

Copyright © 2019 Tech Science Press CMC vol.58, no.2, pp.319-333, 2019

CMC. doi:10.32604/CMC.2019.03856 www.techscience.com/cmc

WiBPA: An Efficient Data Integrity Auditing Scheme Without

Bilinear Pairings

Chunhua Li1, *, Peng Wang1, Changhong Sun1, Ke Zhou1 and Ping Huang2

Abstract: The security of cloud data has always been a concern. Cloud server provider

may maliciously tamper or delete user’s data for their own benefit, so data integrity audit

is of great significance to verify whether data is modified or not. Based on the general

three-party audit architecture, a dynamic auditing scheme without bilinear pairings is

proposed in this paper. It utilizes exponential operation instead of bilinear mapping to

verify the validity of evidence. By establishing the mapping relation between logic index

and tag index of data block with index transformation table, our scheme can easily

support dynamic data operation. By hiding random numbers in the integrity evidence, our

scheme can protect users’ privacy information. Detailed security analysis shows that our

scheme is secure against attacks such as forgery, replaying and substitution. Further

experiments demonstrate that our scheme has lower computational overhead.

Keywords: Cloud storage, integrity verification, dynamic auditing, bilinear pairings.

1 Introduction

Cloud storage services are getting more and more attention for such advantages as on-

demand, flexible, and dynamic, many individuals and enterprises begin to outsource their

growing data to the cloud service providers (CSPs). Meanwhile, they fear that the data

will be tampered or leaked by unreliable service providers. Therefore, it is essential to

provide a correct and efficient method to verify the integrity of remote cloud data.

Provable data possession (PDP) model [Ateniese, Burns, Curtmola, et al. (2007)] is the

first scheme that allows a client to prove the integrity of data stored at untrusted servers

without retrieving it. The model generates probabilistic proofs of possession by sampling

random sets of blocks from the server, which drastically reduces I/O costs. However, it

adopts sequential index number of data blocks to calculate the tag of homomorphism

certification, once a block of data is updated all tags are to be recalculated, thus resulting

in significant computational overhead. For this reason, PDP can only be used for static

data files. Subsequently, Ateniese et al. [Ateniese, Pietro, Mancini et al. (2008)] construct

an efficient and provably secure PDP (SPDP) technique based on symmetric key

1 Wuhan National Lab for Optoelectronics, Huazhong University of Science and Technology, Wuhan,

430074, China.

2 Computer and Information Sciences, Temple University, Philadelphia, 19122, USA.

* Corresponding Author: Chunhua Li. Email: li.chunhua@hust.edu.cn.

http://xueshu.baidu.com/s?wd=author%3A%28Randal%20Burns%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Reza%20Curtmola%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson

320 Copyright © 2019 Tech Science Press CMC, vol.58, no.2, pp.319-333, 2019

cryptography, which can support such dynamic operations as block modification, deletion

and appending. Based on SPDP, Erway et al. [Erway, Papamanthou and Tamassia

(2009)] present a definitional framework and efficient constructions for dynamic PDP

(DPDP), which supports full provable updates to stored data, including block insertion,

deletion, modification and other update operations. But, a large amount of auxiliary

information is required in each verification process, which results in a large

computational and communication cost.

Based on the idea of PDP, many auditing schemes have emerged in recent years. Wang et

al. [Wang, Wang, Ren, et al. (2011)] enable public auditability and data dynamics for

storage security by manipulating the classic Merkle Hash Tree construction for block tag

authentication. Zhu et al. [Zhu, Ahn, Hu et al. (2013)] construct a dynamic audit service

based on the fragment structure, random sampling, and index-hash table, however, the

update operation is inefficient, especially insertion and deletion operations. Yang et al.

[Yang and Jia (2013)] propose an efficient privacy-preserving auditing protocol, which

support the data dynamic operations and batch auditing. Shen et al. [Shen, Shen, Chen et

al. (2016)] propose an efficient public auditing protocol with global and sampling

blockless verification as well as batch auditing, in which a novel dynamic structure is

introduced, which consists of a doubly linked info table and a location array. Sookhak et

al. [Sookhak, Yu and Zomaya (2018)] present a remote data checking method on the

basis of algebraic properties of the outsourced files for big data storage, which uses a new

data structure called Divide and Conquer Table to proficiently support dynamic data for

normal file sizes.

To prevent server from disclosing user’s privacy, Wang et al. [Wang, Chow, Wang et al.

