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Abstract: With the development of cloud storage, the problem of efficiently checking 

and proving data integrity needs more consideration. Therefore, much of growing interest 

has been pursed in the context of the integrity verification of cloud storage. Provable data 

possession (PDP) and Proofs of retrievablity (POR) are two kinds of important scheme 

which can guarantee the data integrity in the cloud storage environments. The main 

difference between them is that POR schemes store a redundant encoding of the client 

data on the server so as to she has the ability of retrievablity while PDP does not have. 

Unfortunately, most of POR schemes support only static data. Stefanov et al. proposed a 

dynamic POR, but their scheme need a large of amount of client storage and has a large 

audit cost. Cash et al. use Oblivious RAM (ORAM) to construct a fully dynamic POR 

scheme, but the cost of their scheme is also very heavy. Based on the idea which 

proposed by Cash, we propose dynamic proofs of retrievability via Partitioning-Based 

Square Root Oblivious RAM (DPoR-PSR-ORAM). Firstly, the notions used in our 

scheme are defined. The Partitioning-Based Square Root Oblivious RAM (PSR-ORAM) 

protocol is also proposed. The DPOR-PSR-ORAM Model which includes the formal 

definitions, security definitions and model construction methods are described in the 

paper. Finally, we give the security analysis and efficiency analysis. The analysis results 

show that our scheme not only has the property of correctness, authenticity, next-read 

pattern hiding and retrievabiltiy, but also has the high efficiency. 

 

Keywords: Cloud storage, proofs of retrievability, partitioning framework, oblivious 

RAM. 

1 Introduction 

In recent years, cloud computing [Li, Chen, Chow et al. (2018); Shen, Gui, Ji et al. 

(2018); Zhang, Tan, Liang et al. (2018)] has been envisioned as the next generation 

architecture of the IT enterprise. It has a long list of unprecedented advantages: on 

demand self-service, ubiquitous network access, location-independent resource pooling, 

rapid resource elasticity, usage-based pricing, and et al. One fundamental aspect of this 

new computing model is data outsourcing, such as cloud storage [Tang, Wang, Hu et al. 

(2014); Li, Huang, Liu, et al. (2018)] which can store data reliably and make it easily 
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accessible from any location. In cloud storage, the client wants to upload her data to a 

server and want to rest assured that her data remains intact. She may trust the server in 

terms of availability but does not necessarily trust him to keep her data intact. Although 

cloud storage provides many appealing benefits for users, it also prompts a number of 

security issues towards the outsourced data [Li, Li, Liu et al. (2018); Lin, Yan, Huang et 

al. (2018); Xu, Wei, Zhang et al. (2018)]. For example, the storage server may try to hide 

data loss or corruption due the hardware or software failures. And the data in cloud 

storage is also too large then it is impossible to require the client to retrieve the whole file 

in order to validate it, due to this requires high time complexity and bandwidth. Thus, 

protecting the correctness and integrity of the data in the cloud is highly essential [Cash, 

Küpçü, Wichs et al. (2013); Yu, Niu, Yang et al. (2014); Lin, Li, Huang et al. (2018)]. 

Much of interests have been pursued in creating a provable storage mechanism [Ateniese, 

Burns, Curtmola et al. (2011); Etemad and Küpçü (2013); Peng, Zhou, Xu et al. (2016)], 

where an untrusted server can prove to a client that her data is keep intact. More exactly, 

the client can run an efficient audit protocol with the untrusted server, guaranteeing that 

the server can only pass the audit if it maintains full knowledge of the entire client data. 

Consider the large size of the outsourced electronic data and the client’s constrained 

resource capability, the core of the problem can be generalized as how can the client find 

an efficient way to perform periodical integrity verifications without local copy of data 

files. To achieve this goal, two novel approaches called provable data possession (PDP) 

[Ateniese, Burns, Curtmola et al. (2007)] and proofs of retrievability (POR) [Juels, 

Kaliski and Burton (2007)] were proposed.  

In PDP model, the client can challenge the server on random blocks and verify the data 

integrity through a proof sent by the server. Therefore, PDP provides probabilistic 

guarantees of possession of the outsourced file. The same year, Juels et al proposed a 

“proofs of retrievablity” (POR) [Juels, Kaliski, and Burton (2007)] model which is based 

on the closely related notion called sublinear-authenticators [Naor and Rothblum (2005)] 

and gave a more rigorous proof of their scheme. In this model, spot-checking and error-

correcting codes are used to guarantee both possession and retrievability of data files on 

archive service systems. This means POR can enable resilience against data loses at the 

server side: The client may reconstruct her data even if the server destroys (deletes or 

modifies) one portion of it. Therefore, the main difference between POR and PDP is that 

POR schemes store a redundant encoding of the client data on the server so as to she has 

the ability of retrievablity while PDP does not have. 

