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Abstract: A size-dependent computational approach for bending, free vibration and 

buckling analyses of isotropic and sandwich functionally graded (FG) microplates is in this 

study presented. We consider both shear deformation and small scale effects through the 

generalized higher order shear deformation theory and modified couple stress theory 

(MCST). The present model only retains a single material length scale parameter for 

capturing properly size effects. A rule of mixture is used to model material properties 

varying through the thickness of plates. The principle of virtual work is used to derive the 

discrete system equations which are approximated by moving Kriging interpolation (MKI) 

meshfree method. Numerical examples consider the inclusions of geometrical parameters, 

volume fraction, boundary conditions and material length scale parameter. Reliability and 

effectiveness of the present method are confirmed through numerical results.  

 

Keywords: Modified couple stress theory, isotropic and sandwich FGM plates, moving 

Kriging meshfree method. 

1 Introduction 

Nowadays, devices with small size have been widely used in various fields of aerospace, 

machinery, electronics and medical equipment. They have been also known as micro-

electro-mechanical systems (MEMS) devices and are made of microbeam and microplate 

structures. Therefore, to use the devices effectively, an insight into mechanical behaviors 

of micro-structures are required. In addition, experimental studies indicate that the size 

effect takes into account in the micro-structures [Lam, Yang, Chong et al. (2003)]. 

Unfortunately, the classical continuum theories cannot enable to forecast exactly 

behaviors of micro-structures because of the insufficiency of material length scale 
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parameters. Therefore, the advanced theories accounting higher order strain gradients 

named as the strain gradient theories taking into accounts additional material length scale 

parameters have been developed.  

The strain gradient theories in the literature can be primarily categorized by two groups: 

The general strain gradient theory and the couple stress theory. The first one known as 

the general strain gradient theory proposed by Mindlin et al. [Mindlin and Eshel (1968); 

Mindlin (1964)], which are examined by all strain gradient components. This theory takes 

five material length-scale parameters into account in the classical material constants. 

However, it is hard to use in modeling and computation. For simplicity, the second theory 

[Toupin (1962); Mindlin and Tiersten (1962); Koiter (1964)] considered an anti-

symmetric part of the strain gradient and included two material length scale parameters. 

In particular, a modified version of this theory known as the modified couple stress 

theory (MCST) was proposed by Yang et al. [Yang, Chong, Lam et al. (2002)]. It only 

involves a symmetric rotation gradient component and one material length scale 

parameter. At present, the MCST is highly interested in research community.  

The MCST has been applied to FG microplates. A size-dependent three-dimensional (3D) 

elasticity model was early developed by Salehipour et al. [Salehipour, Nahvi, Shahidi et 

al. (2017)] for bending analysis of FG microplates. Guo et al. [Guo, Chen and Pan (2016); 

Guo, Chen and Pan (2017)] extended this approach to multilayered microplates. However, 

it is in fact for plate analysis that the size-dependent 3D elasticity model shows 

computationally too expensive. Tsiatas [Tsiatas (2009)] proposed then the Kirchhoff 

plate model for bending analysis of isotropic microplates. Several solutions based on this 

plate model were reported in Yin et al. [Yin, Qian, Wang et al. (2010); Jomehzadeh, 

Noori and Saidi (2011); Ansari and Norouzzadeh (2016)]. After that, a size-dependent 

first-order shear deformation plate theory (FSDT) based on the MCST was developed by 

Ma et al. [Ma, Gao and Reddy (2011)] for bending analysis and Ke et al. [Ke, Wang, 

Yang et al. (2012)] for free vibration analysis of isotropic microplates. Other relevant 

researches to this approach were also presented by Zhou et al. [Zhou and Gao (2014)] and 

Alinaghizadeh et al. [Alinaghizadeh, Shariati and Fish (2017)]. Moreover, a size-

dependent third-order shear deformation (TSDT) model combined with the MSCT was 

developed by Gao et al. [Gao, Huang and Reddy (2013)] for isotropic microplates. After 

that, it was extended for FG microplates by Thai et al. [Thai and Kim (2013)] and 

Eshraghi et al. [Eshraghi, Dag and Soltani (2016)]. Thai et al. [Thai and Vo (2013)] 

proposed the sinusoidal plate model based on the MCST for FG microplates. Similarly, 

He et al. [He, Lou, Zhang et al. (2015)] and Lou et al. [Lou, He and Du (2015)] presented 

a size-dependent refined higher-order shear deformation (RPT) model for FG microplates. 

A size-dependent model accounting all shear and normal strains so-called the quasi-3D 

shear deformation theory was also proposed by Kim et al. [Kim and Reddy (2013)] for 

behavior analysis of FG microplates. The FSDT model was further developed for 

analysis of FG microplates [Lei, He, Zhang et al. (2015); Trinh, Vo, Thai et al. (2017); 

Nguyen, Nguyen, Wahab et al. (2017)].  

For more details, Thai et al. [Thai, Vo, Nguyen et al. (2017)] presented a review of 

continuum mechanics models for size-dependent analysis of beams and plates. It showed 

that most size-dependent models developed rapidly in the last five years and 
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computational approaches herein were almost concerned with analytical methods. 

Addressing attempts to the advanced development of numerical methods such as finite 

elements, isogeometric analysis and meshfree for size-dependent analysis, we review a 

list of several studies in the literature. Phadikar et al. [Phadikar and Pradhan (2010)] 

presented a Kirchhoff finite element model based on the nonlocal elasticity theory for 

nanoplates. A FSDT finite element model combined with the nonlocal elasticity theory 

was reported by Ansari et al. [Ansari, Rajabiehfard and Arash (2010)]. Natarajan et al. 

[Natarajan, Chakraborty, Thangavel et al. (2012)] proposed a size-depedent isogeometric 

Mindlin plate model based on the nonlocal elasticity theory for nanoplates. Similarly, 

Nguyen et al. [Nguyen, Hui, Lee et al. (2015)] developed a size-dependent quasi-3D 

shear deformation model based on the nonlocal elasticity theory for FG nanoplates. An 

improved model by a combination of nonlocal and surface effects based on IGA was 

presented by Ansari et al. [Ansari and Norouzzadeh (2016)]. Besides, a size-dependent 

isogeometric model based on the modified strain gradient theory was proposed by Thai et 

al. [Thai, Ferreira and Nguyen (2018)] for analysis of FG microplates. Foroushani et al. 

[Sarrami-Foroushani and Azhari (2016)] and Mirsalehi et al. [Mirsalehi, Azhari and 

Amoushahi (2015)] developed the finite strip method incorporate with the nonlocal 

elasticity theory for FG nanoplates. Moreover, a size-dependent meshfree model based on 

the MCST for the isotropic microplates was developed by Roque et al. [Roque, Ferreira, 

and Reddy (2013)]. This model was applied for the FG microplates by Thai et al. [Thai, 

Ferreira, Lee et al. (2018)]. A further development of the meshfree method based on the 

nonlocal elasticity theory was presented by Zhang et al. [Zhang, Lei, Zhang et al. (2015)] 

for analysis of nanoplates. From above studies, it is clearly that a number of articles 

found in the literature based on the numerical solutions are still limited for analysis of 

micro/nano plates and shells [Rabczuk, Gracie, Song et al. (2010); Rabczuk, Areias and 

Belytschko (2007); Zenkour (2005)]. The above mention motivates us to develop a size-

dependent HSDT meshfree model combined with the MCST for bending, free vibration 

and linear buckling analyses of isotropic and sandwich FG microplates.  

The paper is outlined as follows. Basic equations of FG microplate based on the MCST 

are summarized in Section 2. In Section 3, FG microplate formulations based on moving 

Kriging interpolation are introduced. Numerical results are illustrated in Section 4. 

Finally, concluding remarks are given in Section 5. 

2 Basic equations 

2.1 Problem description 

2.1.1 Isotropic FG plates  

As shown in Fig. 1, a FG microplate with thickness h made of a mixture of ceramic and 

metal is considered. Effective material parameters of the FG microplates as Young’s 

modulus ( )E , Poisson’s ratio ( )v  and density mass ( )  can be computed by a rule of 

mixture as: 

( ) ( )e c m mE E E V z E= − + ;  ( ) ( )e c m mV z= − +    ;  ( ) ( )e c m mV z= − +       (1) 
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where the subscripts c and m define the ceramic and metal, respectively. ( )V z  is the 

volume fraction of the constituents through the thickness by Reddy [Reddy (2000)]: 

1
( )

2

n
z

V z
h

 
= + 
 

; 
2 2

h h
z−    (2) 

in which the subscript n is the volume fraction exponent or the power index. 

metal

a

b

h

h/2

-h/2

z

x

y
ceramic

 

Figure 1: A typical configuration of FG microplate. 

