1990)]. Hagen and 

Bonneau proposed a variational approach for designing the weights of a rational curve to 

achieve a smooth curve with minimal energy integral [Hans and Georges-Pierre (1991)]. 

Jou and Han investigated the minimal energy splines with various constraints [Han and 
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Jou (1992)]. Moreton and Sequin presented a nonlinear algorithm for curves and 

networks with minimal variation of curvature  [Moreton and Sequin (1992)]. The 

algorithm for fairing cubic spline curves by minimizing the strain energy was proposed 

by Zhang et al. [Zhang, Zhang and Cheng (2001)]. Brunnett proposed two variational 

models of fair curves for motion planning [Brunnett, Hagen and Santarelli (1993)]. The 

geometric Hermite curves with minimal strain energy were investigated by Yong et al. 

[Yong and Cheng (2004)]. Johannes Wallner proposed the existence of set-interpolating 

and energy-minimizing curves [Wallner (2004)]. A constructive framework for energy-

minimizing curve with a set of interpolating points were proposed in Johnson et al. 

[Johnson and Johnson (2016)]. Wesselink et al. [Wesselink and Veltkamp (1995)] 

proposed the construction of constrained variational curves using external energy 

operators. Most of the previous work uses iteration numerical method to generate energy-

minimizing curves or curve networks. Xu et al. studied the geometric construction 

method of Bézier curve with minimal energy [Xu, Wang and Chen (2011)]. Given some 

control points, the unknown control points can be obtained by geometric operation such 

that the resulted Bézier curve has minimal energy. 

In this paper, we propose an efficient mask approach to construct the energy-minimizing 

B-spline curve by solving a sparse linear system. Firstly, we derive some linear 

conditions for control points of energy-minimal curves, then the linear constraint is 

written in a mask way, which can be extended to the construction of energy-minimizing 

B-spline curves. In contrast to solving a dense linear system in traditional methods, the 

unknown control points of energy-minimizing B-spline curves can be constructed by 

solving a sparse linear system. Several modeling examples are presented to illustrate the 

effectiveness of the proposed approach, and its application in 
1G  blending curve 

construction is also investigated. 

2 Efficient construction of energy-minimizing B-spline curves 

Stretch energy and strain energy are two kinds of well-known internal energy of 

parametric curves, which typically depend on intrinsic geometric information of the 

planar curve such as the length and curvature. 

The internal energy of a Bézier curve can be written in a unified way: 
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When 1m = , it is called stretch energy related to the length of a curve. When 2m = , it 

is called strain energy, which measures how much the curve is bent. 
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be the corresponding Bézier curve. Suppose that  i i G
C


= P  is the set of the given 

control points and   ,0 ,i i D
C D n D


=  P is the set of the control points to be 

determined from the energy-minimizing condition. G  and D  denote the subscript sets of 

the control points in the sets C  and C  respectively, that is, 

{0,1,2, , 1, }G D n n =  −  . From Xu et al. [Xu, Wang and Chen (2011)], we have the 

following results. 
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From above theorem, the unknown control points can be obtained via solving the dense 

linear system (1) of equations. However, the computing cost of each entry in the 

coefficient matrix is high, on the other hand, currently the existence and uniqueness of 

the solution for the linear system (1) is unclear. Thus, it is not an efficient way to 

construct energy-minimizing B-spline curves. In this paper, we propose a discrete mask 

method to construct B-spline curves with minimal energy efficiently. 

Firstly, we will derive some discrete masks from the energy-minimizing constraint 

condition of Bézier control points. When 1m =  and 4n = , supposed that 
0P ,

1P ,
3P  and 

4P  are given control points,  the control point 
2P  should satisfy the following condition 

according to Theorem 2.1: 

2 0 1 3 4

1 1

2 2
= − − +P P P P P ,                                                                                               (2) 

Similarly, when 2m =  and 4n = , the control point 
2P  should satisfy the following 

condition according to Theorem 2.1: 

2 0 1 3 4

1 2 2 1

6 3 3 6
= − + + −P P P P P ,                                                                                     (3) 

Suppose that the four ending control points 
0P , 1P , 1n−P  and 

nP of B-spline curve are 
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given. By extending the relationships shown in (2) and (3) to the general form, the 

unknown control points of B-spline curves should satisfy the following requirements in 

order to achieve energy minimization: 

2 1 1 2 0i i i i ia b b a− − + ++ − + + =P P P P P ,                                                                              (4) 

where 
iP  are the unknown control points, [2, 2]i n − . For stretch-energy-minimization 

problem, we set
1

1,
2

a b= = − ; for strain-energy-minimization problem, we set 

1 2
,

6 3
a b= − = . 

