
Copyright © 2019 Tech Science Press CMC, vol.58, no.2, pp.567-583, 2019

CMC. doi:10.32604/cmc.2019.02795 www.techscience.com/cmc

Optimization Algorithm for Reduction the Size of Dixon Resultant

Matrix: A Case Study on Mechanical Application

Shang Zhang1, *, Seyedmehdi Karimi2, Shahaboddin Shamshirband3, 4, *

and Amir Mosavi5, 6

Abstract: In the process of eliminating variables in a symbolic polynomial system, the

extraneous factors are referred to the unwanted parameters of resulting polynomial. This

paper aims at reducing the number of these factors via optimizing the size of Dixon

matrix. An optimal configuration of Dixon matrix would lead to the enhancement of the

process of computing the resultant which uses for solving polynomial systems. To do so,

an optimization algorithm along with a number of new polynomials is introduced to

replace the polynomials and implement a complexity analysis. Moreover, the monomial

multipliers are optimally positioned to multiply each of the polynomials. Furthermore,

through practical implementation and considering standard and mechanical examples the

efficiency of the method is evaluated.

Keywords: Dixon resultant matrix, symbolic polynomial system, elimination theory,

optimization algorithm, computational complexity.

1 Introduction

Along with the advancement of computers, during the past few decades, the search for

advanced solutions to polynomials has received renewed attention. This has been due to

their importance in theoretical, as well as the practical interests including robotics [Sun

(2012)], mechanics [Wang and Lian (2005)], kinematics [Zhao, Wang and Wang (2017)],

computational number theory [Kovács and Paláncz (2012)], solid modeling [Tran (1998)],

quantifier elimination and geometric reasoning problems [Qin, Yang, Feng et al. (2015)].

Without explicitly solving for the roots, the difficulties in solving a polynomial is to

identify the coefficients conditions where the system meets a set of solutions [Li (2009)].

These conditions are called resultant. One possible theory, which is commonly used to

1 College of Computer and Information Technology, China Three Gorges University, Yichang, China.

2 Department of Mathematics, Jouybar branch, Islamic Azad University, Jouybar, Iran.

3 Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi

Minh City, Vietnam.

4 Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
5 Department Institute of Structural Mechanics, Bauhaus University of Weimar, Germany.

6 Institute of Automation, Kando Kalman Faculty of Electrical Engineering, Obuda University, 1431

Budapest, Hungary.

* Corresponding Authors: Shang Zhang. Email: wetoo@ctgu.edu.cn;

Shahaboddin Shamshirband. Email: shahaboddin.shamshirband@tdtu.edu.vn.

mailto:wetoo@ctgu.edu.cn

568 Copyright © 2019 Tech Science Press CMC, vol.58, no.2, pp.567-583, 2019

find the resultant and solve a polynomial system, is elimination of the variables [Yang,

Zeng and Zhang (2012)]. There are two major class of formulation for eliminating the

variables of a polynomial system in matrix based methods to compute the resultants.

They are called Sylvester resultant [Zhao and Fu (2010)] and Bezout-Cayley resultant

[Palancz (2013); Bézout (2010)]. Both of these methods aim at eliminating n variables

from n + 1 polynomials via developing resultant matrices. The algorithm that adapted for

this article is inspired by Dixon method which is of Bezout-Cayley type.

The Dixon method is considered as an efficient method for identifying a polynomial. This

polynomial would also include the resultant of a polynomial system which in some

literature is known as projection operator [Chtcherba (2003)]. Dixon method produces a

dense resultant matrix which is considered as an arrangement of the non-existence of a

great number of zeroes in rows and columns of the matrix. In addition, the Dixon method

produces a small resultant matrix in a lower dimension. The Dixon method’s uniformity

which is being implied as computing the projection operator without considering a

particular set of variables is considerable properties. Besides, the method is automatic,

and, therefore it eliminates the entire variables at once [Chtcherba (2003); Kapur, Saxena

and Yang (1994)].

The majority of multivariate resultant methods, perform some multiplications for

resultant [Faug’ere, Gianni, Lazard et al. (1992) ; Feng, Qin, Zhang et al. (2011)]. these

multiplications do not deliver any insight into the solutions of the polynomial system

[Saxena (1997)]. In fact, they only perform the multiplicative product of the resultant

which include a number of extraneous factors. Nonetheless, these extraneous factors are

not desirable resulting problems in a number of critical cases [Chtcherba (2003); Saxena

(1997)]. Worth mentioning that Dixon method highly suffers from this drawback

[Chtcherba and Kapur (2003); Chtcherba and Kapur (2004)].

However, in the polynomial systems, a Dixon matrix well deals with the conversion of

the exponents of the polynomials [Lewis (2010)]. With this property, the Dixon method

is highly capable of controlling the size of the matrix. Via utilizing this property, this

research aims at optimizing the size of Dixon matrix aiming at the simplification of the

solving process and gaining accuracy. In this regards, there has been similar cases

reported in the literature on optimizing the Dixon resultant formulation e.g., [Chtcherba

and Kapur (2004); Saxena (1997)].