(2013)] utilize the public key based homomorphic authenticator and random mask

technique to achieve a privacy-preserving public auditing for secure cloud storage. Cai

[Cai (2013)] constructs a comprehensive auditing system for cloud data integrity auditing

(CDIAS), which supports public and batch auditing as well as privacy protection. Tian et

al. [Tian, Chen, Chang et al. (2015)] propose a dynamic hash table (DHT) based public

auditing for secure cloud storage, which also supports privacy preservation and batch

auditing by employing the aggregate BLS signature technique.

Most of the above schemes exploit bilinear pairing to verify the integrity of remote data.

It is well known that the computational cost of bilinear mapping is huge, it will lead to

the delay of verification. In order to reduce the high computational cost, Dong et al.

[Dong, Gao, Shi et al. (2014)] propose a certificateless blind signature scheme without

bilinear pairing, which solves the problem of certificate management and key escrow

existed in the identity-based public key cryptography, thereby greatly reduces the cost of

computation and storage. Zhao et al. [Zhao, Ren, Xiong et al. (2015)] present an integrity

verification scheme for cloud data without bilinear pairing. This scheme needs a

believable TPA to audit cloud data. Wu [Wu (2017)] proposes an improved public

auditing protocol without bilinear pairing and analyzes some security properties, such as

correctness, unforgeability, and privacy protection. This scheme simplifies the auditing

algorithm and has lower communication and computational overhead. However, dynamic

data auditing is not mentioned in this paper which only discusses static data auditing. As

we all know that cloud services are not only limited to archive or backup data, dynamic

http://xueshu.baidu.com/s?wd=paperuri%3A%288a649ba3b33ec650882977f9e5295a16%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.en.cnki.com.cn%2FArticle_en%2FCJFDTOTAL-XXAQ201507003.htm&ie=utf-8&sc_us=9951084785710070598
http://xueshu.baidu.com/s?wd=paperuri%3A%288a649ba3b33ec650882977f9e5295a16%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.en.cnki.com.cn%2FArticle_en%2FCJFDTOTAL-XXAQ201507003.htm&ie=utf-8&sc_us=9951084785710070598

WiBPA: An Efficient Data Integrity Auditing Scheme 321

data operations are very frequent in cloud environment, thereby it is necessary for any

scheme to support dynamic data verification in a cloud environment.

In this paper, we present an efficient integrity auditing scheme for cloud data without

bilinear pairing. We adopt exponent operation instead of bilinear pairings to verify the

validity of evidence during the process of verifying. By establishing the mapping relation

between logic index and tag index of data block with index transformation table, our

scheme can easily support dynamic data operations, include insertion, deletion,

modification and all other update operations. By hiding random numbers in the integrity

evidence, our scheme can protect users’ privacy information. Due to not using complex

bilinear operation, the efficiency of auditing is greatly improved. Detailed security

analysis shows that our scheme is secure, it can resist such attacks as forgery, replaying

and substitution.

Paper organization is as follows: Section 2 introduces some backgrounds about audit

model and mathematical knowledge. Section 3 describes our scheme in detail. Section 4

gives the detail security analysis. The analysis of performance and function is shown in

Section 5. The conclusion is drawn in Section 6.

2. Preliminaries

2.1 System model

In this paper, we adopt the common three-party auditing model for data verification

(shown in Fig. 1) [Jin, Jiang and Zhou (2016)], which contains the following three parts:

user, cloud server provide (CSP), and the third-party auditor (TPA). A user can be a data

owner as well as a data user. As an owner, he first divides file into some data blocks and

labeled them before outsourcing them to the remote server, at the same time, access

control policy for data is specified and attached to the metadata. CSP is often supposed

semi-trusted in cloud environment, it may remove or tamper user’s data for his own

interest. TPA acted as a moderator trusted by both CSP and user. When TPA receives

user’s requests to audit, it will send a challenge to the server, the server then returns

integrity evidences to the TPA, TPA then verifies the integrity of data based on the

information of evidence and request using bilinear mapping or other algorithms.

Meanwhile, TPA can arbitrate in case of any conflict between CSP and user.

2.2 Bilinear map

A bilinear map is a map e: G1×G2→GT, where G1 and G2 are two Gap Diffie-Hellman

groups of prime order p, GT is another multiplicative cyclic groups with the same order.

A bilinear map has the following three properties [Dan, Lynn and Shacham (2001)]:

⚫ Bilinear: For all g1, g2∈G and , pa b Z ,
1 2 1 2(,) (,)a b abe g g e g g= .