2.1.2 Sandwich plates  

A sandwich FG microplate (cf. Fig. 2) made of a combination of an isotropic core and 

two FGM face sheets is considered, in which the bottom and top FGM sheets change 

from the metal-rich surface ( )1z z= to the ceramic-rich surface ( )2z z=  and the ceramic-

rich surface ( )3z z=  to the metal-rich surface ( )4z z= , respectively. The volume fraction 

of two face sheets are formed by a power-law function through the plate thickness given 

by Zenkour et al. [Zenkour (2005); Li, Lu and Kou (2008)]: 

1
2

2 1

2 3

4
3

4 3

( ) , ,  bottom layer
2

( ) 1               ,    ,  core layer

( ) ,   ,  top layer
2

n

n

z z h
V z z z

z z

V z z z z

z z h
V z z z

z z

 −
= −   

− 

=  

 −
=   

− 

 (3) 

Several types of the bottom-core-top thickness ratio ( )b c th h h− − are examined in this 

work. For example, 2 1 2b c th h h− − = − −  indicates that the thickness of two face sheets 

are greater than two times compared to the core. 
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Figure 2: The sandwich plate with FGM sheets and homogeneous core 

2.2 Modified couple stress theory 

The modified couple stress theory (MCST) [Yang, Chong, Lam et al. (2002)] regards one 

additional material length scale parameter in addition to the classical material constants 

instead of two ones as in the classical couple stress theory. The MCST additionally 

considers the symmetric rotation gradient tensor   into the strain tensor  . According to 

the MCST, the virtual strain energy U in an isotropic linearly elastic material can be 

described by: 

( ): d
V

U V= + m :    (4) 

where   is the Cauchy stress tensor; m is high-order stress tensor corresponding with 

the rotation gradient tensors  , respectively. 

The relations of the strain tensor with displacement vector  
T

u v wu = and the 

rotation gradient tensor with rotation vector  
T

x y z   =  are defined by 

1
( )

2

T = + u u    (5)              

1
( )

2

T = +     (6)               

where ( =
x y z

   
 
   

 ) is the gradient operator. 

The relation between displacement vector u  and rotation vector   is expressed as 

follows 
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 
1 1 1

2 2 2

T

T

x y z

w v u w v u

y z z x x y

           
= = − − −     

           
    (7)               

The constitutive relations are given by 

=C ε  (8)              

22G=m   (9)               

where C, G,  are the stiffness tensor or elasticity tensor, the shear module and the 

material length scale parameter, respectively. 

2.3 Kinematics of FG microplates 

A plate bounded by a domain ,
2 2

h h 
 − 

 
V =  is considered, in which 2 and h are 

the middle surface and the plate thickness, respectively. According to the generated 

higher order shear deformation theory [Thai, Ferreira, Rabczuk et al. (2014); Thai, 

Kulasegaram, Tran et al. (2014)], the displacement field of any points in the plate is 

formulated as follows: 

( ) ( ) ( ) ( )1 2 3, , , , ( ) ,x y z x y z x y f z x y+ +u = u u u  (10) 

where 

0 0,

1 2 3

0 0,

0

;   ;   ;   

0 0

x x

y y

u u w

v v w

w w

       
       

= = = − =       
       
       

u u u u





 

(11) 

in which 0u , 0v , 0w , x  and y  are the in-plane, transverse displacements and the rotation 

components in the y-z, x-z planes, respectively. The symbols ‘,x’ and ‘,y’ indicates the 

derivative of arbitrary functions following x and y directions, respectively, and ( )f z  is a 

certain function defined through plate thick. 

Substituting Eq. (10) into Eq. (5), the strain components can be obtained by 

( )0, 0, ,xx x xx x xu zw f z= − +  ; ( )0, 0, ,yy y yy y yv zw f z= − +  ; 

( )( )0, 0, 0, , ,2xy y x xy x y y xu v zw f z= + − + +   ; 

( )xz xf z=  ; ( ) yz yf z=  ; 0zz =  

(12) 

The strains can be decomposed into two terms consisting of bending and shear strains 

which are expressed as follows 

 
T

1 2 3( )xx yy xy z f z= + +   =      and  
T

( ) s

xz yz f z=γ   =   (13) 

where  
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0,

1

0,

0, 0,

x

y

y x

u

v

u v

 
 

=  
 + 

 ; 

0,

2

0,

0,2

xx

yy

xy

w

w

w

 
 

= − 
 
 

 ; 

,

3

,

, ,

x x

y y

x y y x

 
 

=  
 + 





 

 ; 
xs

y

 
=  
 




   (14) 

in which ( )f z  is the derivation of the function ( )f z . The function ( )f z
 
can be 

determined so that transverse shear stresses corresponding with shear strains in Eq. (13) 

at top and bottom of microplates are equal to zeros or the value of its tangential at 

/ 2z h=   is equal to zero.  

Substituting Eq. (10) into Eq. (7), the rotation vector becomes 

( )0,

1 1
2 ( )

2 2
x y y

w v
w f z

y z

  
= − = − 

  
   

( )0,

1 1
2 ( )

2 2
y x x

u w
w f z

z x

  
= − = − + 

  
    

( ) ( )0, 0, , ,

1 1 1
( )

2 2 2
z x y y x x y

v u
v u f z

x y

  
= − = − + − 

  
    

(15)               

Substituting Eq. (15) into Eq. (6), we write the symmetric rotation gradient as follows:  

( )0, ,

1
2 ( )

2

b x
xx xy y xw f z

x


= = −




  ; ( )0, ,

1
2 ( )

2

yb

yy xy x yw f z
y


= = − +




   

( )0, 0, , ,

1 1 1
( )

2 2 2

yb x
xy yy yy x x y yw w f z

y x

   
= + = − + − −   

    


   ;   

( ), ,

1
( )

2

b z
zz y x x yf z

z


= = −




    

( ) ( ), , , ,

1 1 1 1
( ) ( )

2 4 4 4

s x z
xz o xx o xy y xx x xy yv u f z f z

z x

  
= + = − + − − 

  

 
    ; 

( ) ( ), , , ,

1 1 1 1
( ) ( )

2 4 4 4

ys z
yz o xy o yy y xy x yy xv u f z f z

z y

 
= + = − + − − 

  

 
     

(16)               

The symmetric rotation gradient tensor can be rewritten under a compact form by 

,

b

s

  
=  
  





  

where   ( )1 2

T
b b b b b b b

xx yy xy zz f z= = +      ;   

( ) ( )1 2 3

s

xzs s s s

s

yz

f z f z
  

= = + + 
  




     

              (17) 

              



 

 

 
454   Copyright © 2018 Tech Science Press             CMC, vol.57, no.3, pp.447-483, 2018 

and  

( )

0,

0,

1

0, 0,

1

2

0

xy

xy
b

yy xx

w

w

w w

 
 

−
  

=  
− 

 
  

 ; 

( )

( )

,

,

2

, ,

, ,

1

2

1

2

1

4

1

2

y x

x y
b

x x y y

y x x y

 
− 

 
 
 

=  
 −
 
 
 −
 





 

 

 ; 

0, 0,

1

0, 0,

1

4

xx xys

xy yy

v u

v u

−  
=  

−  

 ; 
, ,

2

, ,

1

4

y xx x xys

y xy x yy

−  
=  

−  

 

 
 ; 

3

1

4

ys

x

−  
=  

  




  

(18)               

The classical and modified couple stress linear elastic constitutive relations are written as 

follows 

11 12

21 22

66

55

44

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

xx xx

yy yy

xy xy

xz xz

yz yz

Q Q

Q Q

Q

Q

Q

 

 

 

 

 

    
    
       

 =   
    
    
        

 (19) 

 

2

1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

xx xx

yy yy

xy xy

zz zz

xz xz

yz yz

m

m

m
Gl

m

m

m

    
    
    
       

=     
    
    
    
        













 (20) 

where 

11 22 12 66 55 442 2 21
(1

,  ,  
1 1 2 )

e e e

e e

e

e

E E E
Q Q Q Q Q Q Q= = = =

+
= = =

− −



 
, 

(12 )e

eE
G =

+
 (21) 

where eE  and e  are the effective Young module and Poisson’s ratio according to Eq. 

(1), respectively. 