This paper presents a method to finding optimally designed Dixon matrix for identifying

smaller degree of the projection operator using dependency of the size of Dixon matrix to

the supports of polynomials in the polynomial system, and dependency of total degree of

the projection operator to the size of Dixon matrix. Having investigated these relations,

some virtual polynomials have been presented to replace with original polynomials in the

system to suppress the effects of supports of polynomials on each other. Applying this

replacement, the support hulls of polynomials can be moved solely to find the best

position to make smallest Dixon matrix. These virtual polynomials are generated by

considering the widest space needed for support hulls to be moved freely without going

to negative coordinate. In order to find the best position of support hulls related to each

other, monomial multipliers are created to multiply to the polynomials of the system

while original polynomial system is considered in the condition that the support of

Optimization Algorithm for Reduction the Size of Dixon Resultant Matrix 569

monomial multipliers are located in the origin. Starting from the origin and choosing all

neighboring points as support of monomial multiplier for each polynomial to find smaller

Dixon matrix, the steps of optimization algorithm have been created. This procedure should

be done iteratively for finding a monomial multiplier set to multiply to polynomials in the

system for optimizing of Dixon matrix. This will lead to less extraneous factors in the

decomposed form. Further, a number of sample problems are solved using the proposed

method and the results are compared with the conventional methods.

The paper is organized as follow. In Section 2, we describe the method of Dixon

construction by providing the details and further evidences. In addition, an algorithm for

optimizing the size of Dixon matrix has been implemented and tested in some examples,

along with the complexity analysis of the optimization algorithm in this section the

advantages of presented algorithm is deriving the conditions under which the support

hulls of polynomials in a polynomial system do not effect on each other during the

optimizing. The comparisons made with relevant optimizing heuristic of Chtcherba show

the superiority of the new optimization algorithms to present the results with regards to

accuracy. Finally, in the Section 3, a discussion and conclusion remarks are given

2 Methodology

In this section the optimization algorithm of the Dixon matrix and the related formulation

procedure is illustrated via flowchart with some related information and theorems.

2.1 Degree of the projection operator and the size of the Dixon matrix

Consider a multivariate polynomial f ∈ ℤ[c, x] . The set 𝒜 ⊂ ℕd , is a finite set of

exponents referred as the support of the f . Further, the polynomial system ℱ =
{f0, f1, … , fd} , with support 𝒜 = 〈𝒜0, 𝒜1,⋯ ,𝒜d〉 is named unmixed if 𝒜0 = 𝒜1 =
 ⋯ = 𝒜d, and is called mixed otherwise. In Dixon formulation, the computed projection

operator will not be able to efficiently adapt to mixed systems, and therefore, for mixed

systems, the Dixon resultant formulation is almost guaranteed to produce extraneous

factors. This is a direct consequence of the exact Dixon conditions theorem, presented as

follow from Saxena [Saxena (1997)]:

Theorem 1. In generic d-degree cases, the determinant of the Dixon matrix, is exactly its

resultant (i.e., does not have any extraneous factors).

While, generally, most of the polynomial systems are non-generic or not d-degree.

Considering simplex form of the Dixon polynomial [Chtcherba and Kapur (2004)], every

entry in the Dixon matrix Θ is obviously a polynomial of the coefficients of system ℱ

which its degree in the coefficients of any single polynomial is at most 1. Then the

projection operator which is computed, is utmost of total degree |∆𝒜| in the coefficients

of any single polynomial. Note that |∆𝒜| is the number of columns of Dixon matrix. A

similar illustration can be presented for |∆�̅�| (the number of rows of Dixon matrix) when

the transpose of Dixon matrix be considered. Then,

max{|∆𝒜|, |∆�̅�|}, (1)

is an upper bound for the degree of projection operator created using Dixon formulation

in the coefficients of any single polynomial, where 𝒜 and �̅� are the supports of xs and x̅s

570 Copyright © 2019 Tech Science Press CMC, vol.58, no.2, pp.567-583, 2019

(new variables presented in the Dixon method instruction) in the Dixon polynomial,

respectively. Then minimizing the size of Dixon matrix leads to minimizing the degree of

projection operator and decreasing the number of extraneous factors which exist next to

the resultant.

2.2 Supports converting and its effects on Dixon matrix

The Dixon matrix size is not invariant with respect to the relative position of the support

hulls (the smallest convex set of points in a support in an affine space) of polynomials

[Lewis (2010)]. In other word, the Dixon resultant matrix for a polynomial ℱ with the

support set of 𝒜 + c = 〈𝒜0 + c0, … ,𝒜d + cd〉 is not the same as a system with support

set 𝒜 = 〈𝒜0,𝒜1, … ,𝒜d〉, where c = 〈c0, c1, … , cd〉 and ci = (ci,1, … , ci,d) ∈ ℕ
d for i =

0, 1, … , d. We call 𝒜i + ci the converted support of fi and 𝒜 + c = 〈𝒜0 + c0, … ,𝒜d +
cd〉 is converted support set of polynomial system ℱ. However, as theorem 2 [Chtcherba

(2003)], if a conversion is performed uniformly on all supports of polynomials in a

system, the size of the Dixon matrix will not change.

Theorem 2. As the support for a generic polynomial system, consider 𝒜 + c, where ci =
cj = t = (t1, t2, … , td) for all i, j = 0, 1, . . . , d, then

∆𝒜+c= (t1, 2t2, … , dtd) + ∆𝒜 ,

 ∆̅𝒜+c= (dt1, (d − 1)t2, … , td) + ∆̅𝒜 ,

where “+” is the Minkowski sum [Chtcherba (2003)], and ∆ , ∆̅ are the support of Dixon

polynomial for the original variables and new variables respectivly.