⚫ Non-degenerate: e(g1, g2)≠1, where g1, g2 are generators of G1 and G2.

⚫ Computable: For all 1 2 1,g g G ,
1 2(,)e g g can be computed in an efficient algorithm.

The bilinear pairs can be constructed by the Weil on the elliptic curve or the Tate pair.

file:///J:/2018/youdao/Dict/7.2.0.0703/resultui/dict/

322 Copyright © 2019 Tech Science Press CMC, vol.58, no.2, pp.319-333, 2019

CSP

User

TPA

data

auditing request

evidence
challenge

Access
 control

verification result

data request

File

Key

Data
blocks

Figure 1: System model for auditing

2.3 Aggregate signature

The aggregated signature [Velte, Velte and Elsenpeter (2009)] is a digital signature,

which can compress multiple single signatures into one signature and achieve batching.

For example, a linear combination value is calculated based on the content of multiple

data blocks when it needs to generate integrity evidence, further, an aggregate tag is

calculated according to the corresponding tag of each data block. Compared with

individual verification for each signature, aggregated signature significantly reduces the

computational cost and communication overhead of transmitting integrity evidence.

3 The proposed auditing scheme

3.1 Design goals

An integrity verification scheme in cloud needs to meet the following objectives:

⚫ Storage correctness: only the user's data is complete, TPA will pass the check of

data integrity.

⚫ Privacy protection: TPA cannot obtain the real content of user’s data during the

process of verifying.

⚫ Dynamic auditing: permitting user to add, delete or modify his data during auditing.

⚫ Security: at least against forgery attack, replay attack and replace attack from CSP.

⚫ High efficiency: as low computational overhead as possible to improve its actual

application services.

3.2 The proposed auditing scheme

The process of auditing consists of three stages: installation, verification and dynamic

update, as well as eight steps.

Before we begin to describe the detail steps, it is necessary to first define some

parameters. Suppose G is the multiplicative cyclic group with prime order p, g is the

WiBPA: An Efficient Data Integrity Auditing Scheme 323

generation element of G, H(▪) means the mapping function from (0,1)* to Zp, namely, H(▪)
is the hash function of G →Zp.

Step1: () (,)KeyGen pk sk →

Key generation algorithm, used by the user to obtain his public key and private key. A

user randomly chooses an element x (x∈Zp) to compute modxy g p= , then the user’s

private key sk is generated by ()sk x= and the public key pk is gotten by (,)pk g y= .

Step2: (, ,)TagGen sk pk F →

Tag generation algorithm, used to split file into some data blocks and generate a tag for

each block. Suppose the user file F is divided into n blocks, then F can be denoted as

 1 2 3, , ,..., (,1)n i pF m m m m m Z i n=    . The user randomly generates a file name for file F

from Zp, then to calculate the tag σ for each data block as follow:

()()i i
x

m H W

i g G +
=  ,

 
1i i n


 

= ,

i i i iW Filename B V T= (1)

Where Bi is the index of a data block, which represents the actual order of the data block

mi in the whole collection F{mi}1≤i≤n, Bi is initially set to i. Vi is the current version

number of a data block with an initial value of 1. Ti is the current timestamp which is

used to calculate the authentication tag for a data block mi.

Table 1: The initial index transformation table

Index Bi Vi Ti

1 1 1 t1

2 2 1 t2

… … … …

i i 1 ti

… … … …

n n 1 tn

Then,  ,F  is sent to the CSP, and file information such as filename, the number of data

block n and Ti is sent to the TPA. After TPA receives the file information, it will generate

an initial index transformation table (ITT) [Cai (2013)], the structure of ITT is shown in

Tab. 1.

Step3: (,)ChalGen c pk chal→

Challenge algorithm, used to generate challenge information when audit request is

submitted to the CSP. TPA randomly generates c numbers from 1~n, the i-th random

number is marked with si’ which represents the logical index number of data block to be

challenged. Let  ' ' ' '

1 2, ,..., cI s s s= . Based on the ITT, TPA queries block index number si

corresponding to each logical index number, and then forms a collection I,

324 Copyright © 2019 Tech Science Press CMC, vol.58, no.2, pp.319-333, 2019

 1 2, ,..., cI s s s= . For any i I , generating a random number vi (i pv Z) corresponding to

si. Then, TPA sends the challenge information  (,)i i I
chal i v


= to the CSP.

