

Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.287-306, 2019

CMC. doi:10.32604/cmc.2019.03736 www.techscience.com/cmc

A Co-Verification Interface Design for High-Assurance CPS

Yu Zhang1, 2, *, Mengxing Huang1, 2, *, Hao Wang3, Wenlong Feng1, 2, Jieren Cheng1, 2

and Hui Zhou1, 2

Abstract: Cyber-Physical Systems (CPS) tightly integrate cyber and physical

components and transcend traditional control systems and embedded system. Such

systems are often mission-critical; therefore, they must be high-assurance. High-

assurance CPS require co-verification which takes a comprehensive view of the whole

system to verify the correctness of a cyber and physical components together. Lack of

strict multiple semantic definition for interaction between the two domains has been

considered as an obstacle to the CPS co-verification. A Cyber/Physical interface model

for hierarchical a verification of CPS is proposed. First, we studied the interaction

mechanism between computation and physical processes. We further classify the

interaction mechanism into two levels: logic interaction level and physical interaction

level. We define different types of interface model according to combinatorial

relationships of the A/D (Analog to Digital) and D/A (Digital to Analog) conversion

periodical instants. This interface model has formal semantics, and is efficient for

simulation and formal verification. The experiment results show that our approach has

major potential in verifying system level properties of complex CPS, therefore improving

the high-assurance of CPS.

Keywords: CPS, interface, co-verification, co-simulation, high-assurance.

1 Introduction

Cyber-Physical Systems (CPS) tightly integrates cyber and physical components, thereby

creating opportunities for more direct integration of the physical world into the cyber

world [Lee (2010)]. CPS has always been focused on integration of cyber and physical

components. CPS is often mission-critical and usually subject to stringent safety and

reliability requirements. CPS applications are many, including avionics, personalized

health-care, intelligent transportation, smart grid and robotics as representative examples

1 State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou,

570228, China.

2 College of Information Science and Technology, Hainan University, Haikou, 570228, China.

3 Big Data Lab, Department of ICT and Natural Sciences, Norwegian University of Science and Technology,

Postboks 1517, N-6025 Aalesund, Norway.

* Co-Corresponding Author: Mengxing Huang. Email: huangmx09@163.com;

Yu Zhang. Email: yuzhang2015@hainu.edu.cn.

mailto:huangmx09@163.com

288 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.287-306, 2019

where embedded cyber components tightly interact with physical components via

sensor/actuator networks to ensure the delivery of the desired behaviors. Due to the

inherent and ever-growing complexities, uncertain delay and the requirement of precise

control, Cyber/Physical co-verification becomes more complicated.

Lack of strict multiple semantic definition for interaction between the two domains has

been considered as an obstacle to the CPS co-verification. In previous work Yu et al. [Yu,

Dong and Fei (2014); Yu, Fei, Dong et al. (2013)], we propose an automata-theoretic

approach and CPS virtualization to check the properties of the system. However, there is

no unifying formal model for representing the implementation semantic of

Cyber/Physical interface accurately. In this paper, we propose an approach for delimiting

the cyber/physical interface. First, we studied the interaction mechanism between

computation and physical processes. We further classify the interaction mechanism into

two levels: logic interaction level and physical interaction level. The interaction between

the physical system being controlled and the software implementation of control

algorithms forms the logic level interaction. Accordingly, the interaction, which

application software interact with physical system through execution platform, forms the

physical level interaction. Secondly, a Cyber/Physical interface model for hierarchical a

verification of CPS is proposed. We define different types of interface model according

to combinatorial relationships of the A/D (Analog to Digital) and D/A (Digital to Analog)

conversion periodical instants. We advocate the use of Cyber/Physical interface model

for bridging multiple semantic gap between cyber and physical components. This

interface model has formal semantics which cover all Cyber/Physical interaction

behaviors, and is efficient for simulation and formal verification. Finally, we have

realized this approach and applied it to a real-world control system.

The rest of this paper is organized as follows. Section 2 elaborates the interaction

mechanism in CPS. Section 3 presents the co-verification model. 4 evaluate our approach

by some case studies. Section 5 reviews the related research works. Section 6 summarizes

this paper and forecasts the direction of research work in the future.

2 Analysis of Co-Verification component in CPS

As illustrated in Fig. 1, there are three co-verification components in CPS: the cyber

component, physical component and cyber/physical interface component. Cyber

component monitors and controls the physical component, usually with feedback loops

through cyber/physical interface component where physical component affect Cyber

component and vice versa. The CPS cyber component refers to the abstract model of the

control application. The CPS physical component is an abstract model for describing the

physical system, can be further elaboration for the controlled object (plant) and the

physical environment model.