Those linear relationships among undetermined control points comprise make up a linear 

system: 

2 3 4 0 1

2 3 4 5 1

2 3 4 5 6

5 4 3 2 1

4 3 2 1

0

......

− − − − −

− − − −

− + + = − −


− + + = −

 + − + + =


 + − + = −


+ − = − −

n n n n n

n n n n n

P bP aP aP bP

bP P bP aP aP

aP bP P bP aP

aP bP P bP aP

aP bP P bP aP

                                                                             (5) 

That is, 

n =M P Q                                                                                                                           (6) 

in which the coefficient matrix 
nM  has the follow form: 

1 0 0 0 0
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From the proposed mask method, given partial control points of B-spline curves, the 

unknown control points can be obtained by solving the corresponding sparse linear 

systems (6) to satisfy the minimization requirements for stretch energy and strain energy. 

2.2 Existence and uniqueness of the solution 

In this subsection, we will prove the existence and uniqueness of the solution for the 
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sparse linear system (6) with respect to the masks for stretch and strain energy 

minimization. Let det( )nH = M . If 0nH  , then there exists a unique solution for the 

linear system (6). Firstly, we give the computation method for the determinant of 
nM   in 

the following proposition. 

 

Proposition 2.1. Let det( )n nH = M , then 
nH  can be computed in a recursive way: 

2 2 2 2 4 6

1 2 4 3 5 6( )( ) 2 ( )n n n n n n nH H a b H a H a b a H a H a H− − − − − −= − + − + + + − − .          (7) 

Proof. Firstly, we construct the following two kinds of determinants: 

1
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b a
b b a

a b b a
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in which  denotes the matrix with the same structure as 
nM . 

Then we have 

1 1 1,− − −= − − +n n n nH H bL aK                                                                                              (8) 

2

1 2 2 ,− − −= − +n n n nL bH abH a L                                                                                           (9) 

3

1 2 3.− − −= + +n n n nK bL aH a H                                                                                          (10) 

After some simple computation from (8)(9)(10), we can get the recursive formula (7). 

Thus, the proof is completed.  

In order to compute 
nH  ( 5n  )recursively, 

0 1, ,H H 2 3 4, ,H H H  and  
5H  should be 

firstly obtained as follows, 
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According to Eq. (2), the mask of stretch energy minimization is defined as: 

2 1 1 2

1 1
0,

2 2
i i i i i− − + +− − − + =P P P P P  

The corresponding coefficient matrix  
1

nM  is: 
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1
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According to Eq. (3), the mask of strain energy minimization is given as: 
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In the following, we will prove that there exists a unique solution for the sparse linear 

systems of stretch energy and strain energy minimization. 

Proposition 2.2. 0nH   for 
1

1,
2

a b= = −  and
1 2

,
6 3

a b= − = , i.e., there exists a 

unique solution for the sparse linear systems of stretch energy and strain energy 

minimization. 

Proof. From (7), we can get the characteristic polynomial of 
nM  as follows, 

6 5 2 2 4 2 2 2 3 2 2 4 6( ) ( ) 2 ( ) 0.a b a a b a b a a a     + − − − − − + + + =  

Let 

2 2a
s





+
= , then s  is the root of the following cubic equation: 

3 2 2 2 2( 4 ) 2 (2 ) 0,s s b a s a a b+ + − − + =                                                                        (11) 

By solving (11), we can obtain the three roots 
1 2,s s  and 

3s  . Then we can get the six 

roots 
1 2 3 4 5, , , ,      and 

6  for the characteristic polynomial of 
nM .By direct 

computation, we can find that all the eigenvalues 
1 2 3 4 5 6, , , , ,       are non-zero,  in 

case of 
1

1,
2

a b= = −  and 
1 2

6 3
a b= − = . That is, 0nH  , the coefficient matrix 

1

nM  

and 
2

nM  for stretch energy and strain energy minimization is invertible. Thus, the proof 

is completed. 

3 Experimental results 

3.1 Modeling examples of energy-minimizing curves 

In this section, some experimental examples will be presented to show the effectiveness 

of the proposed method for construction of energy-minimizing curves. These two 

modeling examples are selected according to the different distribution type of the input 

control points. 