Step4: Pr (, , ,)oofGen chal F pk P →

Evidence generation algorithm, used to generate the integrity proof. After CSP receives

the challenge information, it generates a random number r (
pr Z), and calculates the

following parameters for verification:

()
r

r xk y g G= =  ,

'

i ii I
v m


 = ,

' () modrh k p =  + , (2)

iv

ii I
G


 =   ,

rT =  ,
rk =

Finally, CSP sends an evidence  , , ,P k T=   to TPA which will use evidence to verify

whether the data stored on the server is intact or not.

Step5:  Pr (, ,) " "," "oofVerify pk chal P fail success→

Evidence validation algorithm, used to verify the correctness of the integrity evidence

sent by CSP. Specially, we adopt exponent operation instead of bilinear pairings to check

the validity of evidence. According to the challenge information vi and evidence P, TPA

can verify whether the exponent operation described in Eq. (3) is true or not:
()?

()
i i

i I

H W v
h k T k 

+
 = (3)

If the equation is true, it can state that user’s data is correct, otherwise user’s data may be

tempered.

Step6: (, , ,) (, , , , ,)old k k k k kGenUpdateData sp pk k cmd B B V T m→ 

It is used to generate the update data and send request to deal with the operation. Here, k

represents the logical position where data is updated, cmd is the type of dynamic data

operation, including insertion, deletion and modification. We will use the modification

operation as an example of how to conduct the data update.

Suppose k th item is to be modified. The user first queries the index number Bk and old

version number Vold of the k th item in ITT. Let us say mk is the new data block. Then, the

tag, timestamp and version of this new block is recalculated, ()() Gg
xWHmk =

+ k

k , Tk is current

time, and Vk = Vold +1. After that, the index update request MTPA=(modify, k, Bk, Vk,Tk) is

sent to TPA and the data update request MCSP=(modify, Bold, Bk, mk, σk) is sent to CSP.

Here, Bold=Bk for modification operation.

Step7:  (, , , ,) " "," "k k kTPAExeUpdate cmd k B V T fail success→

This algorithm is used to update the content of ITT after TPA receives the index update

request. The changed ITT for modification operation is shown in Tab. 2. If executed

successfully, it will output “success”, otherwise, will output “fail”.

WiBPA: An Efficient Data Integrity Auditing Scheme 325

Step8:  (, , , ,) " "," "old k k kCSPExeUpdate cmd B B m fail succcess →

This algorithm is used to update user’s data stored at the server. For insertion operation,

CSP will insert a new data block and its tag into the server. For deletion operation, CSP

will delete the block and its tag from the server. For modification operation, CSP will

replace the old block and its tag with the new content. If executed successfully, it will

output “success”, otherwise, will output “fail”.

It is important to note that a user needs to perform Step 1-Step 5 again after

accomplishing Step 5-Step 8, and questions if the index number of updated block is

included in index collection to ensure that CSP can honestly perform the update.

Table 2: The new ITT after modification

Index Bi Vi Ti

1 1 1 t1

2 2 1 t2

… … … …

i Bi Vk Tk

… … … …

n n 1 tn

In addition, our scheme can also support batch auditing, the execution process for batch

auditing is similar to that described above, so we will not repeat it.

4 Security analysis

In this section, we analyze the security of our scheme in detail, including audit

correctness, privacy protection, unforgeability, replaying-resistance and substitution-

resistance attack.

(1) Audit Correctness: in data audit mechanism, evidences generated by CSP can be

verified for integrity only when the user’s data stored at the server is complete, namely,

the Eq. (3) is satisfied. Otherwise it indicates that user’s personal data may be damaged.

The proof process is as follows:

() ()
()
() ()

() ()()

()
()

()
()

()
()
()

()

() () ()rh k

i i i

i i i i i i i i

i I i I

i i i i i i

i I i I i I

xrh k r rh k m v H W vih k r

i I

m v H W vrh k rh k m v H W v

i I

m v H W v H W v

T k k g

k k k k

k k


 

 

  

+



+ +



+ + +

= =

 = =

  
= =





(2) Privacy Protection: TPA cannot obtain the real content of user’s data during the

process of auditing according to the evidence {k, μ, T, π}. This can be proved from two

aspects:

On the one hand, according to the formula (2), if TPA wants to get μ’ from μ, it must

know the value of r. However, r is randomly generated by the cloud server, TPA cannot

326 Copyright © 2019 Tech Science Press CMC, vol.58, no.2, pp.319-333, 2019

be able to get r from CSP. Meanwhile, it can be seen from formula (2) that solving r from

k and y is a difficult problem because it belongs to the discrete logarithm. Therefore, TPA

cannot infer the value of μ’ from r.

