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Abstract: Cyber-Physical Systems (CPS) tightly integrate cyber and physical 

components and transcend traditional control systems and embedded system. Such 

systems are often mission-critical; therefore, they must be high-assurance. High-

assurance CPS require co-verification which takes a comprehensive view of the whole 

system to verify the correctness of a cyber and physical components together. Lack of 

strict multiple semantic definition for interaction between the two domains has been 

considered as an obstacle to the CPS co-verification. A Cyber/Physical interface model 

for hierarchical a verification of CPS is proposed. First, we studied the interaction 

mechanism between computation and physical processes. We further classify the 

interaction mechanism into two levels: logic interaction level and physical interaction 

level. We define different types of interface model according to combinatorial 

relationships of the A/D (Analog to Digital) and D/A (Digital to Analog) conversion 

periodical instants. This interface model has formal semantics, and is efficient for 

simulation and formal verification. The experiment results show that our approach has 

major potential in verifying system level properties of complex CPS, therefore improving 

the high-assurance of CPS. 
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1 Introduction 

Cyber-Physical Systems (CPS) tightly integrates cyber and physical components, thereby 

creating opportunities for more direct integration of the physical world into the cyber 

world [Lee (2010)]. CPS has always been focused on integration of cyber and physical 

components. CPS is often mission-critical and usually subject to stringent safety and 

reliability requirements. CPS applications are many, including avionics, personalized 

health-care, intelligent transportation, smart grid and robotics as representative examples 
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where embedded cyber components tightly interact with physical components via 

sensor/actuator networks to ensure the delivery of the desired behaviors. Due to the 

inherent and ever-growing complexities, uncertain delay and the requirement of precise 

control, Cyber/Physical co-verification becomes more complicated.  

Lack of strict multiple semantic definition for interaction between the two domains has 

been considered as an obstacle to the CPS co-verification. In previous work Yu et al. [Yu, 

Dong and Fei (2014); Yu, Fei, Dong et al. (2013)], we propose an automata-theoretic 

approach and CPS virtualization to check the properties of the system. However, there is 

no unifying formal model for representing the implementation semantic of 

Cyber/Physical interface accurately. In this paper, we propose an approach for delimiting 

the cyber/physical interface. First, we studied the interaction mechanism between 

computation and physical processes. We further classify the interaction mechanism into 

two levels: logic interaction level and physical interaction level. The interaction between 

the physical system being controlled and the software implementation of control 

algorithms forms the logic level interaction. Accordingly, the interaction, which 

application software interact with physical system through execution platform, forms the 

physical level interaction. Secondly, a Cyber/Physical interface model for hierarchical a 

verification of CPS is proposed. We define different types of interface model according 

to combinatorial relationships of the A/D (Analog to Digital) and D/A (Digital to Analog) 

conversion periodical instants. We advocate the use of Cyber/Physical interface model 

for bridging multiple semantic gap between cyber and physical components. This 

interface model has formal semantics which cover all Cyber/Physical interaction 

behaviors, and is efficient for simulation and formal verification. Finally, we have 

realized this approach and applied it to a real-world control system. 

The rest of this paper is organized as follows. Section 2 elaborates the interaction 

mechanism in CPS. Section 3 presents the co-verification model. 4 evaluate our approach 

by some case studies. Section 5 reviews the related research works. Section 6 summarizes 

this paper and forecasts the direction of research work in the future. 

2 Analysis of Co-Verification component in CPS 

As illustrated in Fig. 1, there are three co-verification components in CPS: the cyber 

component, physical component and cyber/physical interface component. Cyber 

component monitors and controls the physical component, usually with feedback loops 

through cyber/physical interface component where physical component affect Cyber 

component and vice versa. The CPS cyber component refers to the abstract model of the 

control application. The CPS physical component is an abstract model for describing the 

physical system, can be further elaboration for the controlled object (plant) and the 

physical environment model.  

In implementation level, cyber/physical interface model is divided into two types: logical 

interaction model and physical interaction model. Control software monitor and control 

physical model through logical interaction model, which is a logical coupling; Physical 

interaction model is based on the execution platform by A/D and D/A conversion to 

monitor and control physical model, which is physical coupling. Therefore, the 

interaction between the cyber model and physical model needs to describe the following 
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aspects: 1) the relationship between physical model and cyber model, which includes 

information flow and control flow; 2) sampling and control cycle time; 3) hardware 

platform specifications, operating system configuration, etc.  
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Figure 1: The co-verification components 

Therefore, the interaction between the cyber model and physical model is mainly 

specified through the cyber/physical interface model. TableSat [Vess (2005)] is an 

interactive platform from the University of Michigan, which emulates in 1-degree-of-

freedom the dynamics, sensing, and actuation capabilities required for satellite attitude 

control. NASA uses the simulation experiment platform to simulate the satellite attitude 

changes, sampling and control process. TableSat basic structure is shown in Fig. 2. 