In implementation level, cyber/physical interface model is divided into two types: logical

interaction model and physical interaction model. Control software monitor and control

physical model through logical interaction model, which is a logical coupling; Physical

interaction model is based on the execution platform by A/D and D/A conversion to

monitor and control physical model, which is physical coupling. Therefore, the

interaction between the cyber model and physical model needs to describe the following

A Co-Verification Interface Design for High-Assurance CPS 289

aspects: 1) the relationship between physical model and cyber model, which includes

information flow and control flow; 2) sampling and control cycle time; 3) hardware

platform specifications, operating system configuration, etc.

Physical
Component

Cyber Component

Actuator

Sensor

Cyber/physical

Interface
Component

Perception and
control unit definition

hardware and OS

Software component specification,

Hardware and software binding mechanism

Physical
environmental
perception

and control

Physical application unit

specification, Physical entity

interface definition, Physical

entity interface characteristics

Computing
environment

interactive interface

Figure 1: The co-verification components

Therefore, the interaction between the cyber model and physical model is mainly

specified through the cyber/physical interface model. TableSat [Vess (2005)] is an

interactive platform from the University of Michigan, which emulates in 1-degree-of-

freedom the dynamics, sensing, and actuation capabilities required for satellite attitude

control. NASA uses the simulation experiment platform to simulate the satellite attitude

changes, sampling and control process. TableSat basic structure is shown in Fig. 2.

TableSat cbyer model include Controller module and communication module. Control

module is applied to implement the TableSat control algorithm, communication module

realized communications functions with experimental machine (to simulate the ground

satellite receiving station, ground station). TableSat execution platform, which including

Athena II SBC, Network Device, A/D conversion, D/A conversion and Debian operating

system. abstracted by interface model. (Light Sources and the Magnetic Fields is a

physical environment model, TableSat rotary movement is plant model. Interface model

realize the interaction between cyber model and the physical model. The control process

is: based on the angular velocity measured by a high-precision rate gyro, the controller

monitor and control physical model to stabilize the TableSat motion.

290 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.287-306, 2019

Sun Sensors Magnetometer Rate Gyro Motors

Light Sources
Magnetic

Field
TableSat Ratory

A/D D/A

Athena II SBC

Debian OS

Controller

Cyber

Physical

Network

Device

Communicator

Figure 2: The TableSat

3 Cyber/physical co-verification model

For heterogeneous modeling, the difficulty lies in the interaction between cyber model

and physical model. Cyber model is essentially a discrete event model, and its operational

semantics refers to the execution sequence with a time stamp; Physical model is

essentially a continuous time model, the model is formulated for differential equation.

For integration of discrete event model and continuous time model, its execution

sequence in the operational semantics is interaction protocols between the two

heterogeneous models. Therefore, how to effectively model the interaction strategies to

effectively deal with the discrete process and continuous process of different semantics is

an important problem. Following are the formal description of object model under the co-

verification framework.

As illustrated in Fig. 3, there are three types of primitive components in the co-

verification: cyber component, physical component and cyber/physical interface

component model. Cyber component includes control software and its running platform.

There are two types of interaction between cyber and physical worlds: one is

cyber/physical logical interaction between control software and plant, another is

cyber/physical physical interaction between hardware and plant. Cyber/physical interface

model bridges these two semantics gap between cyber and plant model by propagating

events across Cyber/physical boundaries. As shown in Fig. 3, according to the

hierarchical division on the logical interaction and physical interaction, the co-

verification is divided into two levels of feedback loop: one is logic layer feedback loop

which composed of control software and the physical system; another is the physical

layer of the feedback loop which composed of the control software, execution platform

and physical.

A Co-Verification Interface Design for High-Assurance CPS 291

Hardware

OS

Physical

Cyber/Physical
logical interactionControl Software

Platform

Cyber

Cyber/Physical
physical interaction

Cyber/Physical
co-verification

interface

Figure 3: Formal framework for co-verification

Under this framework, the software components of an embedded system execute on

generic hardware platform while the plant components are implemented as differential

equations. The software components and plant components interact through an embedded

OS that also schedules the execution of the software components. Software schedulers

are not explicitly represented in this model. Instead, the timing parameters of a control

task are integrated into the component model as assumptions of the components. The

cyber/physical interface components and the timing parameter constraints together

abstract the embedded OS by providing necessary information about timing parameters

of control tasks.

Below we characterize the dynamic of the main components in detail and discuss how

their integration is handled.

Definition1. A cyber model is a tuple (,)cyberc S TA= , where
cyberS is static structure of

cyber model, that is, source code. TA is a time automata, which is used to specified the

dynamic behavior of cyber model. The set of all cyber model in a CPS is denoted as

1 2{c ,c , c }nC =

Definition2. A physical model is a tuple (,)physicalp S HA= , where (u,x,y,dom)physicalS =

is static structure of physical model, U, x and y are input, state, and output of physical

model respectively , : (, ,)dom u x y DataType→ , HA is a hybrid automata, which is

used to specified the dynamic behavior of physical model. The set of all physical model

in a CPS is denoted as
1 2{ , , }mP p p p=

Definition3. A Cyber/Physical Interface Model is a tuple (Int,State,Event,Platform,Time) ,

where Int is the name of the interface model, State are the state variables provided

either by program or plant and accessible by both, Event is the access and modification to

the State , Platform is the specification of running platform hardware, Time is the

interaction time type of the cyber/physical interface. The set of all interface models in a

CPS is denoted as
1 2{ , , }kI i i i= .