Consider a polynomial system ℱ . Assuming fi = hf′i for some polynomials h and f′i ,
clearly;

ResV(f0, … , fi−1,, fi, fi+1, … , fd) = ResV(f0, … , fi−1,, h, fi+1, … , fd) (2)

 × ResV(f0, … , fi−1,, f′i, fi+1, … , fd).

where ResV is resultant of ℱ over verity V . In particular, if h be considered as a

monomial, the points where satisfy the part ResV(f0, … , fi−1,, h, fi+1, … , fd) are on the

axis and the degree of this resultant is not more than max
i=1,…,d

(dmaxi − 1) where dmaxi is

maximum total degree of fi. If we do not consider the axis, we have;

ResV(f0, … , fi−1,, fi, fi+1 , … , fd) = ResV(f0, … , fi−1,, f′i, fi+1, … , fd). (3)

Since, we consider 1 as a variable for d + 1, polynomials in d variables and the resultant

computed using Dixon formulation has property (3), a polynomial in a system could be

multiplied by a monomial, without changing the resultant [Chtcherba and Kapur (2004)].

A direct consequence from above illustration and considering simplex form of Dixon

formulation [Chtcherba and Kapur (2004)], is the sensitivity of the size of matrix to

exponent of multipliers to original the polynomial system.

2.3 Optimizing method for Dixon matrix

Considering the point that, |∆𝒜| ≠ |∆𝒜+t| and/or |∆̅𝒜| ≠ |∆̅𝒜+t| unless ci = cj for

all i, j = 0,1, … , d from Sections 2.1, 2.2 and [Saxena (1997)], it can be said: the size of

https://en.wikipedia.org/wiki/Convex_set
https://en.wikipedia.org/wiki/Affine_space

Optimization Algorithm for Reduction the Size of Dixon Resultant Matrix 571

Dixon matrix depends on the position of support hulls of polynomials in relation with

each other. Besides, there is an direct dependency between the area overlapped by convex

hulls of polynomials and the size of Dixon matrix [Saxena (1997)].

Taking advantage of above properties, this paper intend present an optimization

algorithm with conversion set c = 〈c0, c1, … , cd〉 where ci = (ci,1, … , ci,d) ∈ ℕ
d for i =

0,1,… , d which is considered for converting the support of a polynomial system 𝒜 =
〈𝒜0, 𝒜1, … ,𝒜d〉 , to make |∆𝒜| and |∆̅𝒜| smaller. The converted support set for

polynomial system appears as 𝒜 + c = 〈𝒜0 + c0, … ,𝒜d + cd〉. In the other words, if

the polynomial system is considered in ℤ[c][x1…xd], the algorithm multiplies fi to the

monomial x1
ci,1 …xd

ci,d to shift the polynomials support hull to find smaller Dixon

matrix. The minimizing method is sequential and has initial guess for c0 at the beginning.

The choice of c0 should be so that other ci could be chosen without getting in to

negative coordinates. Then, search for c1 is beginning from origin and will be continued

by a trial and error method. The turn of c2 is after c1 when the support of multiplier for

f1 is fixed then, c3 and so on. The process continues for finding all cis.

Not considering the effect of support hulls on each other is a disadvantage of the previous

minimizing method [Chtcherba (2003)]. In fact, sometimes the effects of the support

hulls on each other lead the algorithm to the wrong direction of optimization. In the other

word, giving high relative distance between convex hulls of supports, the algorithm for

optimizing fails and ends up with incorrect results as is noted in the end of solved

examples in this section.

To suppress the effect of support hulls on each other, during of running the new

algorithm presented in this paper, some polynomials should be replaced by some new

polynomials, which are called virtual polynomials. The rules of selecting and using of

virtual polynomials are presented in details in this section.

In the presented optimization approach, moving of support hulls of polynomials in

system of coordinates is divided in four phases as;

Phase 1: Choosing c0,

Phase 2: Shifting the support hull of f0 by multiplying xc0 to f0,

Phase 3: Presenting the virtual polynomials,

Phase 4: Converting of other supports.

Phase 1, 2: The space needed for executing the optimization algorithm is presented in

dimension of S, where

S = (s1, s2, … , sd),

si = c0,i + max
γ∈𝒜0

γi + max
γ∈𝒜1∪…∪𝒜d−1

γi for i = 1,2,… , d. (4)

Here, γ = (γ1, … , γd) is a d -dimensional integer vector. Considering the following

polynomial system for optimization,

{

f0(x1,⋯ , xd) = 0,

f1(x1,⋯ , xd) = 0,
⋮
fd(x1,⋯ , xd) = 0,

572 Copyright © 2019 Tech Science Press CMC, vol.58, no.2, pp.567-583, 2019

The choice of S is highly dependent to choice of c0 that choosing bigger c0,i make the si
bigger and vice versa. Whereas the complexity of the algorithm is also depending on the

choice of c0, following definition for c0 is presented for controlling the time complexity,

however one can choose bigger elements for c0 . Then c0 = 〈c0,1, c0,2, … , c0,d〉 is

introduced as;

c0,i = max
γ∈⋃ 𝒜jj=1,2,…,d

(γi) for i = 1,2,… , d. (5)

The above choice for c0 can be explained by the fact that it can guarantee to move other

support hulls to stay in positive coordinate when they want to approach 𝒜0 + c0. So the

c0,i should be chosen as above equation or bigger.