TableSat cbyer model include Controller module and communication module. Control 

module is applied to implement the TableSat control algorithm, communication module 

realized communications functions with experimental machine (to simulate the ground 

satellite receiving station, ground station). TableSat execution platform, which including 

Athena II SBC, Network Device, A/D conversion, D/A conversion and Debian operating 

system. abstracted by interface model. (Light Sources and the Magnetic Fields is a 

physical environment model, TableSat rotary movement is plant model. Interface model 

realize the interaction between cyber model and the physical model. The control process 

is: based on the angular velocity measured by a high-precision rate gyro, the controller 

monitor and control physical model to stabilize the TableSat motion.  
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Figure 2: The TableSat 

3 Cyber/physical co-verification model 

For heterogeneous modeling, the difficulty lies in the interaction between cyber model 

and physical model. Cyber model is essentially a discrete event model, and its operational 

semantics refers to the execution sequence with a time stamp; Physical model is 

essentially a continuous time model, the model is formulated for differential equation. 

For integration of discrete event model and continuous time model, its execution 

sequence in the operational semantics is interaction protocols between the two 

heterogeneous models. Therefore, how to effectively model the interaction strategies to 

effectively deal with the discrete process and continuous process of different semantics is 

an important problem. Following are the formal description of object model under the co-

verification framework. 

As illustrated in Fig. 3, there are three types of primitive components in the co-

verification: cyber component, physical component and cyber/physical interface 

component model. Cyber component includes control software and its running platform. 

There are two types of interaction between cyber and physical worlds: one is 

cyber/physical logical interaction between control software and plant, another is 

cyber/physical physical interaction between hardware and plant. Cyber/physical interface 

model bridges these two semantics gap between cyber and plant model by propagating 

events across Cyber/physical boundaries. As shown in Fig. 3, according to the 

hierarchical division on the logical interaction and physical interaction, the co-

verification is divided into two levels of feedback loop: one is logic layer feedback loop 

which composed of control software and the physical system; another is the physical 

layer of the feedback loop which composed of the control software, execution platform 

and physical. 
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Figure 3: Formal framework for co-verification 

Under this framework, the software components of an embedded system execute on 

generic hardware platform while the plant components are implemented as differential 

equations. The software components and plant components interact through an embedded 

OS that also schedules the execution of the software components. Software schedulers 

are not explicitly represented in this model. Instead, the timing parameters of a control 

task are integrated into the component model as assumptions of the components. The 

cyber/physical interface components and the timing parameter constraints together 

abstract the embedded OS by providing necessary information about timing parameters 

of control tasks. 

Below we characterize the dynamic of the main components in detail and discuss how 

their integration is handled. 

Definition1. A cyber model is a tuple ( , )cyberc S TA= , where 
cyberS  is static structure of 

cyber model, that is, source code. TA is a time automata, which is used to specified the 

dynamic behavior of cyber model. The set of all cyber model in a CPS is denoted as 

1 2{c ,c , c }nC =  

Definition2. A physical model is a tuple ( , )physicalp S HA= , where (u,x,y,dom)physicalS =  

is static structure of physical model, U, x and y are input, state, and output of physical 

model respectively , : ( , , )dom u x y DataType→ , HA is a hybrid automata, which is 

used to specified the dynamic behavior of physical model. The set of all physical model 

in a CPS is denoted as 
1 2{ , , }mP p p p=  

Definition3. A Cyber/Physical Interface Model is a tuple (Int,State,Event,Platform,Time) , 

where Int  is the name of the interface model, State  are the state variables provided 

either by program or plant and accessible by both, Event is the access and modification to 

the State , Platform  is the specification of running platform hardware, Time  is the 

interaction time type of the cyber/physical interface. The set of all interface models in a 

CPS is denoted as
1 2{ , , }kI i i i= . 
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 In the cyber/physical logical interaction, Platform could be set to null; 

 In the cyber/physical physical interaction, Platform must specify the running 

environment. 

Interface events have two types: cyber or physical. When cyber updates the physical 

interface states, a cyber interface event occurs, and vice versa. For example, when the 

cyber writes a command to the physical, the cyber/physical interface will set the related 

actuator accordingly. The cyber/physical interface model also describes the behaviors of 

physical dynamic when it interacts asynchronously with cyber, i.e.  when there is no D/A 

conversion. The cyber/physical interface is defined by modeling it using hybrid automata. 

There are a finite set of continuous variables whose values are described by plant models. 