292 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.287-306, 2019

 In the cyber/physical logical interaction, Platform could be set to null;

 In the cyber/physical physical interaction, Platform must specify the running

environment.

Interface events have two types: cyber or physical. When cyber updates the physical

interface states, a cyber interface event occurs, and vice versa. For example, when the

cyber writes a command to the physical, the cyber/physical interface will set the related

actuator accordingly. The cyber/physical interface model also describes the behaviors of

physical dynamic when it interacts asynchronously with cyber, i.e. when there is no D/A

conversion. The cyber/physical interface is defined by modeling it using hybrid automata.

There are a finite set of continuous variables whose values are described by plant models.

Consider the example of TableSat. The equations of TableSat motion are:

4 ()f TSI lK f  = − and (())fanK V f  = − + − , where I is the TableSat

moment of inertia,  is the TableSat angular velocity,  is the speed of the fan, l is the

fan moment arm, TSf
 is the TableSat friction and is a function of  , vK  is the fan

speed to force constant, V is the voltage applied to the fan,  is the fan time constant,

vK  is the fan voltage to change in speed constant, and fanf is the frictions in the fans

and are function of  .

A configuration of Platform specify the following the running environment configuration

information (hardware, operating system, A/D conversion and D/A conversion, etc.). As

shown in Fig. 4, configuration information includes operating system (Debian), hardware

(i386, isa devices), and A/D conversion and D/A transformation configuration (resolution

and transformation of time). In addition, A/D and D/A conversion need to describe two

things: 1) resolution; 2) conversion time.

A single iteration in system execution begins when the plant’s state is sensed and ends

after the plant evolves for one sampling period based on the controller’s actions on the

sensed data. Different execution conditions and different timing parameters of control

tasks require different time types of cyber/physical interfaces.

Definition 4. Time of cyber/physical interface is a tuple (T, t , t)k k

i o , where T is a period

of time, t k

i (0,1,2,...k =) and t k

o (0,1,2,...k =) refer to the A/D and D/A conversion

periodical instants, respectively. The cyber/physical interface states that the inputs to the

interface are sampled at t k

i (0,1,2,...k =) and the outputs are written at t k

o (0,1,2,...k =).

In the following, we formulate some popular design approaches as different types of

Cyber/Physical interface. Many variations of the following described Cyber/Physical

interfaces are possible. Our goal is to illustrate the concept of a Cyber/Physical interface

concretely. It is briefly discussed, for each Cyber/Physical interface, how it can be

derived and implemented.

A Co-Verification Interface Design for High-Assurance CPS 293

InterfacePlatform{

pI ={var={u(t d),y(t)}i i+ }

cI ={var={ . _ , _ nt }dscadscan sample values pos cou s }

/*cyber variable to physical input vectors mapping*/

(pos_counts, {u(t d)}i+)

/*physical output vectors to cyber variable mapping*/

(y(t)i
, dscadscan.sample_values)

/*A/D conversion*/

AD={Resolution, convert_time };

/*D/A conversion*/

DA={Resolution, convert_time};

/*OS version*/

 OS = {Debian}

/*CPU info*/

 CPU = {i386}

/*Communication */

 Commu = {isa}

}

Figure 4: A Platform configuration of interface model

 Zero Computation Time. A Zero Computation Time (ZCT) type of cyber/physical

interface is specified as a tuple (T, t , t)k k

i o , where t tk k

i o kt= = . The cyber/physical

interface states that, at every instants kt T k=  (0,1,2,...k =), the A/D conversion to

the controller are sampled, the outputs are computed and complete D/A conversion

(i.e. 0k k

s ioL L= = , where
sL denoted as the sampling latency and

ioL denoted as

input-output latency). A typical control design process naturally results in a ZCT

type and control engineers can use standard results

 Bounded DA Conversion Time. A Bounded DA Conversion Time (BDACT) type

of cyber/physical interface is specified by a tuple (T, t , t)k k

i o , where t tk

i k= and

k k

o iot L . The A/D conversion is sampled at times kt , the D/A conversion are written

at admissible variations of period. The BDACT type constitutes enforcing that the

outputs are written at any point within the interval of a period, instead of precisely at

same points.

 Fixed Computation Time type. A Fixed Execution Time (FET) type of

cyber/physical interface is specified as a tuple (T, t , t)k k

i o , where (t t) 0k k

i o−  is

positive number constant. This cyber/physical interface requires that the interval

294 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.287-306, 2019

from A/D conversion instant t i to D/A conversion instant t o is fixed.