On the other hand, according to the formula (2), we can also obtain that:

()()

()
()

()

i

'

i I

 k

i i i i

i i i i

i i i i i I i I

i i

i I

r
xrv m v H W vr

i

i I i I

m v H W v
m v H W v

H W v

T g

k

k


 

 



+

 

+
+



+

 
= = = 

 

 
= =


=

 



Similarly, solvingμ’ from T and k is also a discrete logarithm problem. Therefore, TPA

cannot acquire user’s secret information from evidence P it holds.

(3) Unforgeability: CSP cannot use existing data to forge data blocks and tags to trick

TPA into integrity verification.

Assuming that user’s data mk is changed to mk'. If CSP wants to pass integrity verification

by TPA, it must forge the corresponding tag σk', ()()xWHm kk +=
'

g'

k . However, CSP does not

have the knowledge of user’s private key x and the audit information {Bk, Vk, Tk} which

are stored in TPA. According to ()()xWHm kk += gk , solving ()kk WHm + by g, y and σk is a discrete

logarithm problem, thereby ()kWH is unavailable to CSP. In the end, CSP cannot construct

the tag σk' for mk' to fool TPA.

(4) Anti-replaying attack: when a user performs a block update operation, CSP cannot

use expired versions of blocks and tags to deceive TPA. That is to say, the malicious CSP

may not update the version of a block and its tag after receiving the user's update request.

After that, the integrity verification is executed, CSP continues to use the old version to

generate evidence in order to be audited by TPA. According to the Eq. (3), we give the

following proof process:

()
() ()

 kπ ,

'μ ∑
≠∈ kiIi

kkii vWHvWH
kh T

++

=

WiBPA: An Efficient Data Integrity Auditing Scheme 327

() ()
()

() ()

() () ()()
() ()

() ()
() ()

() ()
() ()

() () () ()

() () () ()

() () kkkk

kiIi

kkiikk

kiIi

ii

kiIi

kkii

Ii Ii

iiii

kiIi

kkii

iiii

kiIi

kkii
iviWHivim

kiIi

kkii

iiii

kiIi

kkii

vWHvWH

vWHvWHvWHvWH

vWHvWHvWHvmkrh

vWHvWH

Ii

vWH

Ii

vmkrh

vWHvWH

Ii

krh

vWHvWH
xr

Ii

vWHvmkrh

vWHvWH
rkhr

kk

k

k

kkk

kk

gk

k

'

,

'

,

,

'

,

'

,

'

,

'

,

'

k

k

k

k

k

k

=


=




=

 


=


=


=


=



 




+





++++

++++

++



++



++



+

++





















Then, we can obtain:

() ()'k kWHWH = (4)

From the anti-collision characteristics of hash function, we can know that the formula (4)

is not valid. So, CSP cannot pass the verification by using old version information.

(5) Anti-substitution attack: CSP cannot use valid data blocks and tags to replace the

corrupted or lost data blocks and tags being questioned.

Suppose CSP replaces the mh and σh questioned with legal mk and
k to generate evidences

so as to fool the TPA, then the new evidence is as follows:

() () pkhrvmvmkrh
hiIi

hkii mod
,

' 


++=+= 

r

hiIi

v

k

v

i

r
hiT 












== 

 ,

** 
 (5)

From the Eq. (3), we can get:

()
()

= 

+

Ii

ivWH
k kT

i
*

*h


 (6)

Substituting (5) into (6), we can obtain:

() () ()
() ()

() () ()
() ()

() () ()
() ()

() () () () () ()

() () hhhk

hh

hiIi

iihk

hiIi

iihkhk

hiIi

ii

hiIi

ii

Ii

iihk

hiIi

ii

hkhkiiii

Ii

iihk

hiIi

ii

hkhkiiii

Ii

iihk

hiIi

ii

hkhkiiii

vWHvWH

vWHvWHvmvmkrhvWHvmvWHvmkrh

vWHkrhvmvm
vWHvm

hiIi

vWH

hiIi

vmkrh

vWHkrhvmvm
vWHvm

hiIi

vWHvmkrh

vWHkrhvmvm
xr

vWHvm

hiIi

vWHvmkrh

kk

kk

kkkkk

kkkk

kgg

=


=




=


=


=















++++++++

+++
+



+++
+



+

+++
+



+















,,,,

,

,

,

,,

,

,

k

That is say, () ()hk WHWH =

The same as the Eq. (4), () ()hk WHWH  . Therefore, CSP cannot replace the questioned

data blocks and tags to pass the integrity verification.

