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Abstract: The security of cloud data has always been a concern. Cloud server provider 

may maliciously tamper or delete user’s data for their own benefit, so data integrity audit 

is of great significance to verify whether data is modified or not. Based on the general 

three-party audit architecture, a dynamic auditing scheme without bilinear pairings is 

proposed in this paper. It utilizes exponential operation instead of bilinear mapping to 

verify the validity of evidence. By establishing the mapping relation between logic index 

and tag index of data block with index transformation table, our scheme can easily 

support dynamic data operation. By hiding random numbers in the integrity evidence, our 

scheme can protect users’ privacy information. Detailed security analysis shows that our 

scheme is secure against attacks such as forgery, replaying and substitution. Further 

experiments demonstrate that our scheme has lower computational overhead. 
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1 Introduction 

Cloud storage services are getting more and more attention for such advantages as on-

demand, flexible, and dynamic, many individuals and enterprises begin to outsource their 

growing data to the cloud service providers (CSPs). Meanwhile, they fear that the data 

will be tampered or leaked by unreliable service providers. Therefore, it is essential to 

provide a correct and efficient method to verify the integrity of remote cloud data.  

Provable data possession (PDP) model [Ateniese, Burns, Curtmola, et al. (2007)] is the 

first scheme that allows a client to prove the integrity of data stored at untrusted servers 

without retrieving it. The model generates probabilistic proofs of possession by sampling 

random sets of blocks from the server, which drastically reduces I/O costs. However, it 

adopts sequential index number of data blocks to calculate the tag of homomorphism 

certification, once a block of data is updated all tags are to be recalculated, thus resulting 

in significant computational overhead. For this reason, PDP can only be used for static 

data files. Subsequently, Ateniese et al. [Ateniese, Pietro, Mancini et al. (2008)] construct 

an efficient and provably secure PDP (SPDP) technique based on symmetric key 
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cryptography, which can support such dynamic operations as block modification, deletion 

and appending.  Based on SPDP, Erway et al. [Erway, Papamanthou and Tamassia 

(2009)] present a definitional framework and efficient constructions for dynamic PDP 

(DPDP), which supports full provable updates to stored data, including block insertion, 

deletion, modification and other update operations. But, a large amount of auxiliary 

information is required in each verification process, which results in a large 

computational and communication cost.  

Based on the idea of PDP, many auditing schemes have emerged in recent years. Wang et 

al. [Wang, Wang, Ren, et al. (2011)] enable public auditability and data dynamics for 

storage security by manipulating the classic Merkle Hash Tree construction for block tag 

authentication. Zhu et al. [Zhu, Ahn, Hu et al. (2013)] construct a dynamic audit service 

based on the fragment structure, random sampling, and index-hash table, however, the 

update operation is inefficient, especially insertion and deletion operations. Yang et al. 

[Yang and Jia (2013)] propose an efficient privacy-preserving auditing protocol, which 

support the data dynamic operations and batch auditing. Shen et al. [Shen, Shen, Chen et 

al. (2016)] propose an efficient public auditing protocol with global and sampling 

blockless verification as well as batch auditing, in which a novel dynamic structure is 

introduced, which consists of a doubly linked info table and a location array. Sookhak et 

al. [Sookhak, Yu and Zomaya (2018)] present a remote data checking method on the 

basis of algebraic properties of the outsourced files for big data storage, which uses a new 

data structure called Divide and Conquer Table to proficiently support dynamic data for 

normal file sizes. 

To prevent server from disclosing user’s privacy, Wang et al. [Wang, Chow, Wang et al. 

(2013)] utilize the public key based homomorphic authenticator and random mask 

technique to achieve a   privacy-preserving public auditing for secure cloud storage. Cai 

[Cai (2013)] constructs a comprehensive auditing system for cloud data integrity auditing 

(CDIAS), which supports public and batch auditing as well as privacy protection. Tian et 

al. [Tian, Chen, Chang et al. (2015)] propose a dynamic hash table (DHT) based public 

auditing for secure cloud storage, which also supports privacy preservation and batch 

auditing by employing the aggregate BLS signature technique.  