 Variable Computation Time. A Variable Execution Time (VET) type of

Cyber/Physical interface is specified by a tuple (T, t , t)k k

i o , where tk k

i sL and

tk k

o ioL , and
k

sL and
k

ioL are bounds on admissible variations of period.

Definition 5. A CPS model is a tuple (,)cps cpsS S HA= , where

1 1 1

n k m

cps cyber interface physical

k k k

S S S S
= = =

= + + is static structure of CPS model,

1 2 1 2|| || || || || || ||cps n mHA TA TA TA HA HA HA= is a cartesian product of automata, The

set of all physical model in a CPS is denoted as 1 2{ , , }mP p p p= .

Definition 5. A state of CPS model is a tuple (, ,)cyber interface physicals s s s= , where cybers is

sa set of cyber model, physicals is sa set of physical model, interfaces is sa set of interface

model.

The transaction condition of CPS is denoted as r t=  , where  is a set of events,

t is a set of clock. r can be expressed either event trigger or time trigger. A trace

0 1 2 1, , , , , , ,k k ns s s s s s− can be denoted as,
0 2 1 11

0 1 2 1

k k nr r r rr

k k ns s s s s s
− − −

−= → → → → → .

From the view of the CPS system, the CPS model is consisted of a series of discrete

states, and each discrete state itself may be a continuous time model.

During the symbolic execution, we only explore finite traces. In this case, however, the

observed finite traces are not necessarily proper prefixes of the original program traces,

and our approach can produce false results, as the symbolic execution can continue past

unsatisfied loop termination conditions. We use the infinite extension semantics to

resolve ugly prefixes into presumably good or presumably bad. We characterize the truth

value in
4 of a LTL formula  with respect to a single finite trace s.

Lemma 1

1.  
B

S  =   iff , , ;s S s


      = 

2.   P

B
S    1iff , ;ns S ss


−

    =  

3.  
B

S  =⊥  iff , , ;s S s


       = 

4.   P

B
S  ⊥ 1iff , ;ns S ss


−

    =  

Proof. (1) Since  , ,s S s


      =  is equivalent to

 ,s S s


    =⊥ and  ,s S s


   =  , thus by Definition 2,

A Co-Verification Interface Design for High-Assurance CPS 295

 
B

s  =  ; therefore,    s S B B
s S  =  =  ;

(2) Since 1, ns S ss


−
    =   is equivalent to 1, ns S ss


−

   =   , thus

by Definition 2,  1 1, n nB
s S ss ss  


  − −

     =  =      , therefore,

   P P

s S B B
s S  =   =  ;

(3) Since  s


  =  is equivalent to  s


  =⊥ , by Definition 2,

   , ,
B

s S s s


        =⊥ =⊥ , therefore,  

B
S  =⊥ ;

(4) Similarly, since 1nss


−
  =   is equivalent to 1nss


−

  =⊥  , by

Definition 2,  1 1 1,n n nss uu u   

  
    − − −

     =⊥ =⊥        ,

therefore,   P

B
S  ⊥ .

6 Evaluation

6.1 Co-simulation

In this section, we improve on the simulation tool [Yu, Fei, Dong et al. (2013)] that we

previously built by improving its shortcomings to provide different time types of

cyber/physical interface for high-assurance CPS.

As shown in Fig. 5, a co-simulation environment is developed for TableSat. An X86

processor model is utilized to emulate the Athena II SBC in QEMU. The embedded

control program is written in C language the plant components are modeled

mathematically according to respective physical characteristics in Matlab/Simulink.

We conducted this experiment with different time configuration of Cyber/Physical

interface. We set the step input of expected angular velocity with 30 deg/sec.

Experimental datasets were used to compare accuracy of these time types of

Cyber/Physical interface. For the zero computation time of Cyber/Physical interface, we

set the fixed sampling interval T=0.4 s in the virtual TableSat. The experimental results

are shown in Fig. 6. For the fixed computation time of Cyber/Physical interface, we set

the fixed sampling interval T=0.4 s and the fixed interval from A/D conversion to D/A

conversion d=0.2 s. The experimental results are shown in Fig. 7. For the bounded DA

conversion time, we set the fixed sampling interval T=0.4 s and the input-output jitter

 t 0,0.1k

o  in the virtual TableSat. The experimental results are shown in Fig. 8. For the

variable computation time, we set the fixed sampling interval T=0.4 s the sampling jitter

 t 0,0.1k

i  and the input-output jitter  t 0,0.1k

o  . The experimental results are shown

in Fig. 9.