Phase 3: By searching for cp as the best monomial multiplier for fp, p = 1,… , d − 1 the

virtual polynomials are supposed as vp+1, vp+2, … , vd in total degrees of s, s + 1,… , s +

(d − p − 1) respectively, where s = ∑ si
d
i=1 . These virtual polynomials are considered

without any symbolic coefficient and each one should have multifaceted vertical corner

support hull. For example, in two-dimensional form (x = (x1, x2)), if S = (s1, s2), the

following polynomial is considered as virtual polynomial to replace by f2 when the

algorithm intended to find optimal c1.

v2 = 1 + x1
s1 + x2

s2 + x1
s1x2

s2 ,

Having investigated the above relations, some virtual polynomials have been found to

replace the original polynomials to suppress the effects of support of polynomials.

Applying this replacement, the support hulls of polynomials can be moved solely to find

the best position to make smallest Dixon matrix. These virtual polynomials are generated

by considering the widest space needed for support hulls to be moved freely without

going to negative coordinate and having effects on each other.

Phase 4: For the purpose of finding the optimal positions of support hulls related to each

other, monomial multipliers are created to multiply to the polynomials of the system

while original polynomial system is considered in the condition that the support of

monomial multipliers are located in the origin. Starting from the origin and choosing all

neighboring points as support of monomial multiplier for each polynomial to find smaller

Dixon matrix, the steps of optimization algorithm have been created. This procedure

should be done iteratively for finding a monomial multiplier set to multiply to

polynomials in the system for optimizing of Dixon formulation.

The algorithm of the method for optimizing the size of matrix is presented by flowchart

shown in following Figure.

Optimization Algorithm for Reduction the Size of Dixon Resultant Matrix 573

 Compute 𝑐0 so that 𝑐1,… , 𝑐𝑑 can be found without
getting into negative coordinates.

 Set 𝑁 (the support set of multipliers) = {𝑐0} , let 𝑖 = 1

 Consider all 𝑐𝑗 where 𝑗 ≥ 1 at the origin and

compute the size of Dixon Matrix.

 Compute 𝑆 and introduce virtual polynomials

to replace with (𝑖 + 1)𝑡ℎ ,…, 𝑑𝑡ℎ polynomials.

 Select a neighbouring point 𝑝 of 𝑐𝑖 and compute the
size of Dixon matrix by the resulting support 𝒜 + 𝑐′
of polynomial system, where 𝑐′ = 〈𝑐0, 𝑐1,… , 𝑐𝑖−1 ,𝑝〉.

All

neighbouring points are

 tested?

No

 Consider the smallest size of Dixon matrix with the
set 𝒜 + 𝑐′ . Set 𝑐𝑖 = 𝑝 and 𝑁 = 𝑁 ∪ {𝑐𝑖}.

Yes

 Let 𝑖 = 𝑖 + 1. Replace the 𝑖𝑡ℎ polynomial

in its original place

 𝑁 is the set of optimal monomial multipliers.

Yes

If 𝑖 = 𝑑?

No

Figure 1: Flowchart for optimizing of Dixon matrix

Here, the complexity of optimization direction for the system of polynomials ℱ =
{f0, f1, … , fd} is obtained via recognition of search area in addition to the cost of receiving

better Dixon matrix in the reiterative phases. The reiterative method phases are illustrated

in Fig. 1 in form of flowchart. If we consider k as k = max
i=1,…,d

(si + (d − i − 1)) with

regard to the point that for each ci we can have maximum kd shifting, we should account

Dixon matrix size in maximum kd times to arrive the best size, where we are selecting

Phase 4

Phase 1, 2

Phase 3

574 Copyright © 2019 Tech Science Press CMC, vol.58, no.2, pp.567-583, 2019

the neighboring point p (See Fig. 1, phase 4). Complexity of finding each Dixon matrix

has been bounded by O(d2nd) where n = |⋃ 𝒜i
d
i=1 | [Qin, Wu, Tang et al. (2017);

Grenet, Koiran and Portier (2013)]. Therefore, in each phase of selecting all neighboring

points and considering the smallest size of the Dixon matrix, we have a complexity

as O(kd3nd). For getting general answer, the optimizing direction is repeated d times as

each complexity are considered for each polynomial (see the step of checking “if i = d?”

in Fig. 1). Then, we have total complexity of presented algorithm as O(kd4nd).

Example 1 Considering the bellow mixed polynomial system from Chtcherba

[Chtcherba (2003)]:

ℱ = {

f0 = a01 + a02x
2 + a03x

3y6 + a04x
7y6 ,

f1 = a11x + a12y
7 + a13x

2y9 + a14x
3y9,

f2 = a21 + a22x
2y5 + a23x

8y4,

once x, y are considered as variables and aij are parameters. The size of Dixon matrix

is 99 × 90 which 99 and 90 regard to the number of rows and the number of columns of

the matrix respectively. The polynomials support is

𝒜0 = {(0,0), (2,0), (3,6), (7,6)}, 𝒜1 = {(1, 0), (0, 7), (2, 9), (3, 9)}

𝒜2 = {(0, 0), (2, 5), (8, 4)},

with support hulls

Figure 2: Support hulls of system, Ex. 1

To avoid negative exponents, we need to shift initial support 𝒜0. Using the formulation

(5) we have c0 = (8,9). According to the presented algorithm, we need to replace f2 with

virtual polynomial v2 for finding a monomial multiplier for f1with support c1 . Then

using relation (4),

S = (s1, s2) = (8 + 7 + 3,9 + 6 + 9) = (18,24),

and the following polynomial system is achieved.