The discrete Galerkin weak form for the bending analysis of the FG microplate subjected 

to a transverse loading 0q  are written by 
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( )

( )

/2

/2

/2

0 0

/2

d d

2 2 2 d d d

h

xx xx yy yy xy xy xz xz yz yz

h

h

xx xx yy yy zz zz xy xy xz xz yz yz

h

z

m m m m m m z w q

         

      

 −


 −

+ + + +  +

+ + + + +  = 

 

  

(22) 

The Eq. (22) can split into two independent integrals following to middle surface and z-

axis direction. Substituting Eq. (19) and Eq. (20) into Eq. (22), the discrete Galerkin 

weak form can be rewritten under the matrix form as follows 

( ) ( ) ( ) 0 0
ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆd d d d d

T T T
T s s s b b b b s s s s

c c c c w q    
    

+ + + =     D ε D ε D D         (23) 

where 

 1 2 3
ˆ

T
 =    ;  1 2

ˆ b b b=   ;  1 2 3
ˆ

T
s s s s=    ; 

ˆ

b b b

b b b

b b b

 
 

=  
 
 

A B E

D B D F

E F H

; ˆ
b b

b c c

c b b

c c

 
=  
 

A B
D

B D
; ˆ

s s s

c c c

s s s s

c c c c

s s s

c c c

 
 

=  
 
 

A B E

D B D F

E F H

; 

0ˆ
0

b

b c

c b

c

 
=  
 





; 

0 0

ˆ 0 0

0 0

s

c

s s

c c

s

c

 
 

=  
 
 



 



; ( )1,1,2,1b

c diag= ; ( )2,2b

c diag=

(24) 

in which 

( ) ( )
11 12

/2
2 2

21 22
/2

66

0

, , , , , 1, , , ( ),z ( ), ( ) 0 d

0 0

h
b b b b b b

h

Q Q

z z f z f z f z Q Q z

Q
−

 
 

=
 
  

A B D E F H ; 

/2
442

/2
55

0
( ) d

0

h
s

h

Q
f z z

Q−

 
=  

 
D ; ( ) ( )

/2
2 2

4 4
/2

, , 2 1, ( ),( ( )) d
h

b b b

c c c x
h

Gl f z f z z
−

 = A B D I ; 

( ) ( )
/2

2 2 2

2 2
/2

, , , , , 2 1, ( ),( ( )) , ( ), ( ) ( ),( ( )) d  
h

s s s s s s

c c c c c c x
h

Gl f z f z f z f z f z f z z
−

  = A B D E F H I

(25) 

in which 2 2xI , 4 4xI are identity matrices of size 2×2 and 4×4, respectively. 

The discrete Galerkin weak form for free vibration analysis of the FG microplate can also 

be defined by:  

( ) ( ) ( )ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆd d d d d
T T T

T s s s b b b b s s s s T

c c c c    
    

+ + + + =    D ε D ε D D u mu 0       

(26) 

where 
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1

2

3

ˆ

 
 
 
 
 

u

u = u

u

;
1 2 4

2 3 5

4 5 6

ˆ

 
 
 
  

I I I

m = I I I

I I I

; ( ) ( )
/2

2 2

1 2 3 4 5 6

/2

1 0 0

, , , , , 1, , , ( ), ( ), ( ) 0 1 0 d

0 0 1

h

e

h

z z f z zf z f z z
−

 
 

=
 
  

I I I I I I   
(27) 

The discrete Galerkin weak form for buckling analysis of the FG microplate under an in-

plane loading can be expressed by: 

( ) ( ) ( )
T 0 0

0, 0,

0 0
0, 0,

ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆd d d d

d

T T T
T s s s b b b b s s s s

c c c c

x xx xy

y yxy y

w wN N
h

w wN N

   



   



+ + + +

    
 =    

     

   



D ε D ε D D

0

       

(28) 

where 0

xN  and 0

yN  are pre-buckling loads in x, y directions, respectively; 0

xyN  is a plane 

shear load in x-y surface. 

3 FG microplate formulation based on moving Kriging interpolation 

3.1 Moving Kriging interpolation shape functions 

Let us consider a given domain   which is discretized into a set of nodes xI (I = 1,..., 

NP), as shown in Fig. 3, in which NP denotes the number of nodes in the problem domain. 

According to the moving Kriging shape functions, the displacement field ( )hu x is 

described by 

( )
1

( )
NP

h

I I

I

u N u
=

=x x (29) 

where Iu is the unknown coefficient associated with node I and IN  is the moving Kriging 

shape function being expressed as follows 

1 1

( ) ( ) ( )
m n

I j jI k kI

j k

N p A r B
= =

= + x x x    or   T T( ) ( ) ( )IN = +x p x A r x B  (30) 

in which n is a number of nodes in a support domain x  and m is the dimension of a 

polynomial basis function space. In addition, A , B , ( )p x  and ( )r x  are expressed as: 

T -1 -1 T -1( )=A P R P P R , -1(= −B R I PA)  

( )  2 21 ...
T

x y x xy yp x = and 

T

1 2( ) [ ( , ) ( , ) ( , )]nR R R=r x x x x x x x

(31) 

where I is the identity matrix of size n n .  

According to the discrete Galerkin weak form, a minimum choice of ( )p x  is the 

quadratic polynomial functions: 

( )  2 21
T

x y x xy yp x =  (m=6) (32) 

Now we write P and R as follows 
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1 1 1

1

( ) ... ( )

... ... ...

( ) ... ( )

m

n m n

p p

p p

 
 
 
  

x x

P =

x x

 and 

1 1 1

1

( , ) ... ( , )

... ... ...

( , ) ... ( , )

n

n n n

R R

R R

 
 
 
  

x x x x

R =

x x x x

 (33) 

where ( )
21

( , ) ( ) ( )
2

h h

I J I JR E u u −
  

x x = x x  is a correlation function, in which E denotes 

an expected value of a random function.  

Various correlation functions consisting of multi-quadrics, thin plate splines, Gaussian 

can be chosen to construct MKI shape functions. For example, the Gaussian function can 

be utilized and it is defined as 
2

0( , ) e

IJr

a

I JR

 
−  
 =x x  

(34) 

where IJ I Jr = x - x , the correlation parameter   is related to the variance 2  of the 

normal distribution function by 2 21/ 2 = . The scale factor 0a stands for the 

normalized distance. For regularly distributed nodes, 0a is taken as the length of two 

adjacent nodes, and it is chosen to be the maximum distance between a pair of nodes in 

the support domain for the irregularly distributed nodes. The previous works [Thai, Do 

and Nguyen-Xuan (2016); Thai, Nguyen, Rabczuk et al. (2016); Nguyen, Thai and 

Nguyen-Xuan (2016); Phan-Dao, Thai, Lee et al. (2016); Thai, Ferreira and Nguyen-

Xuan (2017); Thai, Ferreira, Rabczuk et al. (2018)] showed that the normalized 

correlation function is stable and not influenced by the correlation parameter  . Hence, 

the correlation parameter is assumed to be equal to 1. 

 

Figure 3: Domain representation and support domain of 2D model 
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The first and second-order derivatives of the MKI shape functions are expressed by 

, , ,

1 1

( ) ( ) ( )
m n

I x j x jI k x kI

j k

N p A r B
= =

= + x x x ; 
, , ,

1 1

( ) ( ) ( )
m n

I y j y jI k y kI

j k

N p A r B
= =

= + x x x ; 

, , ,

1 1

( ) ( ) ( )
m n

I xx j xx jI k xx kI

j k

N p A r B
= =

= + x x x ;  
, , ,

1 1

( ) ( ) ( )
m n

I yy j yy jI k yy kI

j k

N p A r B
= =

= + x x x ; 

, , ,

1 1

( ) ( ) ( )
m n

I xy j xy jI k xy kI

j k

N p A r B
= =

= + x x x   

(35) 

In meshfree methods, a support domain of nodes is needed to construct the shape 

functions. Herein, the size of the support domain is important and can be defined as 

m cd d=    (36) 

where cd and   are an average distance between nodes and a scale factor, respectively. It 

is shown that the size of the support domain is enough large to support a sufficient 

number of nodes for achievement of stable solutions. Such a value of scale factor can be 

determined through numerical experience.  

3.2 A MKI-based formulation using the HSDT and modified couple stress theory 

According to the MK interpolation, the displacement field can be approximated as  

( )

( )

( )

( )

( )

( )

( )

0

0

0

1 1

, 0 0 0 0

0 , 0 0 0

, ,0 0 , 0 0

0 0 0 , 0

0 0 0 0 ,

II

IIn n
h

I I II

I I

xII

yII

uN x y

vN x y

wx y x yN x y

N x y

N x y

= =

   
   
   

  = = 
   
   
     

 u N q





 
(37) 

where  0 0 0

T

I I I I xI yIu v w=q   is a vector that contains degrees of freedom of 

node I. 