296 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.287-306, 2019

Figure 5: Co-simulation environment for TableSat

Figure 6: The experimental results of zero computation time

A Co-Verification Interface Design for High-Assurance CPS 297

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

10

15

20

25

30

35

40

Time (sec)

A
n

g
u

la
r

V
e

lo
c
it
y
 (

d
e

g
/s

e
c
)

Figure 7: The experimental results of fixed computation time

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

10

15

20

25

30

35

40

Time (sec)

A
n
g
u
la

r
V

e
lo

c
it
y
 (

d
e
g
/s

e
c
)

Figure 8: The experimental results of bounded DA conversion time

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

10

15

20

25

30

35

40

Time (sec)

A
n
g
u
la

r
V

e
lo

c
it
y
 (

d
e
g
/s

e
c
)

Figure 9: The experimental results of variable computation time

298 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.287-306, 2019

The experiment results show that the controller can meet the requirements of system

rapidity and control accuracy, satisfy the Bounded Input Bounded Output (BIBO)

stability. In order to quantify the divergence between the real environment and co-

simulation environment, we define the absolute divergence. This evaluation metric is the

difference between the actual velocity and virtual velocity in different time of

Cyber/Physical interface, i.e.
actual virtuale v v= − . Tab. 1 shows comparisons statistics of

absolute divergence over eight runs. Each column in the table shows statistics of a system

run with different time of Cyber/Physial interface. We recorded the angular velocity at

every 0.5 s. Through comparing three experiments, the results indicate divergence

between the real TableSat and its virtualization reduces sequentially, which shows the

type of Cyber/Physical interface could improve the accuracy. The average absolute

divergence over all time instant is relatively low and below 1.772 deg/sec. All the

maximum absolute divergence values occur in the first two 2 s.

Table 1: Summary of absolute divergence

Test Statistics

Interface Type

zero

computation

time

fixed

computation

time

bounded DA

conversion

time

variable

computation

time

Run 30

max 18.02 16.38 16.19 16.01

min -4.591 -2.702 -2.733 -2.609

mean 1.772 1.429 1.064 1.26

std 3.697 2.514 2.269 2.377

The experiment shows that our approach can simulate the real system with reasonable

accuracy. This can enable early development and verification of the synergy between

cyber and physical components

6.2 Co-verification

To evaluate the proposed approach, we have applied the approach to real-world control

systems. In all experiments, we want to check whether the system meet these constrains

or not with slight perturbations in the inputs and outputs to the system.

6.2.1 TableSat co-verification

We use the same embedded control program as in co-simulation. First, we constructed

the program (as shown in Fig. 10) and physical model based on the cyber/physical

interface. Then we formulated these constrains of the system with LTL, and conducted

bounded model checking. We chose the fixed computation time type of cyber/physical

interface in this experiment. We set the following initial set of parameters in the

experiment: the sampling interval is 2 s, the A/D conversion instant is 0.4 s, the D/A

conversion instant is 1.6 s and the target rotary velocity is 30 deg/s. the initial value of

angular velocity is used as a symbolic variable ([0, 40]). Tab. 2 summarized the results.

The verification result shows that the TableSat satisfies the last two LTL constrains. For

A Co-Verification Interface Design for High-Assurance CPS 299

the first LTL property, bounded model checker pointed out a simple bug of the cyber

component that: If the initial value of angular velocity is 39.960621 deg/s, then the rotary

velocity will reach 63.649414 deg/s at 2.324336 s, which led to above a threshold (60

deg/s) The running time largely depends on the backend SMT solver.

6.2.2 Thermostat co-verification

The second experiment is the thermostat system Thermostat is a typical CPS system

which utilize the temperature controller to ensure a particular space for expectations of

intelligent system. In thermostat system, the environment temperature is physical process

which is continuous change, and the controller is discrete cyber process: when the

controller detects the temperature is higher than the preset temperature, cut off the heater

power. When the test temperature is lower than the preset temperature, restart the heater

to heat environment. thermostat program (line number is: 45) is shown in Fig. 11. When

the temperature drops below to 19C, control software gives control instruction on it, so

as to open the heater; And when the system temperature is higher than 21C, on the

contrary, sends out control instructions off control applications, thus closing the heater.

Automatic temperature control system to ensure that the environment temperature is

between 18C and 22C.

Table 2: Design constraints for TableSat

No. LTL Constraint Result

1

G(.)RotaryVelocity VelocityUpBound : the controller never

accelerates the TableSat over the rotary velocity limit

VelocityUpBound.

⊥

2

G((. 1.5) (0))RotaryVelocity TargetVelocity Actuator.FanVoltage  →  :

When the rotary velocity below 1.5 times of its expected value, the

controller will set the fans to 12 volts.

p

3

G((.) ())RotaryVelocity TargetVelocity F Actuator.FanVoltage fullNeg → = :

after the Rotary velocity below its bound, controller will set the

motors to the full voltage.

p

300 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.287-306, 2019

01 int main(int argc, char **argv, char **envp){

02 ...

03 initial();

04 while(TSrunning){

05 ...