328 Copyright © 2019 Tech Science Press CMC, vol.58, no.2, pp.319-333, 2019

5 Performance evaluation

In this section, we measure the performance of our scheme and make a comparison with

silimar method [Cai (2013)]. We developed a prototype on a Ubuntu 16.04 LTS system

using C/C++ language. The system is equipped with a 4-Core Intel i5-6500 processor

running at 3.20 GHz, 8 GB RAM and a 7200 RPM 1TB drive. Our implementation uses

the PBC library at version 0.5.14, OpenSSL library at version 1.0.2n. We choose AES-

128 for block encryption and decryption, SHA-1 for hashing, RSA-1024 for verification.

5.1 Function comparison

Tab. 3 lists the functions of our scheme and some common schemes. From Tab. 3, we can

see that our scheme can support public auditing, privacy protection and dynamic auditing.

PDP [Ateniese, Burns, Curtmola, et al. (2007)] cannot support dynamic auditing and

privacy protection, DPDP [Erway, Papamanthou and Tamassia (2009)] cannot support

public auditing and privacy protection, MHT [Wang, Wang, Ren et al. (2011)] cannot

supports privacy protection and Wu’s scheme [Wu (2017)] is not suitable for dynamic

auditing. Although IHT-PA [Zhu, Ahn, Hu et al. (2013)], DHT-PA [Tian, Chen, Chang et

al. (2015)] and CDIAS [Cai (2013)] all support three functions at the same time, they all

adopt the operation of bilinear pairs which requires a lot of computational cost.

Table 3: The function list for some audit schemes

Audit Scheme Public Auditing Privacy Protection Dynamic Auditing

PDP √ × ×

DPDP × × √

MHT √ × √

Wu’s Scheme √ √ ×

IHT-PA √ √ √

CDIAS √ √ √

DHT-PA √ √ √

Our Scheme √ √ √

Notice: sign ‘√’ means support this function，sign ‘×’ means not to support the function.

5.2 Computational overhead

The audit performance is mainly measured from the computational cost of three

algorithms: TagGen, ProofGen and ProofVerify. Among them, bilinear operations require

much more computing time than other operations. We display the computational

overhead of CDIAS and our scheme (seen in Tab. 4).

From Tab. 4 we can see that TagGen algorithm in this paper requires the computational

cost of 2nE+nA, which is less than the computational cost of 2nE+nM required by

CDIAS, but the computational cost of ProofGen algorithm is slightly greater than that of

the CDIAS’s. However, ProofVerify algorithm of our scheme needs only twice

exponential operations, while CDIAS’s uses twice bilinear pairings and (c+1) times

exponential operations, obviously, the cost of our ProofVerify algorithm is significantly

less than that of CDIAS’s.

http://xueshu.baidu.com/s?wd=author%3A%28Randal%20Burns%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Reza%20Curtmola%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
file:///J:/2018/youdao/Dict/7.2.0.0703/resultui/dict/
file:///J:/2018/youdao/Dict/7.2.0.0703/resultui/dict/

WiBPA: An Efficient Data Integrity Auditing Scheme 329

Table 4: Computational overhead for CDIAS and our scheme

Algorithm CDIAS Our scheme

TagGen 2nE+nM 2nE+nA

ProofGen (c+1)E+(2c-1)M+cA (c+3)E+2cM+cA

ProofVerify 2P+(c+1)E+(c+1)M 2E+(c+1)M+cA

Total overhead
2P+(2n+2c+2)E+(n+3c)

M+cA

(2n+2c+5)E+(3c+1)M+

(n+2c)A

Where, n refers to the amount of data blocks, c refers to the questioned number of data

blocks, A refers to the addition in group G, M refers to the multiplication in group G, E

refers to the exponential operation in group G, P refers to the bilinear pairs in group G.

5.3 Time overhead

We randomly selected 460 numbers of data blocks to take part in the audit challenge

[Ateniese, Burns, Curtmola, et al. (2007)] and tested the time cost of verifying the

integrity of a 1 GB file. The size of data blocks ranged from 1 KB to 1 MB, and the

experimental results were taken from the average value of 20 trials. The results are shown

in Fig. 2 and Fig. 3, including the time of generating tags and evidences, the time of

verifying phase and the time of updating operations.