Substituting Eq. (36) into Eq. (14), the strain components can be rewritten as  

   1 2 3 1 2 3

1 1

ˆˆ
n n

T T

I I I I I I

I I= =

= = = B B B q B q    ;  
1

n
s s

I I

I=

=B q  (38) 

in which,  

,

1

, ,

,

0 0 0 0

0 0 0 ;

0 0 0 0

I x

I I x I y

I y

N

N N

N

 
 

=  
 
 

B

,

2

,

,

0 0 0 0

0 0 0 0 ;

0 0 2 0 0

I xx

I I yy

I xy

N

N

N

 
 

= −  
 
 

B  

,

3

,

, ,

0 0 0 0
0 0 0 0

0 0 0 0 ;
0 0 0 0

0 0 0

I x

Is

I I y I

I

I y I x

N
N

N
N

N N

 
  

= =   
  

 

B B

 

(39) 
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Similarly, the rotation gradient components are obtained by substituting Eq. (36) into Eq. 

(18) as follows 

   1 2

1 2

1 1

ˆˆ
n n

T T
b b b b b b

cI cI I cI I

I I= =

= = B B q B q =    

   1 2 3

1 2 3

1 1

ˆˆ
n n

T T
s s s s s s s s

cI cI cI I cI I

I I= =

= = B B B q B q =     

(40) 

in which, 

( )

,

,
1

, ,

0 0 0 0

0 0 0 0

1
0 0 0 0

2

0 0 0 0 0

I xy

I xy
b

cI

I yy I xx

N

N

N N

 
 

−
 

=  
− 

 
  

B ; 

,

,
2

, ,

, ,

1
0 0 0 0

2

1
0 0 0 0

2

1 1
0 0 0

2 2

1 1
0 0 0

2 2

I x

I y
b

cI

I x I y

I y I x

N

N

N N

N N

 
− 

 
 
 

=  
 −
 
 
 −
 

B ; 

, ,1

, ,

0 0 01

0 0 04

I xy I xxs

cI

I yy I xy

N N

N N

− 
=  

− 
B ; 

, ,2

, ,

0 0 01

0 0 04

I xy I xxs

cI

I yy I xy

N N

N N

− 
=  

− 
B  ; 

3
0 0 0 01

0 0 0 04

Is

cI

I

N

N

− 
=  

 
B  

(41)               

Substituting Eq. (36) into Eq. (11), the displacement fields 1
u , 2

u  and 3
u  can be 

expressed as follows 

   1 2 3 1 2 3

1 1

ˆˆ
n n

T T

I I I I I

I I= =

= = u = u u u N N N q Nq  (42) 

where 

,

1 2 3

,

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 ;  0 0 0 0  and 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

I I x I

I I I I y I I

I

N N N

N N N

N

     
     

= = − =
     
          

N N   N  (43) 

The derivatives of transverse bending and shear displacements are also given by  

0, ,

0, ,1 1

0 0 0 0

0 0 0 0

n n
x I x g

I I I

y I yI I

w N

w N= =

   
= =   

   
 q B q  

               

(44) 

Substituting Eqs. (37), (39), (41) and (43) into Eqs. (23), (26) and (27), we obtain the 

equations system of the static, free vibration and buckling analyses of FG microplates as 

Kq = F  (45) 

( )2− =K M q 0  (46) 
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( )g

cr− =K K q 0  (47) 

where K ( +K = K K
  ), M , g

K and F are the global stiffness matrix, mass matrix, 

geometry stiffness matrix and force vector, respectively, in which: 

( )ˆ ˆ ˆ d
T

T s s s

 
= +  K B DB B D B ;  

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆˆ ˆd d
T T

b b b b s s s s

c c c c c c c c



 
= +  K B D B B D B  ; 

 
T

0 0 0 0 0 dIq N


= F ;  ˆ ˆ dT

m


= M N I N ;
  

( )
0 0

T

0 0
d

x xyg g g

xy y

N N
h

N N

 
=  

  
K B B  

(48) 

and   and cr in Eq. (45) and Eq. (46) are the natural frequency and the critical buckling 

load, respectively. 

4 Numerical examples and discussions 
To start with numerical analysis, material properties are given in Tab. 1. Without loss of 

generality, the cubic distribution function [Reddy (2000)] is used. In addition, a 

background cell with 4×4 Gauss points for each cell is used for numerical computation. 

The material length scale factor (l=17.6×10-6 m) [Lam, Yang, Chong et al. (2003)] is 

adopted in numerical examples. Also, homogeneous Dirichlet boundary conditions (BCs) 

are considered as follows: 

⚫ Simply supported: 

▪ Rectangular plate 

0 0 0 at 0,   andxu w y b= = = =
0 0 0 at 0,  yv w x a= = = =  

▪ Circular plate 

0 0 at boundariesw =  

⚫ Fully clamped:
  
 

                 0 0 0 0, 0,= 0 at boundariesx y x yu v w w w= = = = = = 
 

The BCs for 0 0 0, , , ,x yu v w    are enforced as the similar way to the traditional finite 

element method, while the derivation of displacements 0, 0,,x yw w is eliminated by 

assigning zero values of the transverse and shear displacements at boundary nodes and its 

adjacent nodes as same as the previous studies [Nguyen, Ngo and Nguyen-Xuan (2017); 

Nguyen-Thanh, Zhou, Zhuang et al. (2017)]. In addition, the essential boundary 

conditions for the derivation of transverse and shear displacements into the MK meshfree 

method are simply implemented without use of any additional variables. 

For comparison purpose, non-dimensional displacement, natural frequency and critical 

buckling load of the FG microplate are defined by: 

⚫ The isotropic FG rectangular microplate: 
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3

4

0

10
,

2 2

ch E a b
w w

q a

 
=  

 
; c

c

h
E

=


  ; 
2

3

cr
cr

m

a

E h
=


  

⚫ The sandwich FG rectangular microplate: 

2

0

0

a

h E
=


 ; 

2

3

0100

cr
cr

a

h E
=


 ; where 0E =1 GPa and 0 =1 kg/m3 

⚫ The isotropic FG circular microplate: 
2

cr
cr

m

R

D
=


 ; where 
( )

3

212 1

m
m

m

E h
D

v
=

−
 

Table 1: Material properties 

Material  

properties 
Isotropic Al Ti ZrO2 ZrO2-1 Al2O3 

E (GPa) 1 70 278.41 151 200 380 

 0.3 0.3 0.288 0.3 0.3 0.3 

 (kg/m3) 1 2707 - 3000 5700 3800 

4.1 Static analysis 

4.1.1 Study of convergence  

Let us consider an isotropic simply supported square microplate subjected to a 

sinusoidally distributed load ( 0 0 sin sin
x y

q q
a a

   
=    

   

 
). The length-to-thickness ratio is 

taken equal 20 (a/h=20). Several values of material length scale-to-thickness ratio (l/h=0, 

0.2, 0.6, 1) are employed. The square microplate is modeled by 11×11, 17×17, 23×23 and 

31×31 nodes as illustrated in Fig. 4. In addition, we consider the influence of the scale 

factor on the underlying solution. The convergence of the non-dimensional displacement 

of HSDT meshfree model is given in Tab. 2. The results obtained are compared with 

those reported by Thai et al. [Thai and Kim (2013)] based on a TSDT analytical model 

(Anal) and Nguyen et al. [Nguyen, Nguyen, Wahab et al. (2017)] based on a RPT 

isogeometric analysis (IGA) model. The percentage error (%) of displacement between 

the present and analytical solutions is given in parenthesis. We see that the present 

solution converges well to the analytical solution when increasing a number of nodes as 

well as the scale factor. Also, the increase of the material length scale-to-thickness ratio 

l/h results in the decrease of the non-dimensional displacement. Hence, the stiffness of 

isotropic microplate increases when taking into account size-dependent effect. From Tab. 