Most of the later variants of PDP and POR support only static data [Ateniese, Kamra and 

Katz (2009); Doids, Vadhan and Wichs (2009); Shaham and Waters (2008)]. Atenises et 

al. proposed the scalable PDP [Ateniese, Pietro, Mancini et al. (2008)] for the dynamic 

scenario. Their scheme overcomes the problems of the prior schemes which only a pre-

determined number of operations are possible within a limited set of operations. Erway et 

al also proposed a dynamic PDP (DPDP) scheme [Erway, Küpçü, Papamanthou et al. 

(2009)] in the standard model that support fully updates (modify, delete, and insert). The 

implementation of DPDP is based on rank-based authenticated skip list [Battista and 

Palazzi (2007)], in which, only the relative indexes of blocks are used, so it can 

efficiently support dynamic scenario. The works of Atenises et al and Erway et al show 
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how to achieve PDP security for dynamic scenario [Ateniese, Pietro, Mancini et al. 

(2008); Erway, Küpçü, Papamanthou et al. (2009)]. However, these schemes cannot be 

used to achieve the stronger notion of POR security. But there are few POR schemes 

which can support dynamic scenario. A recent work of Stefanov et al. [Stefanov, Dijk, 

Oprea et al. (2012)] considers the dynamic POR, but their scheme need a more complex 

setting which may be not translated to the basic client/server setting. 

Oblivious RAM (ORAM) is a notion first proposed by Goldreich and Ostro-vsky 

[Goldreich and Ostrovsky (1996)] in the context of protecting software from piracy. It 

allows a client to outsource her memory to a remote server while allowing the client to 

perform random-access reads and writes in private way. Cash et al. [Cash, Küpçü, Wichs 

et al. (2013)] give the first solution providing proofs of retrievability for dynamic storage, 

where the client can perform arbitrary reads/writes on any location within her data by 

running an efficient protocol with the server. Their scheme is based on ORAM, and they 

call it PORAM. But the cost of PORAM is heavy. So based on the idea of PORAM, Xu 

et al. [Xu, Zhou, Jiang et al. (2016)] uses Square-Root Oblivious RAM (SR-ORAM) to 

construct a dynamic proofs of retrievability (DPOR-SRORAM). But the scheme is not 

efficient. When client need more efficiency, we use SRORAM into the partitioning 

framework and get a new ORAM called Partitioning-Based Square Root Oblivious 

RAM(PSRORAM), then we combine the PSRORAM and the PoR schema to achieve a 

new DPoR schema whose security is also guaranteed by the protocols. And it turns out 

that with a little cost of storage in client, this schema gets much more security. 

In the rest of the paper, we will firstly give the notions which are used in our scheme. In 

Section 3, the Partitioning-Based Square Root Oblivious RAM (PSR-ORAM) protocol 

will be proposed. And we will also give the more details about the PSR-ORAM. In 

Section 4, we will give the DPOR-PSR-ORAM Model which includes the formal 

definitions, security definitions and model construction methods. The security analysis is 

given in Section 5. In this section, we will prove our model has the property of 

correctness, authenticity, next-read pattern hiding and retrievabiltiy. At Section 6, the 

efficiency analysis will be given. And the conclusions are given at Section 7. 

2 Preliminaries 

In this section, the notations used in this paper are given. Because the file encoding and 

decoding process is similar with the process in Xu’s paper [Xu, Zhou, Jiang et al. (2016)], 

we omit this part. And the partitioning-based square root oblivious ram is also described.  

2.1 Notation 

The notations used in this paper are given in Tab. 1. 
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Table1: Notations  

Notation Meaning Notation Meaning 

F  The original file of the user Message 
The message being with MAC 

authentication 

 F i  The location i in file F VM The MAC value of Message 

f  The partition of the original file block The basic unit of the file  

F  The encoded file l  
The number of the blocks in file F 

(The length of F) 

f  The encoded file partition codel  The length of F  

 F i'  
The encoded  F i , and its 

location is i'  
n  The length of f file partition 

key  The symmetric key of the user k  The length of f file partition 

mkey  The MAC key of the user dummy 
The redundant protected data in 

ORAM which is used for shuffle. 