Consider the example of TableSat. The equations of TableSat motion are: 

4 ( )f TSI lK f  = −  and ( ( ))fanK V f  = − + − , where I  is the TableSat 

moment of inertia,   is the TableSat angular velocity,   is the speed of the fan, l  is the 

fan moment arm, TSf
 is the TableSat friction and is a function of  , vK   is the fan 

speed to force constant, V  is the voltage applied to the fan,   is the fan time constant, 

vK   is the fan voltage to change in speed constant, and fanf  is the frictions in the fans 

and are function of  . 

A configuration of Platform specify the following the running environment configuration 

information (hardware, operating system, A/D conversion and D/A conversion, etc.). As 

shown in Fig. 4, configuration information includes operating system (Debian), hardware 

(i386, isa devices), and A/D conversion and D/A transformation configuration (resolution 

and transformation of time). In addition, A/D and D/A conversion need to describe two 

things: 1) resolution; 2) conversion time.  

A single iteration in system execution begins when the plant’s state is sensed and ends 

after the plant evolves for one sampling period based on the controller’s actions on the 

sensed data. Different execution conditions and different timing parameters of control 

tasks require different time types of cyber/physical interfaces. 

Definition 4. Time  of cyber/physical interface is a tuple (T, t , t )k k

i o , where T  is a period 

of time, t k

i ( 0,1,2,...k = ) and t k

o ( 0,1,2,...k = ) refer to the A/D and D/A conversion 

periodical instants, respectively. The cyber/physical interface states that the inputs to the 

interface are sampled at t k

i ( 0,1,2,...k = ) and the outputs are written at t k

o ( 0,1,2,...k = ). 

In the following, we formulate some popular design approaches as different types of 

Cyber/Physical interface. Many variations of the following described Cyber/Physical 

interfaces are possible. Our goal is to illustrate the concept of a Cyber/Physical interface 

concretely. It is briefly discussed, for each Cyber/Physical interface, how it can be 

derived and implemented. 
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InterfacePlatform{ 

pI ={var={u(t d),y(t )}i i+ } 

cI ={var={ . _ , _ nt }dscadscan sample values pos cou s } 

/*cyber variable to physical input vectors mapping*/ 

(pos_counts, {u(t d)}i+ ) 

/*physical output vectors to cyber variable mapping*/ 

( y(t )i
, dscadscan.sample_values) 

/*A/D conversion*/ 

AD={Resolution, convert_time }; 

/*D/A conversion*/ 

DA={Resolution, convert_time}; 

/*OS version*/ 

  OS = {Debian} 

/*CPU info*/ 

  CPU = {i386} 

/*Communication */ 

  Commu = {isa} 

} 

Figure 4: A Platform configuration of interface model 

 Zero Computation Time. A Zero Computation Time (ZCT) type of cyber/physical 

interface is specified as a tuple (T, t , t )k k

i o , where t tk k

i o kt= = . The cyber/physical 

interface states that, at every instants  kt T k=  ( 0,1,2,...k = ), the A/D conversion to 

the controller are sampled, the outputs are computed and complete D/A conversion 

(i.e. 0k k

s ioL L= = , where 
sL  denoted as the sampling latency and 

ioL  denoted as 

input-output latency). A typical control design process naturally results in a ZCT 

type and control engineers can use standard results 

 Bounded DA Conversion Time. A Bounded DA Conversion Time (BDACT) type 

of cyber/physical interface is specified by a tuple (T, t , t )k k

i o , where t tk

i k=  and 

k k

o iot L . The A/D conversion is sampled at times kt , the D/A conversion are written 

at admissible variations of period. The BDACT type constitutes enforcing that the 

outputs are written at any point within the interval of a period, instead of precisely at 

same points. 

 Fixed Computation Time type. A Fixed Execution Time (FET) type of 

cyber/physical interface is specified as a tuple (T, t , t )k k

i o , where (t t ) 0k k

i o−   is 

positive number constant. This cyber/physical interface requires that the interval 
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from A/D conversion instant t i  to D/A conversion instant t o  is fixed.  

 Variable Computation Time. A Variable Execution Time (VET) type of 

Cyber/Physical interface is specified by a tuple (T, t , t )k k

i o , where tk k

i sL  and 

tk k

o ioL , and 
k

sL  and 
k

ioL  are bounds on admissible variations of period.  

Definition 5. A CPS model is a tuple ( , )cps cpsS S HA= , where 

1 1 1

n k m

cps cyber interface physical

k k k

S S S S
= = =

= + +  is static structure of CPS model, 

1 2 1 2|| || || || || || ||cps n mHA TA TA TA HA HA HA= is a cartesian product of  automata, The 

set of all physical model in a CPS is denoted as 1 2{ , , }mP p p p= . 