Most of the above schemes exploit bilinear pairing to verify the integrity of remote data. 

It is well known that the computational cost of bilinear mapping is huge, it will lead to 

the delay of verification. In order to reduce the high computational cost, Dong et al. 

[Dong, Gao, Shi et al. (2014)] propose a certificateless blind signature scheme without 

bilinear pairing, which solves the problem of certificate management and key escrow 

existed in the identity-based public key cryptography, thereby greatly reduces the cost of 

computation and storage. Zhao et al. [Zhao, Ren, Xiong et al. (2015)] present an integrity 

verification scheme for cloud data without bilinear pairing. This scheme needs a 

believable TPA to audit cloud data. Wu [Wu (2017)] proposes an improved public 

auditing protocol without bilinear pairing and analyzes some security properties, such as 

correctness, unforgeability, and privacy protection. This scheme simplifies the auditing 

algorithm and has lower communication and computational overhead. However, dynamic 

data auditing is not mentioned in this paper which only discusses static data auditing. As 

we all know that cloud services are not only limited to archive or backup data, dynamic 
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data operations are very frequent in cloud environment, thereby it is necessary for any 

scheme to support dynamic data verification in a cloud environment. 

In this paper, we present an efficient integrity auditing scheme for cloud data without 

bilinear pairing. We adopt exponent operation instead of bilinear pairings to verify the 

validity of evidence during the process of verifying. By establishing the mapping relation 

between logic index and tag index of data block with index transformation table, our 

scheme can easily support dynamic data operations, include insertion, deletion, 

modification and all other update operations. By hiding random numbers in the integrity 

evidence, our scheme can protect users’ privacy information. Due to not using complex 

bilinear operation, the efficiency of auditing is greatly improved. Detailed security 

analysis shows that our scheme is secure, it can resist such attacks as forgery, replaying 

and substitution. 

Paper organization is as follows: Section 2 introduces some backgrounds about audit 

model and mathematical knowledge. Section 3 describes our scheme in detail. Section 4 

gives the detail security analysis. The analysis of performance and function is shown in 

Section 5. The conclusion is drawn in Section 6. 

2. Preliminaries 

2.1 System model 

In this paper, we adopt the common three-party auditing model for data verification 

(shown in Fig. 1) [Jin, Jiang and Zhou (2016)], which contains the following three parts: 

user, cloud server provide (CSP), and the third-party auditor (TPA). A user can be a data 

owner as well as a data user. As an owner, he first divides file into some data blocks and 

labeled them before outsourcing them to the remote server, at the same time, access 

control policy for data is specified and attached to the metadata. CSP is often supposed 

semi-trusted in cloud environment, it may remove or tamper user’s data for his own 

interest. TPA acted as a moderator trusted by both CSP and user. When TPA receives 

user’s requests to audit, it will send a challenge to the server, the server then returns 

integrity evidences to the TPA, TPA then verifies the integrity of data based on the 

information of evidence and request using bilinear mapping or other algorithms. 

Meanwhile, TPA can arbitrate in case of any conflict between CSP and user. 

2.2 Bilinear map 

A bilinear map is a map e: G1×G2→GT, where G1 and G2 are two Gap Diffie-Hellman 

groups of prime order p, GT is another multiplicative cyclic groups with the same order. 

A bilinear map has the following three properties [Dan, Lynn and Shacham (2001)]:  

⚫ Bilinear: For all g1, g2∈G and , pa b Z , 
1 2 1 2( , ) ( , )a b abe g g e g g= . 

⚫ Non-degenerate: e(g1, g2)≠1, where g1, g2 are generators of G1 and G2.  

⚫ Computable: For all 1 2 1,g g G , 
1 2( , )e g g  can be computed in an efficient algorithm.  