{

f0 = a01x
8y9 + a02x

10y9 + a03x
11y15 + a04x

15y15 ,

f1 = a11x + a12y
7 + a13x

2y9 + a14x
3y9,

v2 = 1 + x18 + y24 + x18y24.

The size of Dixon matrix is 765 × 675 . The above polynomials system can be

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

𝒜0 𝒜1

𝒜2

x

y
y y

x x

Optimization Algorithm for Reduction the Size of Dixon Resultant Matrix 575

considered in the case of c1 = (0,0). The best monomial for multiplying to f1 will be

found by trial and error method as x9y6. Now when c0 and c1 are fixed, the f2 can return

to its original place and we have following system which is ready to start process for

finding c2;

{

f0 = a01x
8y9 + a02x

10y9 + a03x
11y15 + a04x

15y15 ,

f1 = a11x
10y6 + a12x

9y13 + a13x
11y15 + a14x

12y15,

f2 = a21 + a22x
2y5 + a23x

8y4.

The size of Dixon matrix is 201 × 216. Using same method which is done for c1, the

best monomial multiplier for f2 will be found as x8y10and Dixon matrix of size 82 × 82.

The optimal resulted polynomial system is

{

f0 = a01x
8y9 + a02x

10y9 + a03x
11y15 + a04x

15y15 ,

f1 = a11x
10y6 + a12x

9y13 + a13x
11y15 + a14x

12y15,

f2 = a21x
8y10 + a22x

10y15 + a23x
16y14,

with optimized supports hulls which are shown in Fig. 3.

Figure 3: Support hulls of optimized system, Ex. 1

The steps of trial and error method for finding optimal c1 and c2 are summarized in

following tables.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

0 2 4 6 8 10 12 14 16 18 20 22 24 26
x

y

576 Copyright © 2019 Tech Science Press CMC, vol.58, no.2, pp.567-583, 2019

Table 1: Steps for finding 𝑐1 and 𝑐2 using presented method with 𝑐0 = (8,9), Ex

No 𝑐2 |Θ| No 𝑐2 |Θ|

1. (1,0) 192 × 202 11. 5,6) 114 × 121

2. (2,0) 183 × 188 12. (6,6) 110 × 112

3. (2,1) 168 × 181 13. (6,7) 104 × 107

4. (2,2) 154 × 174 14. (7,7) 99 × 99

5. (2,3) 147 × 167 15. (7,8) 92 × 92

6. (2,4) 140 × 160 16. (7,9) 86 × 87

7. (2,5) 133 × 154 17. (7,10) 83 × 85

8. (2,6) 126 × 148 18. (8,10) 82 × 82

9. (3,6) 122 × 139 19. (9,10) 89 × 89

10. (4,6) 118 × 130 20. (8,11) 86 × 85

Comparing the size of Dixon matrix after executing the algorithm and before executing in

beginning of Example 1, the advantage of new presented optimizing method is evident.

Optimizing the size of Dixon matrix using Chtcherba’s presented heuristic [Chtcherba

(2003)] shows a big failure where the size of Dixon matrix never becomes smaller

than 369 × 306.

Example 2 Here the strophoid is considered. The strophoid is a curve widely studied by

mathematicians in the past two century. It can be written in a parametric form described

as follow.

x = a sin(t) , y = a tan(t)(1 + sin(t)),

To find an implicit equation for the strophoid using resultant, we have to restate the

equations in terms of polynomials instead of trigonometric functions, as follows.

Letting S = sin t , C = cos t , T = tan t, the trigonometric equations of the strophoid can

be written as

{

f0 = C

2 + S2 − 1 = 0
f1 = CT − S = 0
f2 = x − aS = 0

f3 = y − aT(1 + S) = 0

Using the variable ordered set 〈C, S, T〉 the support sets are,

𝒜0 = {(2,0,0), (0,2,0), (0,0,0)}, 𝒜1 = {(1,0,1), (0,1,0)},

No 𝑐1 |Θ| No 𝑐1 |Θ|

1. (1,0) 733 × 666 9. (8,1) 491 × 575

2. (2,0) 700 × 657 10. (8,2) 480 × 546

3. (3,0) 667 × 648 11. (8,3) 469 × 517

4. (4,0) 634 × 639 12. (8,4) 458 × 488

5. (5,0) 601 × 630 13. (8,5) 447 × 459

6. (6,0) 658 × 621 14. (8,6) 436 × 430

7. (7,0) 535 × 612 15. (9,6) 436 × 430

8. (8,0) 502 × 603 16. (10,6) 436 × 430

Optimization Algorithm for Reduction the Size of Dixon Resultant Matrix 577

𝒜2 = {(0,0,0), (0,1,0)}, 𝒜3 = {(0,0,0), (0,0,1), (0,1,1)},

and the support hulls of polynomials is shown in Fig. 4 in system of 3-dimensions

coordinate.

Figure 4: Support hulls of polynomials, Ex 1.2.2

For starting to search for finding best c1 we introduce c0 as (1,1,1) using formula (5) and

replace f2, f3 with virtual polynomial v2, v3 respectively. Then finding the vector S is

required.