Definition 5. A state of CPS model is a tuple ( , , )cyber interface physicals s s s= , where cybers  is 

sa set of cyber model, physicals  is sa set of physical model, interfaces  is sa set of interface 

model. 

The transaction condition of CPS is denoted as r t=  , where   is a set of events, 

t is a set of clock. r  can be expressed either event trigger or time trigger. A trace 

0 1 2 1, , , , , , ,k k ns s s s s s−  can be denoted as, 
0 2 1 11

0 1 2 1

k k nr r r rr

k k ns s s s s s
− − −

−= → → → → → . 

From the view of the CPS system, the CPS model is consisted of a series of discrete 

states, and each discrete state itself may be a continuous time model. 

During the symbolic execution, we only explore finite traces. In this case, however, the 

observed finite traces are not necessarily proper prefixes of the original program traces, 

and our approach can produce false results, as the symbolic execution can continue past 

unsatisfied loop termination conditions. We use the infinite extension semantics to 

resolve ugly prefixes into presumably good or presumably bad. We characterize the truth 

value in 
4  of a LTL formula   with respect to a single finite trace s. 

Lemma 1 

1.  
B

S  =    iff , , ;s S s


      =   

2.   P

B
S     1iff , ;ns S ss


−

    =    

3.  
B

S  =⊥   iff , , ;s S s


       =   

4.   P

B
S  ⊥  1iff , ;ns S ss


−

    =    

Proof. (1) Since  , ,s S s


      =   is equivalent to 

 ,s S s


    =⊥  and  ,s S s


   =  , thus by Definition 2, 
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 
B

s  =  ; therefore,    s S B B
s S  =  =  ; 

(2) Since 1, ns S ss


−
    =    is equivalent to 1, ns S ss


−

   =   , thus 

by Definition 2,  1 1, n nB
s S ss ss  


  − −

     =  =      , therefore, 

   P P

s S B B
s S  =   =  ; 

(3) Since  s


  =   is equivalent to  s


  =⊥ , by Definition 2, 

   , ,
B

s S s s


        =⊥ =⊥ , therefore,  

B
S  =⊥ ; 

(4) Similarly, since 1nss


−
  =    is equivalent to 1nss


−

  =⊥  , by 

Definition 2,  1 1 1,n n nss uu u   

  
    − − −

     =⊥ =⊥        , 

therefore,   P

B
S  ⊥ . 

6 Evaluation 

6.1 Co-simulation 

In this section, we improve on the simulation tool [Yu, Fei, Dong et al. (2013)] that we 

previously built by improving its shortcomings to provide different time types of 

cyber/physical interface for high-assurance CPS.  

As shown in Fig. 5, a co-simulation environment is developed for TableSat. An X86 

processor model is utilized to emulate the Athena II SBC in QEMU. The embedded 

control program is written in C language the plant components are modeled 

mathematically according to respective physical characteristics in Matlab/Simulink.  

We conducted this experiment with different time configuration of Cyber/Physical 

interface. We set the step input of expected angular velocity with 30 deg/sec.  

Experimental datasets were used to compare accuracy of these time types of 

Cyber/Physical interface. For the zero computation time of Cyber/Physical interface, we 

set the fixed sampling interval T=0.4 s in the virtual TableSat. The experimental results 

are shown in Fig. 6. For the fixed computation time of Cyber/Physical interface, we set 

the fixed sampling interval T=0.4 s and the fixed interval from A/D conversion to D/A 

conversion d=0.2 s. The experimental results are shown in Fig. 7. For the bounded DA 

conversion time, we set the fixed sampling interval T=0.4 s and the input-output jitter 

 t 0,0.1k

o   in the virtual TableSat. The experimental results are shown in Fig. 8. For the 

variable computation time, we set the fixed sampling interval T=0.4 s the sampling jitter 

 t 0,0.1k

i  and the input-output jitter  t 0,0.1k

o  . The experimental results are shown 

in Fig. 9. 
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Figure 5: Co-simulation environment for TableSat 

 

Figure 6: The experimental results of zero computation time 
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Figure 7: The experimental results of fixed computation time 
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Figure 8: The experimental results of bounded DA conversion time 
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Figure 9: The experimental results of variable computation time 
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The experiment results show that the controller can meet the requirements of system 

rapidity and control accuracy, satisfy the Bounded Input Bounded Output (BIBO) 

stability. In order to quantify the divergence between the real environment and co-

simulation environment, we define the absolute divergence. This evaluation metric is the 

difference between the actual velocity and virtual velocity in different time of 

Cyber/Physical interface, i.e. 
actual virtuale v v= − . Tab. 1 shows comparisons statistics of 

absolute divergence over eight runs. Each column in the table shows statistics of a system 

run with different time of Cyber/Physial interface. We recorded the angular velocity at 

every 0.5 s. Through comparing three experiments, the results indicate divergence 

between the real TableSat and its virtualization reduces sequentially, which shows the 

type of Cyber/Physical interface could improve the accuracy. The average absolute 

divergence over all time instant is relatively low and below 1.772 deg/sec. All the 

maximum absolute divergence values occur in the first two 2 s.  