06 waitClock();

07 /* Read the raw sensor values */

08 if (!readSensors(&SensorReadings)) {

09 printf("A/D error in ReadSensors\n");

10 return;

11 }

12 calculateOutput();

13 /* Actually fire off the motors */

14 commandMotor(Actuator.FanVoltage);

15 updateState();

16 }

17 Return;

18 }

19 int ReadSensors(SensorReadings_t *sensors)

20 { ...

21 /*associate with read sensor event E_{state}*/

22 if((result = dscADScan(dscb, &dscadscan, samples))!= DE_NONE){

23 ...

24 }

25 }

26 void commandMotor(double *v)

27 { ...

28 /*associate with write command event E_{comm}*/

29 if((result = dscDAConvert(dscb, pos_channel, pos_counts)) != DE_NONE){

30 ...

31 }

32 }

Figure 10: TableSat program

A Co-Verification Interface Design for High-Assurance CPS 301

01 int main(int argc, char **argv, char **envp)

02 {

03 ...

04 while(1){

05 ...

06 sensor_data = AD_Conversion();

07 if(sensor_data < 19){

08 v_command = 1;

09 }

10 if(sensor_data > 21){

11 v_command = 0;

12 }

13 DA_Conversion(v_command);

14 ...

15 }

16 ...

17 }

Figure 11: Thermostat program

We chose a zero computation time of cyber/physical interface in this experiment. The

following initial set is used during this experiment: {T=0.3 s,
it =0 s,

ot =0 s}. In control

theory, control engineers always assume that A/D conversion periodically and D/A

conversion instantaneously at the beginning of each period.

Fig. 12 shows the cyber/physical interface model of thermostat by hybrid automata. The

model consists of 4 discrete locations corresponding to each node, 3-dimensional

continuous states  ,x x t= , and 6 discrete state transitions corresponding to the edges.

Let t represent the internal timer. There are 4 discrete locations in the interface model

(Turn On: On_AD and On_DA; Turn Off: Off_AD and Off_DA). Each discrete

transition is enabled by its guard condition. For example, a discrete transition d from

On_AD to Off_DA has a guard condition t>T∩On. When the controller sends command

(i.e. when Boolean variable, On or Off, is set to true), the motion of thermostat switches

to the corresponding law. An edge entering Off AD represents the initial constraint.

302 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.287-306, 2019

On_AD

t > ti

t > T ∩ On

On

On_DA

Off_AD

Off

Off_DA

t > ti

t > T ∩ Off

t > T ∩ Off

t > T ∩ On

4

0i

x

t

=

=

4x

t T

=



2

0i

x

t

= −

=

2x

t T

= −



 19,20

0

x

t



=

Figure 12: Cyber/physical interface of Thermostat

We applied our co-verification approach to the thermostat system with the same process

as TableSat. As shown in Tab. 3, the system satisfies the last three constraints. Bounded

model checking thus revealed a simple bug of the controller that was, however, subtle

enough not to be detected when designing the model: when the room temperature near

the temperature limit (22C), instead of applying the off, the program still turns the heater

on, allowing the temperature to exceed the temperature limit. This happens since the

program re-computes the thermostat setting only every 0.3 s.

7 Related work

Many scholars have done many work and gained their research results on cyber system

and physical system verification respectively. And considerable effort and tools have

been put into figuring out how to verified these two separate systems. In physical systems

research, they focus on physical system and tend to model cyber system as a equipment

which strictly implement control algorithm based on the assumptions, such as network

latency, sampling time, etc. And these assumptions are just a few exceptions (like the

worst-case execution time), which is difficult to meet. In cyber systems research, they

improve the level of abstraction and specify characteristics and demand of physical

environment as non-functional properties. This leads to lack of attention on the

cyber/physical multiple semantic interaction.

Various formal verification methods have been proposed for specifying hybrid systems

[Chan, Ricketts, Lerner et al. (2016); Kaur and Kaur (2017); Bersani and Garcia-Valls

(2016); Cimatti, Mover and Tonetta (2012)]. Well-known tools for verifying hybrid

systems include HyTech [Henzinger, Ho and WongToi (1997)] and Uppaal [Larsen,

Pettersson and Yi (1997)]. There has been much research on abstracting hybrid systems,

A Co-Verification Interface Design for High-Assurance CPS 303

largely categorized into sufficient abstraction and equivalent abstraction (surveyed in

[Alur, Henzinger, Lafferriere et al. (2000))]. In Goubault et al. [Goubault, Putot,

Baufreton et al. (2008)], they applied affine arithmetic to reason about the precision of

floating point C program. In Herrmann et al. [Herrmann, Blech, Han et al. (2016)] and

Shan et al. [Shan, Zhou, Wang et al. (2015)] they propose an approach to formally

analyzing such control software using model checking of UPPAAL. In Eggers et al.