1pos  The audited location shelter 
The buffered protected data in 

ORAM which is used for update. 

jPos  Location set of one audit 
SR-

period 
Period of one ORAM update 

Pos  Location set of all audit w  
The selected space of the protected 

data, w means byte unit 

t  
The number of locations in one 

audit 
permuted Dummy data and F stored in user 

2.2 Partitioning-based square root oblivious RAM 

The idea behind segmentation framework is to divide the original square root 

ORAM(SR-ORAM) which is a single N-block memory cell into an ORAM of P different 

N/P-block memory cells, so that dividing the original large ORAM into multiple sub-

ORAMs (the segmentation algorithm only logically divides the original ORAM, not a 

physical implementation). For an ORAM, the biggest cost is to maintain independence 

from the server, that is, shuffling and sorting. To improve the efficiency and reduce the 

cost, based on segmentation framework, we have added the storage of the client to reduce 

the cost of shuffling and sorting. 

1) Segmentation framework 

In segmentation framework, each segmented ORAM will have an extension area in the 

client, so that it can dynamically adjust the costs and achieve the best efficiency; at the 

same time, the segmentation framework must guarantee that access to the storage space 
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which is made up of all segmented sub-ORAM, is completely random to the malicious 

server, and similarity ensure that the storage cost of the client is small enough. 

The storage space of the segmentation framework can be broadly divided into two parts: 

server storage and client storage. The server storage is constructed by all sub-ORAM, 

while the client storage is constructed by three parts: Address Mapping Table, ORAM 

extension slot and Sort Buffer. Its framework is shown in Fig. 1.  

O-RAM O-RAMO-RAMO-RAM O-RAMPartitions

Server

Client

block

block

block block

block

block

Shuffling Buffer

Position Map

Cache Slots

 

    Figure 1: Segmentation framework 

2) Square Root ORAM in Segmentation framework 

In this section, we embed the SR-ORAM into the segmentation framework. 

First, we divide the redundant encoded user data F  into 
code=P l  blocks; the size is 

same as the file area, and then each block, together with ( )codeO l dummy data to form a 

sub-ORAM. 

Second, move the shelter data of original SR-ORAM to the client to form 
codel  ORAM 

extension slots, which are corresponding to each sub-ORAM and the data capacity of each 

ORAM extension slot, is 1-block. The data structure of PSR-ORAM, as shown in Fig. 2. 

The PSR-ORAM includes: 

Extension slot: ORAM extension slot is used to buffer data blocks. There exists 

code=P l  extension slots corresponding to the number of segmented square root sub-

ORAM, and each extension slot can store a data block. 

Address Mapping Table: Address Mapping Table is used to track the allocation of each 

storage block in ORAM. In this section, we define p  as the index of the segmented sub-

ORAM, {1,......, }p P and  =positi n uo p  indicate that a storage block which logical 

address is u in address mapping table F , is located in pth  sub-ORAM. 
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Other Storage space: it is used to store the state variables and related information for 

each phase of the server and client, such as encryption key, location and so on. 

Dummy 

data

Address Map

..

data in F

Sub-ORAM

1-block

Slot 1

..

code ORAM-l1-ORAM …… ……

codel…… …… ……

u

p

add

u-block

p-ORAM

Client Storage

Server Storage

code
blockl -

 

Figure 2: Partitioning-based square root oblivious RAM 

3 PSR-ORAM protocol 

3.1 Protocol overview 

PSR-ORAM protocol is executed when external entities access PSR-ORAM storage 

space. It concludes four parts: (i) Initialization protocol ( )POInit co e

w

d1 , l1 , , (ii) Reading 

protocol PORead( )u , (iii) Writing protocol POWrite( )u,data*  and (v) background-evict 

protocol BackgroundEvict( )num . 

1) POInit 1 1( )o

w

c de, l, : 1 is the security parameter, 1w  indicates the byte unit in data space, 

codel  represents the data length, and the idea is that codel  length data F  will be stored in 

the server and client extension slot in form of PSR-ORAM data structure. 

2) DORead( )u : u is the data location; the client first reads the extension slot in the PSR-

ORAM storage space, if the server is not found, reading the data from the sub-ORAM 

and return. 

3) POWrite( )u,data* : u is the data location to be modified, data*  is the data to be 

modified. It first calls the protocol PORead( )u , and then the client writes data*  to the 

PSR-ORAM extension slot. 