Table 1: Summary of absolute divergence 

Test Statistics 

Interface Type 

zero 

computation 

time 

fixed 

computation 

time 

bounded DA 

conversion 

time 

variable 

computation 

time 

Run 30 

max 18.02 16.38 16.19 16.01 

min -4.591 -2.702 -2.733 -2.609 

mean 1.772 1.429 1.064 1.26 

std 3.697 2.514 2.269 2.377 

The experiment shows that our approach can simulate the real system with reasonable 

accuracy. This can enable early development and verification of the synergy between 

cyber and physical components  

6.2 Co-verification 

To evaluate the proposed approach, we have applied the approach to real-world control 

systems. In all experiments, we want to check whether the system meet these constrains 

or not with slight perturbations in the inputs and outputs to the system.  

6.2.1 TableSat co-verification 

We use the same embedded control program as in co-simulation. First, we constructed 

the program (as shown in Fig. 10) and physical model based on the cyber/physical 

interface. Then we formulated these constrains of the system with LTL, and conducted 

bounded model checking. We chose the fixed computation time type of cyber/physical 

interface in this experiment. We set the following initial set of parameters in the 

experiment: the sampling interval is 2 s, the A/D conversion instant is 0.4 s, the D/A 

conversion instant is 1.6 s and the target rotary velocity is 30 deg/s. the initial value of 

angular velocity is used as a symbolic variable ([0, 40]). Tab. 2 summarized the results. 

The verification result shows that the TableSat satisfies the last two LTL constrains. For 
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the first LTL property, bounded model checker pointed out a simple bug of the cyber 

component that: If the initial value of angular velocity is 39.960621 deg/s, then the rotary 

velocity will reach 63.649414 deg/s at 2.324336 s, which led to above a threshold (60 

deg/s) The running time largely depends on the backend SMT solver. 

6.2.2 Thermostat co-verification 

The second experiment is the thermostat system Thermostat is a typical CPS system 

which utilize the temperature controller to ensure a particular space for expectations of 

intelligent system. In thermostat system, the environment temperature is physical process 

which is continuous change, and the controller is discrete cyber process: when the 

controller detects the temperature is higher than the preset temperature, cut off the heater 

power. When the test temperature is lower than the preset temperature, restart the heater 

to heat environment. thermostat program (line number is: 45) is shown in Fig. 11. When 

the temperature drops below to 19C, control software gives control instruction on it, so 

as to open the heater; And when the system temperature is higher than 21C, on the 

contrary, sends out control instructions off control applications, thus closing the heater. 

Automatic temperature control system to ensure that the environment temperature is 

between 18C and 22C.  

Table 2: Design constraints for TableSat  

No. LTL Constraint Result 

1 

G( . )RotaryVelocity VelocityUpBound : the controller never 

accelerates the TableSat over the rotary velocity limit 

VelocityUpBound. 

⊥  

2 

G(( . 1.5 ) ( 0))RotaryVelocity TargetVelocity Actuator.FanVoltage  →  : 

When the rotary velocity below 1.5 times of its expected value, the 

controller will set the fans to 12 volts. 

p  

3 

G(( . ) ( ))RotaryVelocity TargetVelocity F Actuator.FanVoltage fullNeg → = : 

after the Rotary velocity below its bound, controller will set the 

motors to the full voltage. 

p  
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01 int main(int argc, char **argv, char **envp){ 

02   ... 

03   initial(); 

04   while(TSrunning){ 

05     ... 

06     waitClock(); 

07     /* Read the raw sensor values */ 

08     if (!readSensors(&SensorReadings)) { 

09         printf("A/D error in ReadSensors\n"); 

10         return; 

11     } 

12     calculateOutput(); 

13    /* Actually fire off the motors */ 

14     commandMotor(Actuator.FanVoltage);  

15     updateState(); 

16   } 

17   Return; 

18 } 

19 int ReadSensors(SensorReadings_t *sensors) 

20 {  ... 

21   /*associate with read sensor event $E_{state}$*/ 

22   if((result = dscADScan(dscb, &dscadscan, samples))!= DE_NONE){ 

23    ... 

24   } 

25 } 

26 void commandMotor(double *v) 

27 {  ... 

28   /*associate with write command event $E_{comm}$*/ 

29   if((result = dscDAConvert(dscb, pos_channel, pos_counts)) != DE_NONE){ 

30     ... 