[Eggers, Ramdani, Nedialkov et al. (2011)], they used an interval-based SMT solver for

ODEs. In Bae et al. [Bae, Ölveczky, Kong et al. (2016)], they proved that the decision

problem for bounded logic formulas over the real numbers with general nonlinear

functions are decidable.

Table 3: Design constraints for thermostat system

No. LTL Constraint Result

1
G ()Temper TemperUpLimit : the thermostat controller will

never heat over the temperature limit.
⊥

2
G ()Temper TemperDownLimit : the thermostat controller will

never heat below the temperature limit.
p

3
G ((_)Temper up th → F ()Off): after the temperature is

above the up_th, then the controller will be sent Off command.
p

4
G ((_)Temper down th → F ()On): after the temperature is

lower than down_th, then the controller will be sent On command.
p

Due to the scalability of formal verification is not high, simulation is a low-cost and

efficient method in detecting shallow bugs. There has been much research [Eker, Janneck,

Lee et al. (2003); Hoffmann, Kogel and Meyr (2001); Semeria and Ghosh (2000);

Passerone, Lavagno and Chiodo (1997); Cong, Lei, Yang et al. (2015)] on co-simulation

that has led to industrial tools such as Matlab/Simulink, Mathematica and Modelica. In

Mueller et al. [Mueller, Becker, Elfeky et al. (2012)], they proposed a methodology and

toolset for the CPS virtual prototyping. In Al-Hammouri [Al-Hammouri (2012)], they

presented a comprehensive co-simulation platform for CPS, which is built on Modelica

and ns-2 tools. In Zhenkai et al. [Zhenkai, Emeka, Xenofon et al. (2014)], a CPS co-

simulation method based on time trigger was proposed, which integrate SystemC and

CarSim. In Davide et al. [Davide, Riccardo, Roberto et al. (2012)], they presented a co-

simulation tool which integrate SystemC/SCNSL with MATLAB/Simulink. These

methods combine different simulation tools for CPS co-simulation, however, they did not

consider the different types of interaction between cyber component and physical

component.

8 Conclusions

An approach has been presented to componentized the interface and abstracts the

interaction by Cyber/Physical interface components. We classify the interaction

304 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.287-306, 2019

mechanism into two levels: logic interaction level and physical interaction level. We

designed a co-verification interface model to capture the interaction between computation

and physical processes for hierarchical a verification of CPS. We define different types of

interface model according to combinatorial relationships of the A/D (Analog to Digital)

and D/A (Digital to Analog) conversion periodical instants. We advocate the use of

Cyber/Physical interface model for bridging multiple semantic gap between the two

domains. This interface model has formal semantics, and is efficient for simulation and

formal verification. Thirdly, an approach is presented to Cyber/Physical co-verification

using co-simulation in physical level and formal co-verification in logic level. The

approach is illustrated through realistic examples. The evaluation has demonstrated the

effectiveness of this approach. Our research to develop better abstraction/refinement to

reduce verification complexity associated with certain algorithms is ongoing.

Acknowledgement: This research received financial support from Natural Science

Foundation of Hainan province (Grant Nos. 617062, 2018CXTD333 and 617048), the

National Natural Science Foundation of China (Grant Nos. 61462022, 61762033 and

61662019), Major Science and Technology Project of Hainan province (Grant No.

ZDKJ2016015), Scientific Research Staring Foundation of Hainan University (Grant No.

kyqd1610).

References

Al-Hammouri, A. T. (2012): A comprehensive co-simulation platform for cyber-

physical systems. Computer Communications, vol. 36, no. 1, pp. 8-19.

Alur, R.; Henzinger, T. A.; Lafferriere, G.; Pappas, G. J. (2000): Discrete

abstractions of hybrid systems. Proceedings of the IEEE, vol. 88, no. 7, pp. 971-984.

Årzén, K. E.; Cervin, A.; Henriksson, D. (2005): Implementation-Aware Embedded

Control Systems. Birkhäuser Boston, USA.

Bae, K.; Ölveczky, P. C.; Kong, S.; Gao, S.; Clarke, E. M. (2016): Smt-based analysis

of virtually synchronous distributed hybrid systems. Proceedings of the 19th

International Conference on Hybrid Systems: Computation and Control, pp. 145-154.

Bersani, M. M.; Garcia-Valls, M. (2016): The cost of formal verification in adaptive

cps. an example of a virtualized server node. Proceedings of the 2016 IEEE 17th

International Symposium on High Assurance Systems Engineering, pp. 39-46.

Chan, M.; Ricketts, D.; Lerner, S.; Malecha, G. (2016): Formal verification of stability

properties of cyber-physical systems. Proceedings of the CoqPL’16, pp. 39-40.

Cimatti, A.; Mover, S.; Tonetta, S. (2012): Smt-based verification of hybrid systems.

Twenty-Sixth AAAI Conference on Artificial Intelligence, pp. 5072-5077.