The bilinear pairs can be constructed by the Weil on the elliptic curve or the Tate pair. 

file:///J:/2018/youdao/Dict/7.2.0.0703/resultui/dict/
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Figure 1: System model for auditing 

2.3 Aggregate signature 

The aggregated signature [Velte, Velte and Elsenpeter (2009)] is a digital signature, 

which can compress multiple single signatures into one signature and achieve batching. 

For example, a linear combination value is calculated based on the content of multiple 

data blocks when it needs to generate integrity evidence, further, an aggregate tag is 

calculated according to the corresponding tag of each data block. Compared with 

individual verification for each signature, aggregated signature significantly reduces the 

computational cost and communication overhead of transmitting integrity evidence. 

3 The proposed auditing scheme 

3.1 Design goals 

An integrity verification scheme in cloud needs to meet the following objectives: 

⚫ Storage correctness: only the user's data is complete, TPA will pass the check of 

data integrity. 

⚫ Privacy protection: TPA cannot obtain the real content of user’s data during the 

process of verifying.  

⚫ Dynamic auditing: permitting user to add, delete or modify his data during auditing.  

⚫ Security: at least against forgery attack, replay attack and replace attack from CSP.  

⚫ High efficiency: as low computational overhead as possible to improve its actual 

application services. 

3.2 The proposed auditing scheme 

The process of auditing consists of three stages: installation, verification and dynamic 

update, as well as eight steps. 

Before we begin to describe the detail steps, it is necessary to first define some 

parameters. Suppose G is the multiplicative cyclic group with prime order p, g is the 
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generation element of G, H(▪) means the mapping function from (0,1)* to Zp, namely, H(▪) 
is the hash function of G →Zp.  

Step1: ( ) ( , )KeyGen pk sk →  

Key generation algorithm, used by the user to obtain his public key and private key. A 

user randomly chooses an element x (x∈Zp) to compute modxy g p= , then the user’s 

private key sk is generated by ( )sk x=  and the public key pk is gotten by ( , )pk g y= . 

Step2: ( , , )TagGen sk pk F →  

Tag generation algorithm, used to split file into some data blocks and generate a tag for 

each block. Suppose the user file F is divided into n blocks, then F can be denoted as 

 1 2 3, , ,..., ( ,1 )n i pF m m m m m Z i n=    . The user randomly generates a file name for file F 

from Zp, then to calculate the tag σ for each data block as follow: 

( )( )i i
x

m H W

i g G +
=  , 

 
1i i n


 

= , 

i i i iW Filename B V T=              (1) 

Where Bi is the index of a data block, which represents the actual order of the data block 

mi in the whole collection F{mi}1≤i≤n, Bi is initially set to i. Vi is the current version 

number of a data block with an initial value of 1. Ti is the current timestamp which is 

used to calculate the authentication tag for a data block mi. 

Table 1: The initial index transformation table 

Index Bi Vi Ti 

1 1 1 t1 

2 2 1 t2 

… … … … 

i i 1 ti 

… … … … 

n n 1 tn 

Then,  ,F   is sent to the CSP, and file information such as filename, the number of data 

block n and Ti is sent to the TPA. After TPA receives the file information, it will generate 

an initial index transformation table (ITT) [Cai (2013)], the structure of ITT is shown in 

Tab. 1. 

Step3: ( , )ChalGen c pk chal→  

Challenge algorithm, used to generate challenge information when audit request is 

submitted to the CSP. TPA randomly generates c numbers from 1~n, the i-th random 

number is marked with si’ which represents the logical index number of data block to be 

challenged. Let  ' ' ' '

1 2, ,..., cI s s s= . Based on the ITT, TPA queries block index number si 

corresponding to each logical index number, and then forms a collection I, 
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 1 2, ,..., cI s s s= . For any i I , generating a random number vi ( i pv Z ) corresponding to 

si. Then, TPA sends the challenge information  ( , )i i I
chal i v


=  to the CSP. 