 Example I. In this example, the given control points are 0 ( 1.2, 0.4)= − −P ,
1P  

( 0.8,0.1)= − , 1 (0.6, 0.5)n− = −P  and (1.0,0.5)n =P .  Fig. 1 and Fig. 2 show B-spline 

curves with minimal stretch and strain energy constructed by the proposed approach with 

the same specified control points but different number of unknown control points. We 

can find that in Fig. 1 some B-spline curves with minimal length can be achieved, and in 

Fig. 1 we can obtain some B-spline curves with minimal curvature under the input 

constraints. 
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(a) 1=n                                                            (b) 2=n  

     

(c) 3=n                                                                (d) 4=n  

Figure 1: B-spline curve with minimal stretch energy in Example I. 

 

      

(a) 1=n                                                                (b) 2=n  

     

(c) 3=n                                                               (d) 4=n  

Figure 2: B-spline curve with minimal strain energy in Example I 
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Example II. In this example, 
0 ( 1.2, 0.4)= − −P ,  

1 ( 0.8,0.4)= −P ,  
1n−P  = (0.6, 0.1)−  

and (1.0, 0.2)n = −P are the specified control points. The corresponding energy-

minimizing B-spline curves are shown in Fig. 3 and Fig. 4 respectively. Similarly, we can 

find that B-spline curves with minimal length can be achieved in Fig. 3, and B-spline 

curves with minimal curvature can be obtained in Fig. 4. 

In order to show the computing efficiency of the proposed method, some testing results 

for examples with large number of unknown control points are presented in Tab. 1, Fig. 5 

and Fig. 6, including the comparisons with traditional methods. The time shown in this 

table includes the time for the computing of coefficients matrix entry and the time for 

solving linear systems. It can be found that a significant efficiency improvement can be 

achieved with the proposed discrete mask approach. 

 

                 

(a) 1=n                                                             (b) 2=n  

                  

(c) 3=n                                                             (d) 4=n  

Figure 3: B-spline curve with minimal stretch energy in Example II   
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(a) 1=n                                                             (b) 2=n  

                  

(c) 3=n                                                          (d) 4=n  

Figure 4: B-spline curve with minimal strain energy in Example II, in which n is the 

number of unknown control points 

Table 1: Quantitative data and timing costs (in seconds) for energy-minimizing curve 

construction (#DOF: the degree of freedom; p: the degree of B-spline curves; #AR: 

acceleration ratio) 

p  #DOF our method 
traditional 

method 
#AR 

2 48 3.024e-06 1.228e-04 40.6  

3 180 1.015e-05 6.187e-04 60.1  

4 840 1.68e-03 1.34e-01 79.7  

4 1280 2.31e-02 2.56 110.8  
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Figure 5: Timing costs for energy-minimizing curve construction in Tab. 1 

 

Figure 6: Acceleration ratio comparison for different degrees of freedom as shown in 

Tab. 1 

3.2 Application in blending curve construction 

Construction of blending curves between two given curves is one of the fundamental 

problems in CAGD  [Lin, Xiong and Liao (2014)].  The blending problem can be stated 

as follows: two separate B-spline curves are given, how to construct a smooth curve to 

connect these two given curves while satisfying certain continuity conditions between 

them. The proposed energy-minimizing curve construction method can be used to address 

this problem. Firstly, we need to construct the two starting and ending control points of 

the blending curve to be constructed with 
1G -continuity according to the control polygon 
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of given two B-spline curves; then the remaining control points of the blending curve are 

constructed by the proposed approach to satisfy the energy-minimization constraints.  

This method is intuitive, simple and easy to implement. Three modeling examples of 

blending curve construction are given in Fig. 7, Fig. 8 and Fig. 9, in which the pink 

curves are the specified curve, the blue curves are the blending curves with minimal strain 

energy, and the red ones are the blending curves with minimal stretch energy, the green 

lines are the control polygons of the B-spline curves.   

 

                                            

(a) stretch mask                                                   (b) strain mask 

Figure 7: Blending curve construction for ear contour 

                                            

(a)stretch mask                                                  (b) strain mask 

Figure 8: Blending curve construction for font modeling 

 

Figure 9: Blending curve construction for dolphin contour 
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4 Conclusion 

In this paper, we propose a discrete mask method to construct energy-minimizing B-

spline curves efficiently by solving a sparse linear system. A proof is given for the 

existence and uniqueness of the linear system solution. The efficiency of the proposed 

method is illustrated by some experimental results, in which the application in 
1G  

blending curve construction is also presented. 

As a part of future work, the proposed approach can be extended to other mask types, 

such as the mask with three specified ending control points, which can be used to 

construct blending curves with 
2G -continuity. Furthermore, we are going to apply the 

proposed method in path-planning for robotics applications. 
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