31   } 

32 } 

Figure 10: TableSat program 

 

 

 

 

 

 



 

 

 

A Co-Verification Interface Design for High-Assurance CPS                                301 

01 int main(int argc, char **argv, char **envp)  

02 {  

03     ... 

04     while(1){ 

05         ... 

06         sensor_data = AD_Conversion();       

07         if(sensor_data < 19){ 

08             v_command = 1; 

09         } 

10         if(sensor_data > 21){ 

11             v_command = 0; 

12         } 

13         DA_Conversion(v_command);  

14         ... 

15     } 

16    ... 

17 } 

Figure 11: Thermostat program 

We chose a zero computation time of cyber/physical interface in this experiment. The 

following initial set is used during this experiment: {T=0.3 s, 
it =0 s, 

ot =0 s}. In control 

theory, control engineers always assume that A/D conversion periodically and D/A 

conversion instantaneously at the beginning of each period. 

Fig. 12 shows the cyber/physical interface model of thermostat by hybrid automata. The 

model consists of 4 discrete locations corresponding to each node, 3-dimensional 

continuous states  ,x x t= , and 6 discrete state transitions corresponding to the edges. 

Let t  represent the internal timer. There are 4 discrete locations in the interface model 

(Turn On: On_AD and On_DA; Turn Off: Off_AD and Off_DA). Each discrete 

transition is enabled by its guard condition. For example, a discrete transition d from 

On_AD to Off_DA has a guard condition t>T∩On. When the controller sends command 

(i.e. when Boolean variable, On or Off, is set to true), the motion of thermostat switches 

to the corresponding law. An edge entering Off AD represents the initial constraint.  
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Figure 12: Cyber/physical interface of Thermostat 

We applied our co-verification approach to the thermostat system with the same process 

as TableSat. As shown in Tab. 3, the system satisfies the last three constraints. Bounded 

model checking thus revealed a simple bug of the controller that was, however, subtle 

enough not to be detected when designing the model: when the room temperature near 

the temperature limit (22C), instead of applying the off, the program still turns the heater 

on, allowing the temperature to exceed the temperature limit. This happens since the 

program re-computes the thermostat setting only every 0.3 s. 

7 Related work 

Many scholars have done many work and gained their research results on cyber system 

and physical system verification respectively. And considerable effort and tools have 

been put into figuring out how to verified these two separate systems. In physical systems 

research, they focus on physical system and tend to model cyber system as a equipment 

which strictly implement control algorithm based on the assumptions, such as network 

latency, sampling time, etc. And these assumptions are just a few exceptions (like the 

worst-case execution time), which is difficult to meet. In cyber systems research, they 

improve the level of abstraction and specify characteristics and demand of physical 

environment as non-functional properties. This leads to lack of attention on the 

cyber/physical multiple semantic interaction.  

Various formal verification methods have been proposed for specifying hybrid systems 

[Chan, Ricketts, Lerner et al. (2016); Kaur and Kaur (2017); Bersani and Garcia-Valls 

(2016); Cimatti, Mover and Tonetta (2012)]. Well-known tools for verifying hybrid 

systems include HyTech [Henzinger, Ho and WongToi (1997)] and Uppaal [Larsen, 

Pettersson and Yi (1997)]. There has been much research on abstracting hybrid systems, 
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largely categorized into sufficient abstraction and equivalent abstraction (surveyed in 

[Alur, Henzinger, Lafferriere et al. (2000))]. In Goubault et al. [Goubault, Putot, 

Baufreton et al. (2008)], they applied affine arithmetic to reason about the precision of 

floating point C program. In Herrmann et al. [Herrmann, Blech, Han et al. (2016)] and 

Shan et al. [Shan, Zhou, Wang et al. (2015)] they propose an approach to formally 

analyzing such control software using model checking of UPPAAL. In Eggers et al. 

[Eggers, Ramdani, Nedialkov et al. (2011)], they used an interval-based SMT solver for 

ODEs. In Bae et al. [Bae, Ölveczky, Kong et al. (2016)], they proved that the decision 

problem for bounded logic formulas over the real numbers with general nonlinear 

functions are decidable. 