Step4: Pr ( , , , )oofGen chal F pk P →  

Evidence generation algorithm, used to generate the integrity proof. After CSP receives 

the challenge information, it generates a random number r (
pr Z ), and calculates the 

following parameters for verification: 

( )
r

r xk y g G= =  , 

'

i ii I
v m


 = , 

' ( ) modrh k p =  + ,                     (2) 

iv

ii I
G


 =   ,  

rT =  ,  
rk =               

Finally, CSP sends an evidence  , , ,P k T=    to TPA which will use evidence to verify 

whether the data stored on the server is intact or not. 

Step5:  Pr ( , , ) " "," "oofVerify pk chal P fail success→   

Evidence validation algorithm, used to verify the correctness of the integrity evidence 

sent by CSP. Specially, we adopt exponent operation instead of bilinear pairings to check 

the validity of evidence. According to the challenge information vi and evidence P, TPA 

can verify whether the exponent operation described in Eq. (3) is true or not: 
( )?

( )
i i

i I

H W v
h k T k 

+
 =              (3) 

If the equation is true, it can state that user’s data is correct, otherwise user’s data may be 

tempered.  

Step6: ( , , , ) ( , , , , , )old k k k k kGenUpdateData sp pk k cmd B B V T m→   

It is used to generate the update data and send request to deal with the operation. Here, k 

represents the logical position where data is updated, cmd is the type of dynamic data 

operation, including insertion, deletion and modification. We will use the modification 

operation as an example of how to conduct the data update. 

Suppose k th item is to be modified. The user first queries the index number Bk and old 

version number Vold of the k th item in ITT. Let us say mk is the new data block. Then, the 

tag, timestamp and version of this new block is recalculated, ( )( ) Gg
xWHmk =

+ k

k , Tk is current 

time, and Vk = Vold +1. After that, the index update request MTPA=(modify, k, Bk, Vk,Tk)  is 

sent to TPA and the data update request MCSP=(modify, Bold, Bk, mk, σk) is sent to CSP. 

Here, Bold=Bk for modification operation.  

Step7:  ( , , , , ) " "," "k k kTPAExeUpdate cmd k B V T fail success→  

This algorithm is used to update the content of ITT after TPA receives the index update 

request. The changed ITT for modification operation is shown in Tab. 2. If executed 

successfully, it will output “success”, otherwise, will output “fail”. 
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Step8:  ( , , , , ) " "," "old k k kCSPExeUpdate cmd B B m fail succcess →  

This algorithm is used to update user’s data stored at the server. For insertion operation, 

CSP will insert a new data block and its tag into the server. For deletion operation, CSP 

will delete the block and its tag from the server. For modification operation, CSP will 

replace the old block and its tag with the new content. If executed successfully, it will 

output “success”, otherwise, will output “fail”. 

It is important to note that a user needs to perform Step 1-Step 5 again after 

accomplishing Step 5-Step 8, and questions if the index number of updated block is 

included in index collection to ensure that CSP can honestly perform the update.  

Table 2: The new ITT after modification 

Index Bi Vi Ti 

1 1 1 t1 

2 2 1 t2 

… … … … 

i Bi Vk Tk 

… … … … 

n n 1 tn 

In addition, our scheme can also support batch auditing, the execution process for batch 

auditing is similar to that described above, so we will not repeat it.  

4 Security analysis 

In this section, we analyze the security of our scheme in detail, including audit 

correctness, privacy protection, unforgeability, replaying-resistance and substitution-

resistance attack. 

(1) Audit Correctness: in data audit mechanism, evidences generated by CSP can be 

verified for integrity only when the user’s data stored at the server is complete, namely, 

the Eq. (3) is satisfied. Otherwise it indicates that user’s personal data may be damaged. 