Figure 2: Time overhead of generating tag and evidence, verifying phase

file:///J:/2018/youdao/Dict/7.2.0.0703/resultui/dict/
http://xueshu.baidu.com/s?wd=author%3A%28Randal%20Burns%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Reza%20Curtmola%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson

330 Copyright © 2019 Tech Science Press CMC, vol.58, no.2, pp.319-333, 2019

From Fig. 2(a) we can observe that the time taken for TagGen algorithm decreases

exponentially with the increase of block size. This is because with the increase of block

size, the number of data blocks decreases exponentially, and the number of tags

calculated by TagGen algorithm also gets down exponentially. The time of our algorithm

only needs about 50% of CDIAS’s. For example, for 1 GB file, when the file is split into

many data blocks of 1 KB-size, CDIAS scheme takes 5299.79 s while our scheme takes

2594.77 s, only 48.96% of the former. When the size of data block is 1MB, CDIAS

scheme takes 6.38 s while our scheme takes 3.34 s, only 52.35% of the former.

From Fig. 2(b) we can notice that when the size of block is less than or equal to 8 KB, the

time taken for ProofGen algorithm decreases as the size of data block increases. When

the size of block is greater than or equal to 8 KB, the time taken for ProofGen algorithm

is stable for both of CDIAS and ours. Moreover, the time of our scheme is slightly larger

than CDIAS’s.

From Fig. 2(c) we can see that with the increase of block size, the time taken for

ProofVerify algorithm is stable for both schemes. This is because the ProofVerify

algorithm is regardless of the block size. Very clearly, the time of our scheme is far less

than CDIAS’s, only 0.17% of the latter.

 From Fig. 2(d) we can observe that with the increase of block size, the total amount of

time decreases exponentially, and our scheme only needs about 50% of the total

computing time of CDIAS’s. For example, for 1 GB file, when the file is split into many

data blocks of 1KB-size, CDIAS scheme takes 5307.63 s, while our scheme takes

2600.63 s, only 49% of the former. When the size of data block is 1MB, CDIAS scheme

takes 8.77 s, while our scheme takes 4.02 s, only 45.84% of the former.

WiBPA: An Efficient Data Integrity Auditing Scheme 331

Figure 3: Time overhead of dynamic update algorithms

From Fig. 3(a) we can see that when the size of block is less than 8 KB, the time it takes

to insert 100 data blocks into a file is decreasing with the increase of block size. When

the block size is greater than or equal to 8 KB, the consumed time is stable for both

schemes. Moreover, the consumed time of our scheme is less than CDIAS’s. For example,

for 1 GB file, when the file is split into many data blocks of 2 KB-size, CDIAS takes

1.18s while our scheme takes 0.82 s, which is 30.51% less than the former. When the size

of data block is 1MB, CDIAS takes 0.58 s, while our scheme takes 0.27 s, which is

53.45% less than the former.

From Fig. 3(b) we can observe that when the size of block is less than 64 KB, the time it

takes to delete 100 data blocks from a file is decreasing with the increase of block size.

When the block size is greater than or equal to 64 KB, the consumed time is stable for

both schemes, and they are very close in time. For example, for 1 GB file, when the size

of data block is 1 KB, CDIAS takes 1.1 s while our scheme takes 1.07 s. When the size of

data block is 1 MB, CDIAS takes 17.3 ms while our scheme takes 21 ms.

From Fig. 3(c) we can notice that when the size of data block is less than 8 KB, the time

it takes to modify 100 data blocks in a file is decreasing with the increase of block size.

When the size of data block is greater than or equal to 8 KB, the consumed time is stable

for both schemes. Moreover, the consumed time of our scheme is less than CDIAS’s. For

example, for 1 GB file, when the file is split into many 1 KB-size blocks, CDIAS takes

1.59 s while our scheme takes 1.45 s, which is 8.81% less than the former. When the size

of data block is 1 MB, CDIAS takes 0.51 s, while our scheme takes 0.28 s, which is

45.1% less than the former.

6 Conclusion

In this paper, we proposed an efficient secure data auditing scheme without bilinear

parings based on three-party architecture. It can support dynamic batch auditing as well

as privacy protection. We prove its security in detail, including audit correctness,

unforgeability, replaying-resistance and substitution-resistance from cloud servers.

Compared with similar scheme, it can be concluded that our scheme has higher efficiency

and comprehensive function. In the future, we will focus on the following two problems:

332 Copyright © 2019 Tech Science Press CMC, vol.58, no.2, pp.319-333, 2019

1) How to ensure the integrity of user data in situations where users may store data in

multiple CSPs to improve reliability.