Table 3: Design constraints for thermostat system  

No. LTL Constraint Result 

1 
G ( )Temper TemperUpLimit : the thermostat controller will 

never heat over the temperature limit. 
⊥  

2 
G ( )Temper TemperDownLimit : the thermostat controller will 

never heat below the temperature limit. 
p  

3 
G ( ( _ )Temper up th → F ( )Off ): after the temperature is 

above the up_th, then the controller will be sent Off command.  
p  

4 
G ( ( _ )Temper down th → F ( )On ): after the temperature is 

lower than down_th, then the controller will be sent On command. 
p  

Due to the scalability of formal verification is not high, simulation is a low-cost and 

efficient method in detecting shallow bugs. There has been much research [Eker, Janneck, 

Lee et al. (2003); Hoffmann, Kogel and Meyr (2001); Semeria and Ghosh (2000); 

Passerone, Lavagno and Chiodo (1997); Cong, Lei, Yang et al. (2015)] on co-simulation 

that has led to industrial tools such as Matlab/Simulink, Mathematica and Modelica. In 

Mueller et al. [Mueller, Becker, Elfeky et al. (2012)], they proposed a methodology and 

toolset for the CPS virtual prototyping. In Al-Hammouri [Al-Hammouri (2012)], they 

presented a comprehensive co-simulation platform for CPS, which is built on Modelica 

and ns-2 tools. In Zhenkai et al. [Zhenkai, Emeka, Xenofon et al. (2014)], a CPS co-

simulation method based on time trigger was proposed, which integrate SystemC and 

CarSim. In Davide et al. [Davide, Riccardo, Roberto et al. (2012)], they presented a co-

simulation tool which integrate SystemC/SCNSL with MATLAB/Simulink. These 

methods combine different simulation tools for CPS co-simulation, however, they did not 

consider the different types of interaction between cyber component and physical 

component.  

8 Conclusions 

An approach has been presented to componentized the interface and abstracts the 

interaction by Cyber/Physical interface components. We classify the interaction 
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mechanism into two levels: logic interaction level and physical interaction level. We 

designed a co-verification interface model to capture the interaction between computation 

and physical processes for hierarchical a verification of CPS. We define different types of 

interface model according to combinatorial relationships of the A/D (Analog to Digital) 

and D/A (Digital to Analog) conversion periodical instants. We advocate the use of 

Cyber/Physical interface model for bridging multiple semantic gap between the two 

domains. This interface model has formal semantics, and is efficient for simulation and 

formal verification. Thirdly, an approach is presented to Cyber/Physical co-verification 

using co-simulation in physical level and formal co-verification in logic level. The 

approach is illustrated through realistic examples. The evaluation has demonstrated the 

effectiveness of this approach. Our research to develop better abstraction/refinement to 

reduce verification complexity associated with certain algorithms is ongoing. 

 

Acknowledgement: This research received financial support from Natural Science 

Foundation of Hainan province (Grant Nos. 617062, 2018CXTD333 and 617048), the 

National Natural Science Foundation of China (Grant Nos. 61462022, 61762033 and 

61662019), Major Science and Technology Project of Hainan province (Grant No. 

ZDKJ2016015), Scientific Research Staring Foundation of Hainan University (Grant No. 

kyqd1610). 

References 

Al-Hammouri, A. T. (2012): A comprehensive co-simulation platform for cyber-

physical systems. Computer Communications, vol. 36, no. 1, pp. 8-19. 

Alur, R.; Henzinger, T. A.; Lafferriere, G.; Pappas, G. J. (2000): Discrete 

abstractions of hybrid systems. Proceedings of the IEEE, vol. 88, no. 7, pp. 971-984. 

Årzén, K. E.; Cervin, A.; Henriksson, D. (2005): Implementation-Aware Embedded 

Control Systems. Birkhäuser Boston, USA. 

Bae, K.; Ölveczky, P. C.; Kong, S.; Gao, S.; Clarke, E. M. (2016): Smt-based analysis 

of virtually synchronous distributed hybrid systems. Proceedings of the 19th 

International Conference on Hybrid Systems: Computation and Control, pp. 145-154. 

Bersani, M. M.; Garcia-Valls, M. (2016): The cost of formal verification in adaptive 

cps. an example of a virtualized server node. Proceedings of the 2016 IEEE 17th 

International Symposium on High Assurance Systems Engineering, pp. 39-46. 

Chan, M.; Ricketts, D.; Lerner, S.; Malecha, G. (2016): Formal verification of stability 

properties of cyber-physical systems. Proceedings of the CoqPL’16, pp. 39-40. 

Cimatti, A.; Mover, S.; Tonetta, S. (2012): Smt-based verification of hybrid systems. 

Twenty-Sixth AAAI Conference on Artificial Intelligence, pp. 5072-5077. 

Clarke, E.; Kroening, D.; Lerda, F. (2004): A tool for checking ansi-c programs. Tools 

and Algorithms for the Construction and Analysis of Systems, pp. 168-176. 

Cong, K.; Lei, L.; Yang, Z.; Xie, F. (2015): Automatic fault injection for driver 

robustness testing. Proceedings of the 2015 International Symposium on Software Testing 

and Analysis, pp. 361-372. 