The proof process is as follows: 

( ) ( )
( )
( ) ( )

( ) ( )( )

( )
( )

( )
( )

( )
( )
( )

( )

( ) ( ) ( )rh k

          

          

i i i

i i i i i i i i

i I i I

i i i i i i

i I i I i I

xrh k r rh k m v H W vih k r

i I

m v H W vrh k rh k m v H W v

i I

m v H W v H W v

T k k g

k k k k

k k


 

 

  

+



+ +



+ + +

= =

 = =

  
= =



  

(2) Privacy Protection: TPA cannot obtain the real content of user’s data during the 

process of auditing according to the evidence {k, μ, T, π}. This can be proved from two 

aspects: 

On the one hand, according to the formula (2), if TPA wants to get μ’ from μ, it must 

know the value of r. However, r is randomly generated by the cloud server, TPA cannot 
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be able to get r from CSP. Meanwhile, it can be seen from formula (2) that solving r from 

k and y is a difficult problem because it belongs to the discrete logarithm. Therefore, TPA 

cannot infer the value of  μ’ from r. 

On the other hand, according to the formula (2), we can also obtain that: 

( )( )

( )
( )

( )

i

'

i I

   k

   

i i i i

i i i i

i i i i i I i I

i i

i I

r
xrv m v H W vr

i

i I i I

m v H W v
m v H W v

H W v

T g

k

k


 

 



+

 

+
+



+

 
= = = 

 

 
= =


=

 

  

Similarly, solvingμ’ from T and k is also a discrete logarithm problem. Therefore, TPA 

cannot acquire user’s secret information from evidence P it holds. 

(3) Unforgeability: CSP cannot use existing data to forge data blocks and tags to trick 

TPA into integrity verification. 

Assuming that user’s data mk is changed to mk'. If CSP wants to pass integrity verification 

by TPA, it must forge the corresponding tag σk', ( )( )xWHm kk +=
'

g'

k . However, CSP does not 

have the knowledge of user’s private key x and the audit information {Bk, Vk, Tk} which 

are stored in TPA. According to ( )( )xWHm kk += gk , solving ( )kk WHm +  by g, y and σk is a discrete 

logarithm problem, thereby ( )kWH  is unavailable to CSP. In the end, CSP cannot construct 

the tag σk' for mk' to fool TPA. 

(4) Anti-replaying attack: when a user performs a block update operation, CSP cannot 

use expired versions of blocks and tags to deceive TPA. That is to say, the malicious CSP 

may not update the version of a block and its tag after receiving the user's update request. 

After that, the integrity verification is executed, CSP continues to use the old version to 

generate evidence in order to be audited by TPA. According to the Eq. (3), we give the 

following proof process: 

( )
( ) ( )

           kπ ,

'μ ∑
≠∈ kiIi

kkii vWHvWH
kh T

++

=  
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Then, we can obtain: 

( ) ( )'k kWHWH =               (4) 

From the anti-collision characteristics of hash function, we can know that the formula (4) 

is not valid. So, CSP cannot pass the verification by using old version information. 

(5) Anti-substitution attack: CSP cannot use valid data blocks and tags to replace the 

corrupted or lost data blocks and tags being questioned. 

Suppose CSP replaces the mh and σh questioned with legal mk and
k to generate evidences 

so as to fool the TPA, then the new evidence is as follows: 

( ) ( ) pkhrvmvmkrh
hiIi

hkii mod
,

*'* 


++=+=   

r

hiIi

v

k

v

i

r
hiT 












== 

 ,

** 
              (5) 

From the Eq. (3), we can get:  

( )
( )

= 

+

Ii

ivWH
k kT

i
*

*h


                (6) 

Substituting (5) into (6), we can obtain: 
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That is say,  ( ) ( )hk WHWH =  

The same as the Eq. (4), ( ) ( )hk WHWH  . Therefore, CSP cannot replace the questioned 

data blocks and tags to pass the integrity verification. 
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5 Performance evaluation 

In this section, we measure the performance of our scheme and make a comparison with 

silimar method [Cai (2013)]. We developed a prototype on a Ubuntu 16.04 LTS system 

using C/C++ language. The system is equipped with a 4-Core Intel i5-6500 processor 

running at 3.20 GHz, 8 GB RAM and a 7200 RPM 1TB drive. Our implementation uses 

the PBC library at version 0.5.14, OpenSSL library at version 1.0.2n. We choose AES-

128 for block encryption and decryption, SHA-1 for hashing, RSA-1024 for verification.  