2) Existing public certification schemes assume that users and CSP are fully trust to TPA,

in fact, users and CSP are likely to make collusion with TPA, how to resist collusion

attack.

Acknowledgement: This work is supported by the National Key R&D Program of China

(2016YFB0800402), partially supported by the National Natural Science Foundation of

China under Grant No. 61232004 and the Fundamental Research Funds for the Central

Universities (2016YXMS020).

References

Ateniese, G.; Burns, R.; Curtmola, R.; Herring, J.; Kissner, L. et al. (2007): Provable

data possession at untrusted stores. ACM Conference on Computer and Communications

Security, vol. 14, pp. 598-609.

Ateniese, G.; Pietro, R. D.; Mancini, L. V.; Tsudik, G. (2008): Scalable and efficient

provable data possession. Proceedings of the 4th International Conference on Security

and Privacy in Communication Networks, vol. 2008, pp. 1-10.

Cai, Q. Q. (2013): Design and Implementation of Cloud Data Integrity Audit System (Ph.

D. Thesis). Huazhong University of Science and Technology.

Dan, B.; Lynn, B.; Shacham, H. (2001): Short Signatures from the Weil Pairing.

Advances in Cryptology-ASIACRYPT 2001. Springer Berlin Heidelberg.

Dong, G. F.; Gao, F.; Shi, W. B.; Gong, P. (2014): An efficient certificateless blind

signature scheme without bilinear pairing. Anais Da Academia Brasileira De Ciências,

vol. 86, no. 2, pp. 1003-1011.

Erway, C.; Papamanthou, C.; Tamassia, R. (2009): Dynamic provable data possession.

ACM Conference on Computer and Communications Security, vol. 17, no. 4, pp. 213-222.

Jin, H.; Jiang, H.; Zhou, K. (2016): Dynamic and public auditing with fair arbitration

for cloud data. IEEE Transactions on Cloud Computing, vol. 13, no. 9, pp. 1-14.

Shen, J.; Shen, J.; Chen, X.; Huang, X.; Susilo, W. (2016): An efficient public

auditing protocol with novel dynamic structure for cloud data. IEEE Transactions on

Information Forensics & Security, vol. 12, no. 10, pp. 2402-2415.

Sookhak, M.; Yu, R.; Zomaya, A. (2018): Auditing big data storage in cloud computing

using divide and conquer tables. IEEE Transactions on Parallel & Distributed Systems,

vol. 29, no. 5, pp. 999-1012.

Tian, H.; Chen, Y.; Chang, C. C.; Jiang, H.; Huang, Y. et al. (2015): Dynamic-hash-

table based public auditing for secure cloud storage. IEEE Transactions on Services

Computing, vol. 10, pp. 701-714.

Velte, T.; Velte, A.; Elsenpeter, R. (2009): Cloud Computing, A Practical Approach.

McGraw-Hill, Inc.

Wang, H. (2015): Identity-based distributed provable data possession in multicloud

WiBPA: An Efficient Data Integrity Auditing Scheme 333

storage. IEEE Transactions on Services Computing, vol. 8, no. 2, pp. 328-340.

Wang, C.; Chow, S. S. M.; Wang, Q.; Ren, K.; Lou, W. (2013): Privacy-preserving

public auditing for secure cloud storage. IEEE Transactions on Computers, vol. 62, no. 2,

pp. 362-375.

Wang, Q.; Wang, C.; Ren, K. (2011): Enabling public auditability and data dynamics

for storage security in cloud computing. IEEE Transactions on Parallel and Distributed

Systems, vol. 22, no. 5, pp. 847-859.

Wu, Y. D. (2016): Research of Data Integrity Verification and Security for Cloud

Storage (Ph. D. Thesis). Changan University.

Yang, K.; Jia, X. H. (2013): An efficient and secure dynamic auditing protocol for data

storage in cloud computing. IEEE Transactions on Parallel and Distributed Systems, vol.

24, no. 9, pp. 1717-1726.

Zhao, Y.; Ren, H. Q.; Xiong, H.; Chen, Y. (2015): Cloud data integrity verification

scheme without bilinear pairing. Netinfo Security, vol. 7, pp. 7-12.

Zhu, Y.; Ahn, G. J.; Hu, H.; Yau, S. S.; An, H. G. et al. (2013): Dynamic audit

services for outsourced storages in clouds. IEEE Transactions on Services Computing,

vol. 6, no. 2, pp. 227-238.