2, it can be seen that the present solution is in very good agreement with the reference 

solution at the value 2.6= . Therefore, this scale factor value can be used for other next 

examples.  
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Table 2: Convergence of non-dimensional central displacement w  of simply supported 

isotropic square microplate subjected to sinusoidally distributed load 

l/h   
Number of nodes 

IGA-RPT  Anal-TSDT  
11×11 17×17 23×23 31×31 

0      0.2842 0.2842 

 2.4 0.2792 0.2823 0.2833 0.2838   

 2.6 0.2798 0.2829 0.2836 0.2840   

 2.8 0.2841 0.2844 0.2844 0.2844   

 3.0 0.2858 0.2850 0.2847 0.2845   

0.2      0.2431 0.2430 

 2.4 0.2384 0.2413 0.2422 0.2426   

 2.6 0.2388 0.2417 0.2424 0.2428   

 2.8 0.2424 0.2430 0.2430 0.2430   

 3.0 0.2439 0.2435 0.2433 0.2432   

0.6      0.1127 0.1124 

 2.4 0.1100 0.1116 0.1121 0.1123   

 2.6 0.1099 0.1117 0.1121 0.1123   

 2.8 0.1113 0.1122 0.1123 0.1124   

 3.0 0.1123 0.1125 0.1125 0.1125   

1.0      0.0544 0.0542 

 2.4 0.0530 0.0538 0.0540 0.0541   

 2.6 0.0529 0.0538 0.0540 0.0541   

 2.8 0.0535 0.0540 0.0541 0.0542   

 3.0 0.0540 0.0542 0.0542 0.0542   

 

 

(a) 

 

(b) 

Figure 4: A distributed nodes: (a) Simply supported BCs; (b) Fully clamped BCs 
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4.1.2 Accuracy of present solution 

A FG square microplate made of a mixture of ceramic (Al2O3) and metal (Al) is subjected 

to a sinusoidally distributed transverse load. Two types of simply supported and fully 

clamped BCs are used.  

Table 3: Non-dimensional displacement w  of the Al/Al2O3 square microplate subjected 

to sinusoidally distributed load 

a/h n Method 
l/h 

0 0.2 0.4 0.6 0.8 1.0 

Simply supported 

5 

0 

IGA-RPT 0.3433 0.2898 0.1975 0.1292 0.0871 0.0614 

Anal-TSDT 0.3433 0.2875 0.1934 0.1251 0.0838 0.0588 

Present 0.3432 0.2873 0.1932 0.1250 0.0836 0.0587 

1 

IGA-RPT  0.6688 0.5505 0.3601 0.2288 0.1517 0.1060 

Anal-TSDT 0.6688 0.5468 0.3535 0.2224 0.1464 0.1017 

Present 0.6686 0.5463 0.3530 0.2221 0.1462 0.1016 

10 

IGA-RPT 1.2271 1.0400 0.7140 0.4694 0.3174 0.2242 

Anal-TSDT 1.2276 1.0247 0.6908 0.4514 0.3052 0.2158 

Present 1.2272 1.0236 0.6900 0.4507 0.3047 0.2154 

20 

0 

IGA-RPT 0.2842 0.2431 0.1695 0.1127 0.0767 0.0544 

Anal-TSDT 0.2842 0.2430 0.1693 0.1124 0.0765 0.0542 

Present 0.2840 0.2428 0.1691 0.1123 0.0764 0.0541 

1 

IGA-RPT  0.5689 0.4739 0.3157 0.2029 0.1352 0.0947 

Anal-TSDT 0.5689 0.4737 0.3153 0.2025 0.1349 0.0944 

Present 0.5685 0.4732 0.3149 0.2022 0.1347 0.0943 

10 

IGA-RPT 0.9537 0.8313 0.6001 0.4102 0.2842 0.2038 

Anal-TSDT 0.9538 0.8303 0.5986 0.4090 0.2834 0.2033 

Present 0.9532 0.8297 0.5980 0.4085 0.2831 0.2030 

100 

0 

IGA-RPT 0.2804 0.2401 0.1677 0.1116 0.0760 0.0539 

Anal-TSDT 0.2804 0.2401 0.1677 0.1116 0.0760 0.0539 

Present 0.2800 0.2397 0.1674 0.1114 0.0759 0.0538 

1 

IGA-RPT 0.5625 0.4689 0.3128 0.2012 0.1341 0.0939 

Anal-TSDT 0.5625 0.4689 0.3128 0.2011 0.1341 0.0939 

Present 0.5616 0.4681 0.3122 0.2008 0.1339 0.0937 

10 

IGA-RPT 0.9362 0.8176 0.5925 0.4062 0.2820 0.2024 

Anal-TSDT 0.9362 0.8176 0.5925 0.4061 0.2820 0.2024 

Present 0.9348 0.8163 0.5914 0.4054 0.2814 0.2020 
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Fully clamped 

5 

0 

IGA-RPT 0.1601 0.1378 0.0974 0.0655 0.0450 0.0321 

IGA-HSDT 0.1642 0.1322 0.0840 0.0524 0.0343 0.0238 

Present 0.1616 0.1300 0.0825 0.0516 0.0339 0.0226 

1 

IGA-RPT 0.3021 0.2555 0.1751 0.1151 0.0779 0.0551 

IGA-HSDT 0.3097 0.2441 0.1501 0.0916 0.0593 0.0408 

Present 0.3061 0.2387 0.1473 0.0908 0.0581 0.0395 

10 

IGA-RPT 0.6111 0.5178 0.3568 0.2358 0.1602 0.1136 

IGA-HSDT 0.6264 0.4908 0.3025 0.1866 0.1221 0.0847 

Present 0.6162 0.4813 0.2971 0.1829 0.1220 0.0826 

20 

0 

IGA-RPT 0.1035 0.0919 0.0688 0.0485 0.0343 0.0250 

IGA-HSDT 0.1042 0.0888 0.0615 0.0407 0.0276 0.0195 

Present 0.1037 0.0882 0.0610 0.0403 0.0273 0.0194 

1 

IGA-RPT 0.2065 0.1797 0.1294 0.0882 0.0611 0.0438 

IGA-HSDT 0.2077 0.1724 0.1142 0.0731 0.0486 0.0340 

Present 0.2060 0.1708 0.1131 0.0724 0.0482 0.0337 

10 

IGA-RPT 0.3505 0.3150 0.2419 0.1746 0.1258 0.0926 

IGA-HSDT 0.3535 0.3056 0.2179 0.1478 0.1020 0.0730 

Present 0.3513 0.3030 0.2156 0.1461 0.1008 0.0721 

100 

0 

IGA-RPT 0.0999 0.0889 0.0668 0.0473 0.0336 0.0244 

IGA-HSDT 0.0999 0.0855 0.0597 0.0397 0.0271 0.0192 

Present 0.0976 0.0836 0.0584 0.0389 0.0265 0.0188 

1 

IGA-RPT 0.2003 0.1746 0.1262 0.0863 0.0599 0.0430 

IGA-HSDT 0.2004 0.1670 0.1114 0.0716 0.0478 0.0334 

Present 0.1956 0.1631 0.1088 0.0700 0.0467 0.0327 

10 

IGA-RPT 0.3336 0.3013 0.2336 0.1701 0.1232 0.0910 

IGA-HSDT 0.3337 0.2914 0.2111 0.1446 0.1004 0.0721 

Present 0.3264 0.2849 0.2062 0.1413 0.0981 0.0704 

Tab. 3 shows the non-dimensional central displacement of isotropic FG square 

microplates for several values of power index (n) and length-to-thickness ratio (a/h) as 

well as material length scale-to-thickness ratio (l/h). Reference solutions reported by Thai 

et al. [Thai and Kim (2013)] using the TSDT analytical model (5 degrees of freedom 

(DOFs)), Nguyen et al. [Nguyen, Nguyen, Wahab et al. (2017)] using the IGA-RPT 

model (4 DOFs) and the present HSDT model using IGA are also listed. We observe that 

obtained results almost match with the reference ones. Basically, the non-dimensional 

displacements derived from the IGA-RPT model are larger than those of the exact-TSDT 

model due to using two different theory models. The results of the present model are 
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mostly close to the published ones in Thai et al. [Thai and Kim (2013)] than those studied 

by Nguyen et al. [Nguyen, Nguyen, Wahab et al. (2017)] due to using the same TSDT 

instead of RPT. Also,  

Tab. 3 shows that an increase of l/h results in a decline of the non-dimensional 

displacement. The stiffness of FG microplate increases when considering the size-

dependent effect. When the power index n is increased, the non-dimensional 

displacement is increased due to decreasing the stiffness of FG microplate. Reciprocally, 

the length-to-thickness ratio a/h risen leads to a reduction of the non-dimensional 

displacement. For the case of l/h=1, the non-dimensional displacement predicted by the 

size-dependent model is much smaller than about five times those predicted by the 

classical plate model. 

4.2 Free vibration and buckling analyses 

4.2.1 Isotropic FG square microplate  

A simply supported isotropic Al/Al2O3 FG square microplate as given in Subsection 4.1.2 

is used for free vibration analysis, while, for buckling analysis, material properties are 

taken by Reddy [Reddy (2000)]: 14.4 GPacE = , 1.44 GPamE =  and 0.38c mv v= = . Tab. 

4 lists the first non-dimensional natural frequency. For comparison, the results reported 

by Thai et al. [Thai and Kim (2013)] and Nguyen et al. [Nguyen, Nguyen, Wahab et al. 