S = (s1, s2, s3) = (1 + 2 + 1,1 + 2 + 1,1 + 0 + 1) = (4,4,2),

Therefore, we can continue the optimizing method which is dedicated to find c1 using

following polynomial system.

{

f0 = C

3ST + CS3T− CST,
f1 = CT − S,

v2 = 1 + C
4 + S4 + T2 + C4T2 + S4T2 + C4S4 + C4S4T2,

v3 = 1 + C
5 + S5 + T3 + C5T3 + S5T3 + C5S5 + C5S5T3.

The process is summarized in the Tab. 2.

Table 2: Steps for finding 𝑐1 using presented method with assumption 𝑐0 = (1,1,1), Ex 2

 No 𝑐1 |Θ|
1. (1,0,0) 267 × 248
2. (1,1,0) 247 × 232
3. (2,1,0) 247 × 232
4. (1,2,0) 247 × 232
5. (1,1,1) 247 × 232

𝒜0

𝒜1

𝒜2

𝒜3

578 Copyright © 2019 Tech Science Press CMC, vol.58, no.2, pp.567-583, 2019

The resulting polynomial system which is used for finding best c2 is

{

f0 = C

3ST + CS3T − CST,

f1 = C
2ST − CS2,

f2 = x − aS,

v3 = 1 + C
5 + S5 + T3 + C5T3 + S5T3 + C5S5 + C5S5T3,

Results of algorithm with optimization are presented in the Tab. 3.

Table 3: Steps for finding 𝑐2 by new presented method, Ex 2

The process of finding best c3, which can be seen in the Tab. 4, is derived from the

original polynomial system with polynomials f0, f1 and f2 multiplied by CST , CS and

CST respectively.

{

 f0 = C

3ST + CS3T − CST,

f1 = C
2ST − CS2,

f2 = xCST − aCS
2T ,

f3 = y − aT(1 + S).

Table 4: Steps for finding 𝑐3 by new presented method, Ex 2

The set of support hulls of optimized polynomial system is shown in Fig. 5.

 No 𝑐2 |Θ|

1. (0,1,0) 58 × 70
2. (1,1,0) 41 × 60
3. (1,1,1) 39 × 44
4. (2,1,1) 47 × 45
5. (1,2,1) 45 × 46
6. (1,1,2) 56 × 83

 No 𝑐3 |Θ|

1. (1,0,0) 7 × 10
2. (1,1,0) 5 × 6
3. (1,2,0) 5 × 5
4. (2,2,0) 7 × 9
5. (1,3,0) 7 × 9
5. (1,2,1) 10 × 7
6. (0,2,0) 6 × 10

Optimization Algorithm for Reduction the Size of Dixon Resultant Matrix 579

Figure 5: Support hulls of optimized polynomial system, Ex. 2

Comparing the presented result presented in Tab. 4 to the result of finding Dixon matrix

[Chtcherba (2003)], which tells the Size of Dixon matrix is 6 × 5, we could minimize the

size of Dixon matrix.

Example 3 The Stewart platform problem is a standard benchmark elimination problem

of mechanical motion of certain types of robots. The quaternion formulation we present

here is by Emiris [Emiris (1994)]. It contains 7 polynomials in 7 variables. Let x =
[x0, x1, x2, x3] and q = [1, q1, q2, q3] be two unknown quaternions, to be determined.

Let q∗ = [1,−q1, −q2, −q3]. Let ai and bi for i = 2,… ,6 be known quaternions and let

αi for 𝑖 = 1,… ,6 be six predetermined scalars. The 7 polynomials are:

f0 = x
Tx − α1q

Tq

fi = bi
T(xq) − ai

T(qx) − (qbiq
∗)Tai − αiq

Tq i = 1,… ,5,

f6 = x
Tq∗

Out of the 7 variables x0,x1,x2 ,x3,q1,q2, q3 any six are to be eliminated to compute the

resultant as a polynomial in the seventh. Saxena [Saxena (1997)] successfully computed

the Dixon matrix of the Stewart problem by eliminating 6 variables x0,x1,x2,x3,q2,q3.

The size of his Dixon matrix is 56 × 56. To optimize the Saxena’s resulted matrix, using

our presented method, we should compute the c0 according vector

variable (x0, x1, x2, x3, q2, q3), to avoid negative coordinate. Using formula (5), the c0

is (2,2,2,2,2,2) . Then using formula (4), S = (6,6,6,6,6,6) which helps us to find

appropriate virtual polynomials v2 , …, v6 as stated by details in algorithm formulation.

Now we can start to fine optimal c1 to present the best monomial multiplier for f1. Due

to long process of finding best direction of optimizing for 6 considered variables, the

𝒜0 + 𝑐0

𝒜1 + 𝑐1

𝒜2 + 𝑐2

𝒜3 + 𝑐3

580 Copyright © 2019 Tech Science Press CMC, vol.58, no.2, pp.567-583, 2019

process which is presented in Tab. 5 is summarized.