 

 

 

A Co-Verification Interface Design for High-Assurance CPS                                305 

Davide, Q.; Riccardo, M.; Roberto, B.; Paolo, F. (2012): A SystemC/Matlab co-

simulation tool for networked control systems. Simulation Modelling Practice and 

Theory, vol. 23, pp. 71-86. 

Eggers, A.; Ramdani, N.; Nedialkov, N.; Fränzle, M. (2011): Improving sat modulo 

ode for hybrid systems analysis by combining different enclosure methods. In: Barthe, G.; 

Pardo, A.; Schneider, G. (Eds.): Software Engineering and Formal Methods, pp. 172-187, 

Springer Berlin Heidelberg. 

Eker, J.; Janneck, J. W.; Lee, E. A.; Liu, J.; Liu, X. et al. (2003): Taming 

heterogeneity-the ptolemy approach. Proceedings of the IEEE, vol. 91, no. 1, pp. 127-144. 

Gastin, P.; Oddoux, D. (2001): Fast LTL to Büchi automata translation. In Berry, G.; 

Comon, H.; Finkel, A. (Eds.): Computer Aided Verification, pp. 53-65, Springer Berlin 

Heidelberg. 

Goubault, E.; Putot, S.; Baufreton, P.; Gassino, J. (2008): Static analysis of the 

accuracy in control systems: principles and experiments. In Leue, S.; Merino, P. (Eds.): 

Formal Methods for Industrial Critical Systems, pp. 3-20, Springer Berlin Heidelberg. 

Henzinger, T.; Ho, P.; Wong-Toi, H. (1997): Hytech: a model checker for hybrid 

systems. International Journal on Software Tools for Technology Transfer, vol. 1, no. 1, 

pp. 110-122. 

Herrmann, P.; Blech, J. O.; Han, F.; Schmidt, H. (2016): A model-based toolchain to 

verify spatial behavior of cyber-physical systems. International Journal of Web Services 

Research, vol. 13, no. 1, pp. 40-52. 

Hoffmann, A.; Kogel, T.; Meyr, H. (2001): A framework for fast hardware-software co-

simulation. Proceedings of 2001 Design, Automation and Test in Europe, pp. 760-764. 

Kaur, J.; Kaur, K. (2017): A fuzzy approach for an iot-based automated employee 

performance appraisal. Computers Materials & Continua, vol. 53, no. 1, pp. 23-36. 

Larsen, K.; Pettersson, P.; Yi, W. (1997): Uppaal in a nutshell. International Journal 

on Software Tools for Technology Transfer, vol. 1, no. 1, pp. 134-152. 

Lee, E. A. (2010): Cps foundations. Proceedings of the 2010 Design Automation 

Conference, pp. 737-742. 

Mueller, W.; Becker, M.; Elfeky, A.; DiPasquale, A. (2012): Virtual prototyping of 

cyber-physical systems. 17th Asia and South Pacific Design Automation Conference, pp. 

219-226. 

Passerone, C.; Lavagno, L.; Chiodo, M. (1997): Fast hardware/software co-simulation 

for virtual prototyping and trade-off analysis. Proceedings of the 34th annual Design 

Automation Conference, pp. 389-394. 

Semeria, L.; Ghosh, A. (2000): Methodology for hardware/software co-verification in 

c/c++. Proceedings of 2000 ASP-DAC Conference, pp. 405-408. 

Shan, L. J.; Zhou, X. S.; Wang, Y. Y.; Zhao, L.; Wan, L. J. et al. (2015): Statistical 

model checking of cyber-physical systems control software. Journal of Software, vol. 26, 

no. 2, pp. 380-389. 

Vess, M. F. (2005): System Modeling and Controller Design for a Single Degree of 

Freedom Spacecraft Simulator (Ph.D. Thesis). University of Maryland. 



 

 

 

306   Copyright © 2019 Tech Science Press             CMC, vol.58, no.1, pp.287-306, 2019 

Yu, Z.; Fei, X.; Dong, Y. W.; Yang, G.; Zhou, X. (2013): High fidelity virtualization of 

cyber-physical systems. International Journal of Modeling, Simulation, and Scientific 

Computing, vol. 4, no. 2. 

Yu, Z.; Dong, Y. W.; Fei, X. (2014): Bounded model checking of hybrid automata 

pushdown system. Proceedings of the 14th International Conference on Quality Software, 

pp. 190-195. 

Zhenkai, Z.; Emeka, E.; Xenofon, K.; Joseph, P.; Gabor, K. et al. (2014): A co-

simulation framework for design of time-triggered automotive cyber physical systems, 

Simulation Modelling Practice and Theory, vol. 43, pp. 16-33. 