 

 

 

Dynamic Proofs of Retrievability Based on Partitioning                                      595 

4) BackgroundEvict( )num  Protocol: num is the number of data blocks. It is a process 

happened in PSR-ORAM structure, where the client extension slot writes a fixed number 

of data blocks to the server’s sub-ORAM.  

3.2 Protocol description 

In segmentation framework, the actual interaction with the client is each segmented sub-

ORAM. In the process of interaction, we have defined an identifier to give all blocks 

numbers, if it is dummy data, mark⊥ , otherwise code{1,2,..., }l . 

1) POInit( )
co

λ w

de
1 , l1 ,   

Step 1. Partition 

First, the client randomly sorts the codel  length data F , then divides it into 
codel sub-

block of 
codel  length. Second, send each sub-block to the server. Third, randomly select 

code( )o l  number of dummy data to construct a sub-ORAM, and then empty the 

extension slot for each sub-ORAM which client corresponding, to construct a PSR-

ORAM storage space extending to the client 

Step 2. Fill address mapping table 

During initialization, the idea is for client to write the logical address of all data blocks 

and the sub-ORAM numbers to table position in form of  =positi n uo p . Each mapping 

contains the offset of the logical address in its sub-ORAM, improving the efficiency of 

server lookup data. 

2) PORead( )u  

The idea is for server to access parts of the PSR-ORAM storage space of the server at one 

time, as the access sequence is completely indistinguishable, the malicious server cannot 

know any effective information. The protocol OReadP is constructed by three steps: 

Step 1. Looking for position mapping table 

The client first search in the mapping table position to find the block position u, then find 

its corresponding index p  in sub-ORAM  

Step 2. Access extension slot and its sub-ORAM 

If the data block with position u is found in the extension slot p of the client sub-ORAM, 

then read a dummy data from the sub-ORAM; if the data is not found in the extension 

slot, and then read a data block from the sub-ORAM which position is u. When the server 

has read a data block from the pth sub-ORAM in the PSR-ORAM storage space (The 

data can be either dummy data or data from F , but it is indistinguishable to the server), 

the block will be deleted, and then clear both the data and position of the block. 

Step 3. Redistribution 

The client randomly selects a sub-ORAM extension slot p'  and writes the data block u 

into the slot. If the slot p'  has data, we should randomly select again.  
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At the same time, the client should update the position  mapping table, associate p' and u , 

and save the association to the position  mapping table. When next time read data u, the 

location is p'th ORAM, which consists of sub-ORAM and extension slot. 

3) POWrite( )u,data*   

The idea is firstly executing the protocol PORead( )u to read the variable data in position u, 

and then replacing the data with a new input variable *data . Finally write the updated 

data block in position u into the extension slot. 

4) BackgroundEvict( )num   

This protocol is completely independent of the data access request; it can be regarded as 

an autonomous process in the PSR-ORAM storage space. First, define a ratio rate  to 

indicate that there may have rate*num P=  data in extension slots can be written to the 

corresponding sub-ORAM during each data access phase. 

Generally, the process is that after each data access, the client will randomly choose num  

extension slots from P . Then the data in extension slot will be written to a random 

position in the spare position of the sub-ORAM (The probability of position overflow can 

be negligible), if there is no data in the extension slot, a dummy data will be written. 

4 DPoR-PSR-ORAM model 

4.1 Formal definition 

Definition 1 (DPoR-PSR-ORAM model): There are two parties in the model, remote 

server S (such as cloud storage provider) and client C, for transmitting messages by 

executing DPoR-PSR-ORAM protocol. Generally, the protocol includes four parts: 

DDPInit protocol, DDPRead protocol, DDPWrite protocol, and DDAudit protocol, which 

can be represented by ={DDPInit,DDPRead,DDPWrite,DDAudit} .  

1) DDPInit protocol 

DDPlnit 1( ),1 ,w l :   is the security parameter, w means byte unit in data space, and l  is the 

length of data which unit is block. By this protocol, the client sends data to the server. 

2) DDPRead protocol 

DDPRead( )i : i  is the position of the data to be read in user data F . By executing this 

protocol, the client can read the corresponding location data. 

3) DDPWrite protocol 

DDPWrite( )i,data* : i means the position of the data to be written in the user data F , and 

'v is the input value. By executing this protocol, the client can update the corresponding 

location data. 