(2017)] is also provided in Tab. 4. Also, the non-dimensional critical buckling load 

obtained by the present meshfree solution based on HSDT, the analytical solution based 

on FSDT [Thai and Choi (2013)], the analytical solution based on RPT [He, Lou, Zhang 

et al. (2015)] and the IGA solution based on RPT [Nguyen, Nguyen, Wahab et al. (2017)] 

is given in Tab. 5. As observed from Tab. 4 and Tab. 5, a good agreement with those 

reference results is achieved. Basically, the results of the present model are slightly larger 

than compared to those of the above reference solutions for both non-dimensional natural 

frequency and critical buckling load. Especially, obtained results are mostly close to the 

published solution by Thai et al. [Thai and Kim (2013)] than that of other published 

results because of using the same HSDT model. Moreover, according to two above tables, 

it can be observed that   and 
cr  increase as l/h increases. The vibration and buckling 

responses predicted by the MCST are always larger than those of the classical theory. 

The non-dimensional natural frequency and critical buckling load given by the classical 

plate model are much smaller than two and five times those given by the size-dependent 

model with l/h=1, respectively. These differences decrease when the plate thickness of 

becomes large. We can conclude that the stiffness of FG microplate increases with 

respect to inclusion of the size effect leading to a rise of natural frequency as well as 

critical buckling load.  
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Table 4: The first non-dimensional natural frequency   of simply supported FG square 

microplate 

a/h n Method 
l/h 

0 0.2 0.4 0.6 0.8 1.0 

5 

0 

Anal-TSDT 5.2813 5.7699 7.0330 8.7389 10.6766 12.7408 

IGA-RPT 5.2813 5.7496 6.9667 8.6191 9.8943 9.9791 

Present 5.2832 5.7742 7.0412 8.7510 10.6926 12.7606 

1 

Anal-TSDT 4.0781 4.5094 5.6071 7.0662 8.7058 10.4397 

IGA-RPT 4.0781 4.4959  5.5620 6.9822 8.2313 8.3019 

Present 4.0780 4.5113 5.6117 7.0735 8.7156 10.4519 

10 

Anal-TSDT 3.2514 3.5548 4.3200 5.3335 6.4759 7.6895 

IGA-RPT 3.2519 3.5312 4.2584 5.2471 5.8571 5.9073 

Present 3.2501 3.5577 4.3251 5.3409 6.4857 7.7018 

20 

0 

Anal-TSDT 5.9199 6.4027 7.6708 9.4116 11.4108 13.5545 

IGA-RPT 5.9199 6.4009 7.6646 9.4005 11.3945 13.5330 

Present 5.9250 6.4091 7.6801 9.4244 11.4272 13.5746 

1 

Anal-TSDT 4.5228 4.9568 6.0756 7.5817 9.2887 11.1042 

IGA-RPT 4.5228 4.9556 6.0714 7.5739 9.2768 11.0882 

Present 4.5270 4.9621 6.0835 7.5926 9.3026 11.1212 

10 

Anal-TSDT 3.7622 4.0323 4.7488 5.7453 6.9013 8.1494 

IGA-RPT 3.7623 4.0299 4.7428 5.7369 6.8914 8.1384 

Present 3.7651 4.0360 4.7546 5.7534 6.9119 8.1625 

Table 5: Comparison of non-dimensional critical buckling load 
cr  of simply supported 

FG square microplates 

a/h n Method 
l/h 

0 0.2 0.4 0.6 0.8 1.0 

5 

0 

Anal-FSDT 15.3228 17.6150 24.2899 34.7856 48.2915 63.8913 

Anal-RPT 15.3322 18.0422 26.1539 39.6393 58.4862 82.6938 

IGA-RPT 15.3321 17.8878 25.5457 38.2867 56.0961 78.9675 

Present 15.3498 18.0767 26.2253 39.7655 58.6858 82.9864 

1 

Anal-FSDT 6.8576 8.1715 11.9922 17.9838 25.6654 34.4981 

Anal-RPT 6.8611 8.3399 12.7754 20.1658 30.5105 43.8094 

IGA-RPT 6.8610 8.2820 12.5322 19.5858 29.4240 42.0388 

Present 6.8693 8.3572 12.8126 20.2329 30.6177 43.9673 

10 

Anal-FSDT 2.9979 3.4076 4.6013 6.4804 8.9020 11.7042 

Anal-RPT 2.7672 3.3619 5.0407 7.7001 11.3322 15.9522 

IGA-RPT 2.7702 3.2917 4.8371 7.3772 10.9005 15.4071 

Present 2.7708 3.3691 5.0551 7.7255 11.3729 16.0125 
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10 

0 

Anal-FSDT 18.0746 20.7607 28.7478 41.8271 59.6657 81.8269 

Anal-RPT 18.0754 20.9025 29.3735 43.4732 63.1958 88.5416 

IGA-RPT 18.0756 20.8497 29.1700 43.0329 62.4358 87.3775 

Present 18.1013 20.9405 29.4453 43.5986 63.3946 88.8337 

1 

Anal-FSDT 7.8273 9.3241 13.7742 21.0597 30.9928 43.3274 

Anal-RPT 7.8276 9.3767 14.0232 21.7657 32.6036 46.5372 

IGA-RPT 7.8277 9.3581 13.9459 21.5846 32.2693 45.9981 

Present 7.8402 9.3959 14.0608 21.8324 32.7101 46.6940 

10 

Anal-FSDT 3.5853 4.0710 5.5151 7.8802 11.1065 15.1152 

Anal-RPT 3.4969 4.0513 5.6631 8.2906 11.9349 16.6033 

IGA-RPT 3.4982 4.0246 5.5925 8.1871 11.8036 16.4431 

Present 3.5015 4.0587 5.6778 8.3167 11.9765 16.6645 

20 

0 

Anal-FSDT 18.9243 21.7387 30.1625 44.1369 63.5656 - 

Anal-RPT 18.9243 21.7771 30.3324 44.5855 64.5348 90.1804 

IGA-RPT 18.9244 21.7628 30.2773 44.4673 64.3321 89.8715 

Present 18.9661 21.8309 30.4212 44.7308 64.7576 90.5014 

1 

Anal-FSDT 8.1142 9.6675 14.3167 22.0292 32.7517 - 

Anal-RPT 8.1142 9.6815 14.3832 22.2188 33.1882 47.2914 

IGA-RPT 8.1143 9.6766 14.3626 22.1708 33.0999 47.1494 

Present 8.1336 9.7077 14.4290 22.2959 33.3079 47.4648 

10 

Anal-FSDT 3.7700 4.2809 5.8102 8.3472 11.8745 - 

Anal-RPT 3.7450 4.2752 5.8505 8.4589 12.1011 16.7793 

IGA-RPT 3.7454 4.2677 5.8312 8.4312 12.0666 16.7376 

Present 3.7525 4.2854 5.8682 8.4886 12.1472 16.8462 

4.2.2 Isotropic FG circular plate  

We consider an isotropic Ti/ZrO2 FG circular microplate with the radius R and the 

thickness h subjected to a uniform radial compression, as shown in Fig. 5(a). The simply 

supported and fully clamped boundary conditions are studied and a distribution of nodes 

is shown in Fig. 5(b-c). In addition, the effective Young’s modulus and Poison’s ratio are 

computed by: 

Again, different values of power index, thickness-to-radius ratio and material length 

scale-to-thickness ratio are studied. The non-dimensional critical buckling load of the 

present model is listed in Tab. 6. Obtained results of l/h=0 are compared with those 

reported by Ma et al. [Ma and Wang (2004)] using the analytical solution based on FSDT 

and TSDT, Saidi et al. [Saidi, Rasouli and Sahraee (2009)] using the analytical solution 

based on unconstrained third-order shear deformation plate theory (UTSDT) and 

( ) ( )e m c cE E E V z E= − + ;  ( ) ( )e m c cV z= − +    ; 
1

( )
2

n
z

V z
h

 
= − 
 

   (49) 
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Nguyen-Xuan et al. [Nguyen-Xuan, Tran, Thai et al. (2014)] using the IGA based on 

RPT. The present results match well with the referenced ones for the case of l/h=0. In 

addition, it is noted that the non-dimensional critical buckling load increases when 

increasing the material length scale-to-thickness ratio. The stiffness of microplate 

increases within considering size-dependent effects. The difference of critical buckling 

load between the present size-dependent model (l/h=1) and the classical model is most 

significant but this difference decreases when the thickness of the microplate becomes 

large. The first six modes shape of buckling response of fully clamped isotropic FG 

circular microplate is plotted in Fig. 6.  