5.1 Function comparison 

Tab. 3 lists the functions of our scheme and some common schemes. From Tab. 3, we can 

see that our scheme can support public auditing, privacy protection and dynamic auditing. 

PDP [Ateniese, Burns, Curtmola, et al. (2007)] cannot support dynamic auditing and 

privacy protection, DPDP [Erway, Papamanthou and Tamassia (2009)] cannot support 

public auditing and privacy protection, MHT [Wang, Wang, Ren et al. (2011)] cannot 

supports privacy protection and Wu’s scheme [Wu (2017)] is not suitable for dynamic 

auditing. Although IHT-PA [Zhu, Ahn, Hu et al. (2013)], DHT-PA [Tian, Chen, Chang et 

al. (2015)] and CDIAS [Cai (2013)] all support three functions at the same time, they all 

adopt the operation of bilinear pairs which requires a lot of computational cost. 

Table 3: The function list for some audit schemes  

Audit Scheme Public Auditing Privacy Protection Dynamic Auditing 

PDP √ × × 

DPDP × × √ 

MHT √ × √ 

Wu’s Scheme √ √ × 

IHT-PA √ √ √ 

CDIAS √ √ √ 

DHT-PA √ √ √ 

Our Scheme √ √ √ 

Notice: sign ‘√’ means support this function，sign ‘×’ means not to support the function. 

5.2 Computational overhead 

The audit performance is mainly measured from the computational cost of three 

algorithms: TagGen, ProofGen and ProofVerify. Among them, bilinear operations require 

much more computing time than other operations. We display the computational 

overhead of CDIAS and our scheme (seen in Tab. 4).  

From Tab. 4 we can see that TagGen algorithm in this paper requires the computational 

cost of 2nE+nA, which is less than the computational cost of 2nE+nM required by 

CDIAS, but the computational cost of ProofGen algorithm is slightly greater than that of 

the CDIAS’s. However, ProofVerify algorithm of our scheme needs only twice 

exponential operations, while CDIAS’s uses twice bilinear pairings and (c+1) times 

exponential operations, obviously, the cost of our ProofVerify algorithm is significantly 

less than that of CDIAS’s. 
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Table 4:  Computational overhead for CDIAS and our scheme 

Algorithm CDIAS Our scheme 

TagGen 2nE+nM 2nE+nA 

ProofGen (c+1)E+(2c-1)M+cA (c+3)E+2cM+cA 

ProofVerify 2P+(c+1)E+(c+1)M 2E+(c+1)M+cA 

Total overhead 
2P+(2n+2c+2)E+(n+3c)

M+cA 

(2n+2c+5)E+(3c+1)M+

(n+2c)A 

Where, n refers to the amount of data blocks, c refers to the questioned number of data 

blocks, A refers to the addition in group G, M refers to the multiplication in group G, E 

refers to the exponential operation in group G, P refers to the bilinear pairs in group G. 

5.3 Time overhead 

We randomly selected 460 numbers of data blocks to take part in the audit challenge 

[Ateniese, Burns, Curtmola, et al. (2007)] and tested the time cost of verifying the 

integrity of a 1 GB file. The size of data blocks ranged from 1 KB to 1 MB, and the 

experimental results were taken from the average value of 20 trials. The results are shown 

in Fig. 2 and Fig. 3, including the time of generating tags and evidences, the time of 

verifying phase and the time of updating operations.  

               

         

Figure 2: Time overhead of generating tag and evidence, verifying phase 
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From Fig. 2(a) we can observe that the time taken for TagGen algorithm decreases 

exponentially with the increase of block size. This is because with the increase of block 

size, the number of data blocks decreases exponentially, and the number of tags 

calculated by TagGen algorithm also gets down exponentially. The time of our algorithm 

only needs about 50% of CDIAS’s. For example, for 1 GB file, when the file is split into 

many data blocks of 1 KB-size, CDIAS scheme takes 5299.79 s while our scheme takes 

2594.77 s, only 48.96% of the former. When the size of data block is 1MB, CDIAS 

scheme takes 6.38 s while our scheme takes 3.34 s, only 52.35% of the former. 