Clarke, E.; Kroening, D.; Lerda, F. (2004): A tool for checking ansi-c programs. Tools

and Algorithms for the Construction and Analysis of Systems, pp. 168-176.

Cong, K.; Lei, L.; Yang, Z.; Xie, F. (2015): Automatic fault injection for driver

robustness testing. Proceedings of the 2015 International Symposium on Software Testing

and Analysis, pp. 361-372.

A Co-Verification Interface Design for High-Assurance CPS 305

Davide, Q.; Riccardo, M.; Roberto, B.; Paolo, F. (2012): A SystemC/Matlab co-

simulation tool for networked control systems. Simulation Modelling Practice and

Theory, vol. 23, pp. 71-86.

Eggers, A.; Ramdani, N.; Nedialkov, N.; Fränzle, M. (2011): Improving sat modulo

ode for hybrid systems analysis by combining different enclosure methods. In: Barthe, G.;

Pardo, A.; Schneider, G. (Eds.): Software Engineering and Formal Methods, pp. 172-187,

Springer Berlin Heidelberg.

Eker, J.; Janneck, J. W.; Lee, E. A.; Liu, J.; Liu, X. et al. (2003): Taming

heterogeneity-the ptolemy approach. Proceedings of the IEEE, vol. 91, no. 1, pp. 127-144.

Gastin, P.; Oddoux, D. (2001): Fast LTL to Büchi automata translation. In Berry, G.;

Comon, H.; Finkel, A. (Eds.): Computer Aided Verification, pp. 53-65, Springer Berlin

Heidelberg.

Goubault, E.; Putot, S.; Baufreton, P.; Gassino, J. (2008): Static analysis of the

accuracy in control systems: principles and experiments. In Leue, S.; Merino, P. (Eds.):

Formal Methods for Industrial Critical Systems, pp. 3-20, Springer Berlin Heidelberg.

Henzinger, T.; Ho, P.; Wong-Toi, H. (1997): Hytech: a model checker for hybrid

systems. International Journal on Software Tools for Technology Transfer, vol. 1, no. 1,

pp. 110-122.

Herrmann, P.; Blech, J. O.; Han, F.; Schmidt, H. (2016): A model-based toolchain to

verify spatial behavior of cyber-physical systems. International Journal of Web Services

Research, vol. 13, no. 1, pp. 40-52.

Hoffmann, A.; Kogel, T.; Meyr, H. (2001): A framework for fast hardware-software co-

simulation. Proceedings of 2001 Design, Automation and Test in Europe, pp. 760-764.

Kaur, J.; Kaur, K. (2017): A fuzzy approach for an iot-based automated employee

performance appraisal. Computers Materials & Continua, vol. 53, no. 1, pp. 23-36.

Larsen, K.; Pettersson, P.; Yi, W. (1997): Uppaal in a nutshell. International Journal

on Software Tools for Technology Transfer, vol. 1, no. 1, pp. 134-152.

Lee, E. A. (2010): Cps foundations. Proceedings of the 2010 Design Automation

Conference, pp. 737-742.

Mueller, W.; Becker, M.; Elfeky, A.; DiPasquale, A. (2012): Virtual prototyping of

cyber-physical systems. 17th Asia and South Pacific Design Automation Conference, pp.

219-226.

Passerone, C.; Lavagno, L.; Chiodo, M. (1997): Fast hardware/software co-simulation

for virtual prototyping and trade-off analysis. Proceedings of the 34th annual Design

Automation Conference, pp. 389-394.

Semeria, L.; Ghosh, A. (2000): Methodology for hardware/software co-verification in

c/c++. Proceedings of 2000 ASP-DAC Conference, pp. 405-408.

Shan, L. J.; Zhou, X. S.; Wang, Y. Y.; Zhao, L.; Wan, L. J. et al. (2015): Statistical

model checking of cyber-physical systems control software. Journal of Software, vol. 26,

no. 2, pp. 380-389.

Vess, M. F. (2005): System Modeling and Controller Design for a Single Degree of

Freedom Spacecraft Simulator (Ph.D. Thesis). University of Maryland.

306 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.287-306, 2019

Yu, Z.; Fei, X.; Dong, Y. W.; Yang, G.; Zhou, X. (2013): High fidelity virtualization of

cyber-physical systems. International Journal of Modeling, Simulation, and Scientific

Computing, vol. 4, no. 2.

Yu, Z.; Dong, Y. W.; Fei, X. (2014): Bounded model checking of hybrid automata

pushdown system. Proceedings of the 14th International Conference on Quality Software,

pp. 190-195.

Zhenkai, Z.; Emeka, E.; Xenofon, K.; Joseph, P.; Gabor, K. et al. (2014): A co-

simulation framework for design of time-triggered automotive cyber physical systems,

Simulation Modelling Practice and Theory, vol. 43, pp. 16-33.