4)  DDAudit protocol 

DDAudit( )Pos : Pos is a predefined i dataset. The data corresponding to the position in the 

set construct Message and MAC (Message Authentication Code). By executing this 

protocol, the client can verify whether the data has been tampered or deleted. 
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4.2 Security definitions 

In order to satisfy the security of the proposed DPoR-PSR-ORAM, and both supports 

four properties: accuracy, authenticity, access privacy, and data recoverability. As the 

security of DPoR-PSR-ORAM is almost the same as the security of DPoR-SRORAM 

proposed in Xu’s paper [Xu, Zhou, Jiang et al. (2016)], the only difference is ORAM. So, 

the way to implement the access patterns hiding features is different. Hence, we redefined 

the access privacy. Other security definitions are not described. 

Definition 2 (Access privacy): If DPoR-PSR-ORAM scheme has access privacy, the 

PSR-ORAM based on the PSR-ORAM scheme meets ORAM security. That is the hiding 

access patterns. 

The access privacy of the DPoR-PSR-ORAM schema guarantees that the server could not 

receive any valid information when the client accesses user data. The access privacy of 

DPoR-PSR-ORAM is the same as the scheme in the previous chapter, which is defined 

and implemented based on the ORAM hiding access patterns. In this scheme, when client 

requests data, the server will send the requested location through the PSR-ORAM 

protocol to the PSR-ORAM storage space to preprocess. Hence, if the PSR-ORAM 

protocol used in this scheme can satisfy hiding access patterns, the DPoR-PSR-ORAM 

scheme also can satisfy access privacy. 

4.3 Construction 

1) DDPInit protocol 

Step 1: The client generates a symmetric key and a MAC key mkey, etc. through key 

generation algorithm.  

Step 2: The client executes Encode( ) ( )→F;key,mkey F,Pos  and turns l length of user file 

F  to codel length of F . 

Step 3: Treat codel  length of F as an input, and execute the protocol (1 ,1 , )w

codeDOInit l .  

2) DDPRead protocol 

Step 1: The client selects a position i in the original data F, getting the variable v and 

through ( )* / 1+ +  = n i k i mod ku computing the 'v s corresponding position in F .  

Step 2: There are two parts in PSR-ORAM storage space, the sub-ORAM of the server 

and the extension slot of the client, for transmitting messages. By executing this protocol, 

the client gets the file content   [ ]= =F ui F v of the corresponding position it read. 

During the DDPRead Protocol, the PSR-ORAM storage space is trusted and open to the 

client, but the server is a black box. As the writing and reviewing of protocol below are 

similar, no more details will be repeated here.  

3) DDPWrite protocol 

Step 1: The client selects the position i in original data F, geting the value data  and 

through * /=   j  n i k computing all positions in the file jf  of F .  
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Step 2: Execute ( )DORead 1, ,+  +j j n  protocol and come back to file jf  . 

Step 3: The client uses the decoding algorithm Decode( ) →j jf ;key f  to generate jf . 

Step 4: The client updates the variable in position i to [ ] =F i data* , and rerun the 

encoding algorithm Encode( )→j jf ';key f '  to generate jf .  

Step 5: The client executes ( )DOWrite jf '  protocol to write the values into the extension 

slot. By executing BackgroundEvict(num)  protocol, the client and the server will 

regularly to write the data into the server.  

4) DDAudit protocol  

There have two functions in this protocol: (i) Review whether the user data is tampered, 

(ii) Recover data.  

The description of first protocol is given as follows. 

Step 1: Selects t-position 1( ,......, )tPos Pos  from codel  as a subset of Pos  which is used to 

verify MAC information, and then execute 1DORead( ,......, )tPos Pos .  

Step 2: The client gets corresponding positions values
1

( ,...... ) ( )=
tPos Posos MP = v v Message,VV  . 

Step 3: Execute Verify( , ) →MV ,Message key b algorithm to determine if the server has 

passed the review. If successes, b=1, otherwise, b=0. 

The idea for second protocol is to use an extractor (here the client) to iterate review the 

server in order to recover user data F. The detail description is as follows:  

Step 1: Randomly select t-position 1( ,......, )tPos Pos from codel  and then execute 

1DORead( ,......, )tPos Pos  protocol.  

Step 2: Iteratively repeat codemax(2 , ) *s= l p  times. The client C saves all the data 

received from the server into an empty Vector to generate F' . After the decoding, if 
=F' F , the data recovery is successful; otherwise, F' F , return fail.  

5 Security analysis 

Since the safety, validity, authenticity and data recoverability definition of DPoR-PSR-

ORAM is the same as the definition of DPoR-PSR-ORAM, and the verification process 

is similarly same. Hence, no more details would be repeated here. However, the DPoR-

PSR-ORAM project is based on a PSR-ORAM different from that of this one, and the 

way to hide the access mode is also differs. So, we will prove the access privacy of 

DPoR-PSR-ORAM by demonstrating the hidden access mode of PSR-ORAM.  