y

x

R

 

(a) 

          

(b)                                         (c) 

Figure 5: The circular microplate: a) Geometry; b) Distribution nodes for simply 

supported BC; Distribution nodes for simply clamped BC 
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Table 6: Non-dimensional critical buckling load factor
cr of isotropic FG circular 

microplates 

n l/h Method 
h/R 

0.1 0.2 0.25 0.3 

Simply supported 

0 

0 Present 4.1554 4.0113 3.9103 3.7938 

 Anal-FSDT 4.1502  4.0075 3.9071 3.7905 

 Anal-TSDT 4.1502  4.0077 3.9072 3.7911 

 Anal-UTSDT 4.1503  4.0079 3.9072 3.7911 

0.2 Present 4.2827 4.1418 4.0436 3.9304 

0.4 Present 4.5151 4.3720 4.2767 4.1680 

0.6 Present 4.7078 4.5685 4.4798 4.3797 

0.8 Present 4.8420 4.7148 4.6357 4.5470 

1.0 Present 4.9334 4.8216 4.7527 4.6756 

0.5 

0 Present 5.7265 5.5264 5.3861 5.2244 

 Anal-FSDT 5.7204  5.5249 5.3868 5.2273 

 Anal-TSDT 5.7196  5.5213 5.3819 5.2206 

 Anal-UTSDT 5.7198  5.5217 5.3819 5.2208 

0.2 Present 5.9030 5.7080 5.5723 5.4156 

0.4 Present 6.2246 6.0279 5.8971 5.7477 

0.6 Present 6.4907 6.3004 6.1793 6.0426 

0.8 Present 6.6759 6.5027 6.3951 6.2745 

1.0 Present 6.8017 6.6499 6.5565 6.4519 

2 

0 Present 6.7868 6.5734 6.4230 6.2486 

 Anal-FSDT 6.7764  6.5616 6.4088 6.2318 

 Anal-TSDT 6.778  6.5671 6.4176 6.2437 

 Anal-UTSDT 6.7783  6.5672 6.4179 6.2441 

0.2 Present 7.0085 6.7968 6.6489 6.4777 

0.4 Present 7.4015 7.1798 7.0327 6.8649 

0.6 Present 7.7160 7.4968 7.3580 7.2015 

0.8 Present 7.9298 7.7289 7.6044 7.4649 

1.0 Present 8.0733 7.8967 7.7881 7.6667 

10 

0 Present 7.9835 7.7284 7.5487 7.3405 

 Anal-FSDT 7.9717  7.7149 7.5325 7.3217 

 Anal-TSDT 7.9733  7.7213 7.5424 7.3353 

 Anal-UTSDT 7.9730  7.7211 7.5425 7.3348 
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 0.2 Present 8.2409 7.9877 7.8109 7.6064 

 0.4 Present 8.6997 8.4345 8.2585 8.0578 

 0.6 Present 9.0691 8.8065 8.6400 8.4525 

 0.8 Present 9.3215 9.0800 8.9304 8.7629 

 1.0 Present 9.4914 9.2786 9.0017 9.1479 

Fully clamped 

0 

0 Present 14.2065 12.5651 11.5961 10.6109 

 Anal-TSDT 14.089  12.574 11.638 10.670 

 Anal-UTSDT 14.089  12.575 11.639 10.670 

 IGA-RPT 14.2023  12.7281 11.8143 10.8666 

0.2 Present 16.7292 15.0790 14.0771 13.0388 

0.4 Present 24.2239 22.3498 21.1718 19.9246 

0.6 Present 36.6708 34.3840 32.9086 31.3169 

0.8 Present 54.0748 51.1961 49.3047 47.2345 

1.0 Present 76.4396 72.7922 70.3660 67.6829 

0.5 

0 Present 19.5774 17.3032 15.9615 14.5985 

 Anal-TSDT 19.411  17.311 16.013 14.672 

 Anal-UTSDT 19.413  17.310 16.012 14.672 

 IGA-RPT 19.5663  17.5180 16.2506 14.9381 

0.2 Present 23.0780 20.7999 19.4168 17.9839 

0.4 Present 33.4762 30.9155 29.3037 27.5957 

0.6 Present 50.7425 47.6515 45.6524 43.4915 

0.8 Present 78.8827 71.0254 68.4831 65.6935 

1.0 Present 105.9024 101.0456 97.8042 94.2092 

2 

0 Present 23.2864 20.8136 19.3306 17.8035 

 Anal-TSDT 23.074  20.803 19.377 17.882 

 Anal-UTSDT 23.075  20.805 19.378 17.881 

 IGA-RPT 23.2592  21.0569 19.6687 18.2099 

0.2 Present 25.2108 25.2108 23.6579 22.0308 

0.4 Present 40.9735 37.9928 36.1025 34.0859 

0.6 Present 62.9775 59.1824 56.7222 54.0572 

0.8 Present 93.7558 88.8070 85.5498 81.9791 

1.0 Present 133.3138 126.8754 122.5941 117.8601 

10 

0 Present 27.3717 24.4195 22.6543 20.8406 

 Anal-TSDT 27.133  24.423 22.725 20.948 

 Anal-UTSDT 27.131  24.422 22.725 20.949 
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  IGA-RPT 27.3429  24.6994 23.0389 21.2986 

 0.2 Present 32.5238 29.5116 27.6637 25.7317 

 0.4 Present 47.8534 44.2957 42.0458 39.6513 

 0.6 Present 73.3303 68.7999 65.8715 62.7064 

 0.8 Present  108.9654 103.0579 99.1801 94.9385 

 1.0 Present 154.7654 147.0802 141.9824 136.3578 

 

 

a) Mode 1 

             

b) Mode 2 

 

c) Mode 3 

 

d) Mode 4 

 

e) Mode 5 

 

f) Mode 6 

Figure 6: The first six mode shapes of buckling response of fully clamped isotropic FG 

circular microplate with n=10, h/R=0.1 and l/h=1 

4.2.3 Isotropic FG square plate with a complicated cutout 

We consider a simply supported square microplate with a complicated cutout, as shown 

in Fig. 7(a). A set of nodes (541 nodes) of the isotropic FG microplate is illustrated by 

Fig. 7(b). This microplate is made of zirconia (ZrO2-2) and aluminum (Al). The non-

dimensional natural frequency is given by 
2

/c c

a
E

h
  = , where cE  and c  are the 

Young’s modulus and density mass of ceramic, respectively. The first six non-

dimensional natural frequencies of the square FG microplate with a complicated cutout 

are given in Tab. 7. For the case of / 0l h = , obtained results are compared with those 
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reported in Nguyen et al. [Nguyen and Nguyen-Xuan (2015)] based on the IGA solution 

using 3D elasticity theory (IGA-3D) and in [Thai, Ferreira, Wahab et al. (2018)] based on 

the meshfree solution using HSDT (MF-HSDT). In addition, the present results are 

available for the case of / 0l h  . As given in Tab. 7, non-dimensional frequencies 

increase with increasing of /l h and decrease when increasing the power index value.  