From Fig. 2(b) we can notice that when the size of block is less than or equal to 8 KB, the 

time taken for ProofGen algorithm decreases as the size of data block increases. When 

the size of block is greater than or equal to 8 KB, the time taken for ProofGen algorithm 

is stable for both of CDIAS and ours. Moreover, the time of our scheme is slightly larger 

than CDIAS’s.  

From Fig. 2(c) we can see that with the increase of block size, the time taken for 

ProofVerify algorithm is stable for both schemes. This is because the ProofVerify 

algorithm is regardless of the block size. Very clearly, the time of our scheme is far less 

than CDIAS’s, only 0.17% of the latter. 

 From Fig. 2(d) we can observe that with the increase of block size, the total amount of 

time decreases exponentially, and our scheme only needs about 50% of the total 

computing time of CDIAS’s. For example, for 1 GB file, when the file is split into many 

data blocks of 1KB-size, CDIAS scheme takes 5307.63 s, while our scheme takes 

2600.63 s, only 49% of the former. When the size of data block is 1MB, CDIAS scheme 

takes 8.77 s, while our scheme takes 4.02 s, only 45.84% of the former. 
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Figure 3: Time overhead of dynamic update algorithms 

From Fig. 3(a) we can see that when the size of block is less than 8 KB, the time it takes 

to insert 100 data blocks into a file is decreasing with the increase of block size. When 

the block size is greater than or equal to 8 KB, the consumed time is stable for both 

schemes. Moreover, the consumed time of our scheme is less than CDIAS’s. For example, 

for 1 GB file, when the file is split into many data blocks of 2 KB-size, CDIAS takes 

1.18s while our scheme takes 0.82 s, which is 30.51% less than the former. When the size 

of data block is 1MB, CDIAS takes 0.58 s, while our scheme takes 0.27 s, which is 

53.45% less than the former. 

From Fig. 3(b) we can observe that when the size of block is less than 64 KB, the time it 

takes to delete 100 data blocks from a file is decreasing with the increase of block size. 

When the block size is greater than or equal to 64 KB, the consumed time is stable for 

both schemes, and they are very close in time. For example, for 1 GB file, when the size 

of data block is 1 KB, CDIAS takes 1.1 s while our scheme takes 1.07 s. When the size of 

data block is 1 MB, CDIAS takes 17.3 ms while our scheme takes 21 ms. 

From Fig. 3(c) we can notice that when the size of data block is less than 8 KB, the time 

it takes to modify 100 data blocks in a file is decreasing with the increase of block size. 

When the size of data block is greater than or equal to 8 KB, the consumed time is stable 

for both schemes. Moreover, the consumed time of our scheme is less than CDIAS’s. For 

example, for 1 GB file, when the file is split into many 1 KB-size blocks, CDIAS takes 

1.59 s while our scheme takes 1.45 s, which is 8.81% less than the former. When the size 

of data block is 1 MB, CDIAS takes 0.51 s, while our scheme takes 0.28 s, which is 

45.1% less than the former. 

6 Conclusion 

In this paper, we proposed an efficient secure data auditing scheme without bilinear 

parings based on three-party architecture. It can support dynamic batch auditing as well 

as privacy protection. We prove its security in detail, including audit correctness, 

unforgeability, replaying-resistance and substitution-resistance from cloud servers. 

Compared with similar scheme, it can be concluded that our scheme has higher efficiency 

and comprehensive function. In the future, we will focus on the following two problems: 
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1) How to ensure the integrity of user data in situations where users may store data in 

multiple CSPs to improve reliability.  

2) Existing public certification schemes assume that users and CSP are fully trust to TPA, 

in fact, users and CSP are likely to make collusion with TPA, how to resist collusion 

attack. 
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