Theorem 1: Suppose that the project meets access privacy only when PSR-ORAM meets 

a hidden access mode.  

Proof: The access mode of PSR-ORAM includes three stages: accessing the data of 

extension slot, reading data from database and deleting that data, updating data of the 

extension slot, and doing behind-the-scenes eviction algorithm.  
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In the game of ( )b
sReadGame in section 2, the trusted server accesses two sequences of 

PSR-ORAM protocol, 0 0 q(op ,...,op )=Q or 1 0 q(op ',...,op ')=Q , while malicious server can 

know which one is executed according to the copies of the sequences. 

When executing op j  
and

 
op 'j  

of the two sequences, the first phase is to access the data 

of the extension slot, no matter the corresponding protocol is read or written. Suppose 

that the probability of knowing a protocol in the first phase is Prphase1 . According to PSR-

ORAM, the data of extension slot is stored in the client, which is trusted. Hence, whether 

variable is found or not in the corresponding position, Pr 0=phase1 . 

No matter the executing protocol is read or write, in the second phase, the order is always 

firstly access the first position of server and then delete the data there. When it found a 

wanted value in the first stage, it will access code( )l count th +  position in the dummy data; 

otherwise, it will access ( )u th position in F . Suppose that the server could tell the 

difference between them, that is Pr =phase2 (   is no negligible), that means the   

pseudorandom permutation is not random for the server. It can be concluded from the 

randomness of the pseudorandom permutation that   is completely random for the 

server. In this case, the hypothesis is untenable, so Pr ( )=phase2 negl . 

The third stage is completely dependent from the first two stages. The
 BackgroundEvict  

protocol inside PSR-ORAM has written the updated data into the server, and its 

executing process and accessing process are totally independent from each other. Writing 

frequency only relates to num , which is relevant to security parameters, and during the 

writing process of the server, dummy data or user data is written according to the content 

of the extension slot, so it is also absolutely indistinguishable for the server. Hence, we 

have Pr ( )=phase3 negl . 

0 1| Pr[ ( ) 1] Pr[ ( ) 1] | Pr Pr Pr ( )phase1 phase2 phase3S S
ReadGame ReadGame negl  = − = = + + =  

As a conclusion, PSR-ORAM meets a hidden access mode, and DPoR-PSR-ORAM 

meets access privacy as well as validity, authenticity, and data recoverability. 

6 Efficiency 

The DPoR-PSR-ORAM scheme is compared with DPoR-SRORAM scheme and 

hierarchical PORAM scheme, and the results are shown in Tab. 2 as follows: 

Table 2: Comparisons of Performance 

Performance DPoR-SRORAM DPoR-PSR-ORAM Hierarchical 

PORAM 

client storage cost O( N ) O(1) O(1) 

server storage cost 2N  N+ 2 N  8N 

access complexity O(1) O( N ) 
O(logN2) 



 

 

 

600   Copyright © 2018 Tech Science Press             CMC, vol.57, no.3, pp.589-602, 2018 

communication cost O(num) O(1) O(logN) 

Shuffle cost O(1)
 O( N+ N )

 
O( 4N ) 

support the update Yes Yes Yes 

As shown in Tab. 2, the conclusion can be reached that: Firstly, compared with the 

SRORAM-DPoR scheme, the proposed scheme increases not only the storage capacity of 

the client but the storage capacity of the server. Unfortunately, it is far less than that 

required by the hierarchical PORAM scheme. Moreover, it greatly reduces the cost of 

access. In order to eliminate the shuffle time, it assigns the shuffle cost to the 

communication cost of the behind-the-scenes eviction after each visiting. Finally, the 

proposed scheme is more conducive to implement a dynamic PoR scheme when the 

client's storage is large enough. 

7 Conclusions 

In this paper, we use PSR-ORAM to construct a dynamic POR which is called DPoR-

PSR-ORAM. This scheme can be used for dynamic storage with high efficiency. The 

PSR-ORAM protocol which is the basis of our scheme is proposed in the paper. We 

combine the PSR-ORAM protocol and POR scheme to give the DPoR-PSR-ORAM 

scheme which the storage cost and shuffle cost is much reduced. Finally, the security and 

efficiency analysis show that our scheme is efficient in supporting data dynamics with 

provable verification and retrievability. Finally, in the future, we will give much attention 

to improve the efficiency and security of our scheme. 
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