Table 5: Steps for finding 𝑐1 using presented method with assumption 𝑐0 = (2,2,2,2,2,2),

Ex 3

Then the best monomial multiplier for f1 is x0
2x1

2x3q3
2 which stand on best c1

presented step number 42 in Tab. 5. Then the polynomial system can be prepared for

doing the process of finding best c2 by replacing v2 with f2. The same trial and error

method is used for finding best c2. It is found after 36 steps as (2,2,1,1,0,1) and the Dixon

matrix size, at the beginning of the process, was 335 × 335 while at the end of

optimizing process it was 286 × 286 . Likewise, the other supports of monomial

multipliers which are known as c3 , c4 , c5 and c6 , are (2,2, 1,1,0,2), (2,1,0,2,1,1),

(2,1,1,2,1,2) and (2,2,0,1,0,1) respectively, as it explained by details in [karimi (2012)].

Then, in optimized form, the polynomials fi , 𝑖 = 0,… ,6 , should be multiplied by

monomials x0
2x1

2x2
2x3

2q2
2q3

2 , x0
2x1

2x3q3
2 , x0

2x1
2x2x3q3 , x0

2x1
2x2x3q3

2 ,

x0
2x1x3

2q2q3 , x0
2x1x2x3

2q2q3
2 and x0

2x1
2x3q3 respectively and the Dixon matrix

size of optimized polynomial system is 48 × 48. Comparing the size of Dixon matrix

according to Saxena's achieved results (as mentioned at beginning of this example), the

advantage of new presented optimizing method is evident.

3 Discussion and conclusion

Though considering the simplex form of the Dixon polynomial, the maximum number of

rows and columns of the Dixon matrix was presented as an upper bound of the projection

operator in the coefficients of any single polynomial. In addition, since we were working

on the affine space, each polynomial in a system could be multiplied by a monomial,

without changing the resultant. Moreover, another useful property of the Dixon matrix

construction which has been revealed was the sensitivity of the size of Dixon matrix to

support hull set of the given polynomial system. Therefore, multiplying some monomials

to the polynomials, which were in the original system, changed the size of the Dixon

No 𝑐1 |Θ|

1,…, 5. (1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0), (0,0,0,0,1,0), (0,0,0,0,0,1) Bigger than 1176 × 1176

6. (0,0,0,1,0,0) 1176 × 1176
7,…,11 (0,1,0,1,0,0), (0,0,11,0,0), (0,0,0,2,0,0), (0,0,0,1,1,0), (0,0,0,1,0,1) Bigger than 1065 × 1065

12. (1,0,0,1,0,0) 1065 × 1065
13,…,17 (2,0,0,1,0,0), (1,0,11,0,0), (1,0,0,2,0,0), (1,0,0,1,1,0), (1,0,0,1,0,1) Bigger than 1020 × 1020

18. (1,1,0,1,0,0) 1020 × 1020
19,…,23 (1,2,0,1,0,0), (1,1,11,0,0), (1,1,0,2,0,0), (1,1,0,1,1,0), (1,1,0,1,0,1) Bigger than 1015 × 1015

24. (2,1,0,1,0,0) 1015 × 1015
25,…,29 (3,1,0,1,0,0), (2,1,11,0,0), (2,1,0,2,0,0), (2,1,0,1,1,0), (2,1,0,1,0,1) Bigger than 997 × 997

30. (2,2,0,1,0,0) 997 × 997
31,…,35 (3,2,0,1,0,0), (2,3,01,0,0), (2,2,1,1,0,0), (2,2,0,2,0,0), (2,2,0,1,1,0) Bigger than 986 × 986

36. (2,2,0,1,0,1) 986 × 986
37,…,41 (3,2,0,1,0,1), (2,3,01,0,1), (2,2,1,1,0,1), (2,2,0,2,0,1), (2,2,0,1,1,1) Bigger than 980 × 980

42. (2,2,0,1,0,2) 980 × 980
42,…,48 (3,2,0,1,0,2), (2,3,01,0,2), (2,2,1,1,0,2), (2,2,0,2,0,2), (2,2,0,1,1,2),

(2,2,0,1,0,3)
Bigger than 980 × 980

Optimization Algorithm for Reduction the Size of Dixon Resultant Matrix 581

matrix yet had no effects on the resultant. It only changed the total degree of the

projection operator which the resultant was a part. As long as the Dixon matrix had this

property, the size of the Dixon matrix was able to be optimized by properly selecting the

multipliers for polynomials in the system. Using this property, this paper sought to

optimize the size of the Dixon matrix for the purpose of enhancing the efficiency of the

solving process and identifying better results. Via considering the properties of Dixon

formulation, it was concluded that, the size of Dixon matrix depends on the position of

support hulls of the polynomials in relation with each other.

Furthermore, in order to suppress the effects of supports hulls of polynomials on each other,

some virtual polynomials had been introduced to replace the original polynomials in the

system. Applying this replacement, the support hulls of polynomials could be moved solely

to find the best position to make smallest Dixon matrix. These virtual polynomials were

generated by considering the biggest space needed for support hulls to be moved freely

without going to negative coordinate. For the purpose to identify the optimal position of

support hulls related to each other, monomial multipliers were created to multiply to the

polynomials of the system while original polynomial system was considered on provided

that the support of monomial multipliers were located in the origin.

The complexity analyses was performed for the corresponding algorithm namely the

minimization method of the resultant matrix for the system of polynomials ℱ =
{f0, f1, … , fd} considered by recognition of search area along with the time cost of

receiving better Dixon matrix in every single phase.

For verifying the results by implementing the presented algorithm for optimizing the

Dixon matrix for general polynomial systems, the algorithm was implemented and its

applicability was demonstrated in example 1 (2 dimensions), example 2 (3 dimensions)

and example 3 (6 dimensions). The results of the method for minimizing the size of

Dixon resultant matrix were presented in tables that reveal the advantages and the

practicality of the new method. Even if we had the optimal position of support hulls at the

outset, the algorithm worked properly.

References

Bezout, E. (2010): Theorie generale des equations algebriques.

http://books. google. com. tw/books.

Chtcherba, A. (2003): A New Sylvester-Type Resultant Method Based on the Dixon-

Bezout Formulation (Ph.D. Thesis). State University of New Mexico.

Chtcherba, A.; Kapur, D. (2003): Exact resultants for corner-cut unmixed multivariate

polynomial systems using the Dixon formulation. Journal of Symbolic Computation, vol.

36, pp. 289-315.

Chtcherba, A. D.; Kapur, D. (2004): Support hull: relating the cayley-dixon resultant

constructions to the support of a polynomial system. ISSAC’04 Proceedings of the 2004

International Symposium on Symbolic and Algebraic Computation, pp. 95-102.

Dixon, A. L. (1908): The eliminant of three quantics in two independent variables.

London Mathematical Society, vol. 6, pp. 468-478.

http://books/

582 Copyright © 2019 Tech Science Press CMC, vol.58, no.2, pp.567-583, 2019

Dixon, A. L. (1909): The eliminate of three quantics in two independent variables.

Proceedings of The London Mathematical Society, vol. s2-7, no. 1, pp. 49-69.

Emiris, I. (1994): Sparse Elimination and Applications in Kinematics(Ph.D. Thesis).

University of Calif.

Faug’ere, J. C.; Gianni, P.; Lazard, D.; Mora, T. (1992): Efficient computation of

zero-dimensional grobner bases by change of ordering. Journal of Symbolic Computation,

vol. 16, pp. 329-344.

Feng, Y.; Qin, X.; Zhang, J.; Yuan, X. (2011): Obtaining exact interpolation

multivariate polynomial by approximation. Journal of Systems Science and Complexity,

vol. 24, pp. 803-815.

Grenet, B.; Koiran, P.; Portier, N. (2013): On the complexity of the multivariate

resultant. Journal of Complexity, vol. 29, pp. 142-157.

Kapur, D.; Saxena, T.; Yang, L. (1994): Algebraic and geometric reasoning using the

Dixon resultants. ACM ISSAC, vol. 94, pp. 99-107.

Karimi, S. M. (2012): New Algorithms for Optimizing the Sizes of Dixon and Dixon

Dialytic Matrices(Ph.D. Thesis). University Technology Malaysia.

Kovács, L.; Paláncz, B. (2012): Solving robust glucose-insulin control by dixon

resultant computations. 14th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing, pp. 53-61.

Lewis, R. H. (2010): Comparing acceleration techniques for the Dixon and Macaulay

resultants. Mathematics and Computers in Simulation, vol. 80, pp. 1146-1152.

Li, Y. (2009): An effective hybrid algorithm for computing symbolic determinants.

Applied Mathematics and Computation, vol. 215, pp. 2495-2501.

Palancz, B. (2013): Application of Dixon resultant to satellite trajectory control by pole

placement. Journal of Symbolic Computation, vol. 50, pp. 79-99.

Palancz, B.; Zaletnyik, P.; Awange, J. L.; Grafarend, E. W. (2008): Dixon resultant’s

solution of systems of geodetic polynomial equations. Journal of Geodesy, vol. 82, pp.

505-511.

Qin, X.; Wu, D.; Tang, L.; Ji, Z. (2017): Complexity of constructing Dixon resultant

matrix. International Journal of Computer Mathematics, vol. 94, pp. 2074-2088.

Qin, X.; Yang, L.; Feng, Y.; Bachmann, B.; Fritzson, P. (2015): Index reduction of

differential algebraic equations by differential algebraic elimination.

https://arxiv.org/abs/1504.04977.

Saxena, T. (1997): Efficient Variable Elimination Using Resultants(Ph.D. Thesis). State

University of New York.

Sun, W. K. (2012): Solving 3-6 parallel robots by dixon resultant. Applied Mechanics

and Materials, vol. 235, pp. 158-163.

Tran, Q. N. (1998): Extended Dixon’s resultant and its applications. In: Wang, D., ed.

Automated Deduction in Geometry. Berlin, Heidelberg. Springer Berlin Heidelberg, pp.

37-57.

https://arxiv.org/abs/1504.04977

Optimization Algorithm for Reduction the Size of Dixon Resultant Matrix 583

Wang, W.; Lian, X. (2005): Computations of multi-resultant with mechanization.

Applied Mathematics and Computation, vol. 170, pp. 237-257.

Yang, L.; Zeng, Z.; Zhang, W. (2012): Differential elimination with Dixon resultants.

Applied Mathematics and Computation, vol. 218, pp. 10679-10690.

Zhao, S.; Fu, H. (2010): Multivariate Sylvester resultant and extraneous factors. Scientia

Sinica Mathematica, vol. 40, pp. 649-660.

Zhao, Z.; Wang, T.; Wang, D. (2017): Inverse kinematic analysis of the general 6R

serial manipulators based on unit dual quaternion and Dixon resultant. Chinese

Automation Congress, pp. 2646-2650.