Table 7: Comparisons of non-dimensional frequencies   of the isotropic FG square 

plate of a hole of complicated shape 

n l/h Method 
Modes 

1 2 3 4 5 6 

0 

0 Present 7.1633 11.7279 13.2402 21.1831 21.8449 22.8302 

 IGA-3D 7.16  11.65 13.09 20.99 21.85 22.54 

 MF-HSDT 7.1586  11.9392 13.3987 21.5109 22.4376 23.4263 

0.2 Present 9.4917   15.7649 17.5282 21.9521 26.7706 29.7840 

0.4 Present 13.9456 22.2547 23.3754 25.7099 37.5234 38.9547 

0.6 Present 18.9899 22.7211 31.9503 35.0228 39.5221 40.4706 

0.8 Present 23.3244 24.2884 40.1927 40.9425 41.1735 44.8261 

1.0 Present 24.0422 29.7200 40.9153 41.9082 50.1524 54.8809 

1 

0 Present 6.5901 10.8096 12.1998 19.5276 20.8860 21.0809 

 IGA-3D 6.58  10.73 12.06 19.35 20.77 20.92 

 MF-HSDT 6.5853  11.0022 12.3439 19.8282 21.4529 21.6277 

0.2 Present 8.8771 14.7652 16.4046 21.0001 24.9995 27.8714 

0.4 Present 13.1889 21.2790 22.1233 24.3231 35.4222 37.2534 

0.6 Present 18.0472 21.7005 30.3759 33.2915 37.7699 38.6757 

0.8 Present 22.2419 23.1387 38.3759 38.9983 39.3292 42.7120 

1.0 Present 22.8855  28.3512 39.0341 39.9861 47.8466 52.3578 

 5 

0 Present 6.7149  10.9500 12.3704 19.7168 19.7683 21.2633 

 IGA-3D 6.71  10.88 12.24 19.60 19.73 21.00 

 MF-HSDT 6.7111  11.1480 12.5192 20.0718 20.2528 21.8177 

0.2 Present 8.7660 14.5352 16.1717 19.8147 24.7419 27.4735 

0.4 Present 12.7462 20.0772 21.3673 23.5083 34.3845 35.1503 

0.6 Present 17.2763 20.4747 29.0887 31.8876 35.6384 36.4924 

0.8 Present 20.9864 22.0438 36.2091 37.0373 37.2564 40.7271 

1.0 Present 21.5953 26.9366 36.8322 37.7299 45.5101 49.7974 

20 

0 Present 6.5628 10.7100 12.0976 19.0687 19.3370 20.8050 

 IGA-3D 6.46  10.48 11.79 18.89 19.05 20.25 

 MF-HSDT 6.5590  10.9040 12.2431 19.5863 19.6350 21.3484 

0.2 Present 8.5315 14.1468 15.7422 19.1626 24.1022 26.7535 

0.4 Present 12.3659 19.4247 20.7245 22.8042 33.3755 34.0025 

0.6 Present 16.7367 19.8274 28.1721 30.8854 34.4934 35.3210 

 0.8 Present 20.3479 21.3398 35.0721 35.9047 36.0228 39.4146 

 1.0 Present 20.9670 26.0659 35.6974 36.5644 44.0260 48.1750 
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50 

0 Present 6.3681 10.4101 11.7554 18.7994 18.8879 20.2446 

 IGA-3D 6.19  10.07 11.32 18.15 18.81 19.48 

 MF-HSDT 6.3642  10.5978 11.8961 19.0892 19.4004 20.7723 

0.2 Present 8.3449 13.8489 15.4050 18.9807 23.5627 26.1820 

0.4 Present 12.1655 19.2418 20.3902 22.4321 32.7917 33.6813 

0.6 Present 16.5084 19.6442 27.7822 30.4563 34.1710 34.9910 

0.8 Present 20.1645 21.0772 34.7494 35.5359 35.6054 38.9159 

1.0 Present 20.7835 25.7650 35.3730 36.2315 43.4999 47.6003 

100 

0 Present 6.2704 10.2578 11.5821 18.5260 18.8221 19.9581 

 IGA-3D 6.15  10.00 11.25 18.04 18.78 19.36 

 MF-HSDT 6.2664  10.4427 11.7206 18.8120 19.3328 20.4784 

0.2 Present 8.2559 13.7065 15.2435 18.9145 23.3010 25.9058 

0.4 Present 12.0763 19.1751 20.2414 22.2660 32.5265 33.5643 

0.6 Present 16.4121 19.5767 27.6171 30.2743 34.0529 34.8702 

0.8 Present 20.0962 20.9704 34.6303 35.3563 35.4765 38.7116 

1.0 Present 20.7142 25.6456 35.2526 36.1081 43.2889 47.3699 
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(b) 

Figure 7: Geometry and a set of distributed node of a square plate with a complicated 

hole 

4.2.4 FGM sandwich square plate  

This final example is a simply supported sandwich FG square microplate making from 

Al/Al2O3. To evaluate the natural frequency and critical buckling load of sandwich FG 

square microplate, six types of the bottom-core-top thickness ratio consisting of 

b c th h h− − = 1-0-1, 2-1-2, 2-1-1, 1-1-1, 2-2-1, 1-2-1 and various values of the power 

index as well as material length scale-to-thickness ratio are studied. As known, the 

solutions using MCST for free vibration and buckling analyses of sandwich FG square 

microplates are not available in the literature. Therefore, present results are only 

compared with other referenced ones without considering the size effects. For 

comparison with l/h=0, the non-dimensional natural frequency given by Li et al. [Li, Lu 

and Kou (2008)] using the analytical solution (Anal) based on 3D elasticity theory, 

Zenkour [Zenkour (2005)] using the analytical solution based on TSDT and SSDT and 

Thai et al. [Thai, Kulasegaram, Tran et al. (2014)] using IGA based on TSDT are also 

provided in Tab. 8, while the bi-axial critical buckling load reported by Reddy [Reddy 

(2000)] based on the Anal-TSDT solution, Zenkour [Zenkour (2005)] based on the Anal-

SSDT solution, Neves et al. [Neves, Ferreira, Carrera et al. (2013)] based on the 

meshfree-HSDT solution (MF-HSDT) and Thai et al. [Thai, Kulasegaram, Tran et al. 

(2014] based on IGA-TSDT are given in Tab. 9. According to Tab. 8 and Tab. 9, it is 

again seen that a rise of the non-dimensional natural frequency and bi-axial critical 

buckling load is found when increasing the material length scale-to-thickness ratio. Also, 

the stiffness of sandwich FG microplate increases within considering size effects. In 

particular, most of non-dimensional natural frequency and critical buckling load with 
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respect to six types of the bottom-core-top thickness ratio predicted by the present size-

dependent MKI-HSDT model are much larger than two and five times those predicted by 

the classical MKI-HSDT model, respectively. In addition, a change of the bottom-core-

top thickness ratio from 1 0 1− −  to 1 2 1− −  also brings to an increase of the non-

dimensional natural frequency as well as critical buckling load. Moreover, Tab. 10 shows 

the first five non-dimensional natural frequencies and mode shapes of sandwich FG 

square microplate corresponding with b c th h h− − = 2-1-2. Besides, the first six mode 

shapes of sandwich FG square microplate are plotted in Fig. 8.  

   
a) Mode 1                              b) Mode 2                          c) Mode 3 

 

d) Mode 4                                 e) Mode 5                          f) Mode 6 

Figure 8: The first six modes shape of dynamic response of simply supported sandwich 

FG square microplate with n=1, l/h=1 and 2 ? ?b c th h h− − =  

Table 8: The natural frequency   of the simply supported sandwich FG microplate with 

a/h=10 

n l/h Method 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

0.5 

0 Present 1.4451 1.4849 1.5073 1.5201 1.5480 1.5754 

 Anal-3D 1.4461 1.4861 1.5084 1.5213 1.5493 1.5766 

 Anal-TSDT 1.4442 1.4841 1.5125 1.5192 1.5520 1.5745 

 Anal-SSDT  1.4443 1.4842 1.5126 1.5193 1.5520 1.5745 

 IGA-TSDT  1.4443 1.4841 1.5064 1.5192 1.5472 1.5745 

0.2 Present 1.5984 1.6420 1.6640 1.6785 1.7062 1.7343 

0.4 Present 1.9883 2.0415 2.0638 2.0825 2.1105 2.1414 

0.6 Present 2.5065 2.5728 2.5965 2.6206 2.6505 2.6858 

0.8 Present 3.0888 3.1700 3.1962 3.2263 3.2594 3.3004 

1.0 Present 3.7052 3.8022 3.8316 3.8679 3.9050 3.9524 
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1 

0 Present 1.2440 1.3009 1.3342 1.3542 1.3965 1.4402 

 Anal-3D 1.2447 1.3018 1.3351 1.3552 1.3976 1.4413 

 Anal-TSDT 1.2432 1.3001 1.3489 1.3533 1.4079 1.4393 

 Anal-SSDT 1.2433 1.3002 1.3489 1.3534 1.4079 1.4393 

 IGA-TSDT 1.2432 1.3001 1.3334 1.3533 1.3957 1.4393 

0.2 Present 1.3957 1.4606 1.4936 1.5166 1.5585 1.6034 

0.4 Present 1.7742 1.8585 1.8923 1.9228 1.9655 2.0147 

0.6 Present 2.2677 2.3769 2.4138 2.4537 2.5001 2.5566 

0.8 Present 2.8159 2.9525 2.9942 3.0442 3.0964 3.1623 

1.0 Present 3.3923 3.5575 3.6051 3.6657 3.7249 3.8014 

 5 

0 Present 0.9466 0.9826 1.0313 1.0454 1.1098 1.1748 

 Anal-3D 0.9448 0.9810 1.0294 1.0453 1.1098 1.1757 

 Anal-TSDT 0.9460 0.9818 1.0743 1.0447 1.1473 1.1740 

 Anal-SSDT  0.9463 0.9820 1.0744 1.0448 1.1474 1.1740 

 IGA-TSDT  0.9460 0.9818 1.0306 1.0447 1.1090 1.1740 

0.2 Present 1.0678 1.1373 1.1877 1.2129 1.2779 1.3473 

0.4 Present 1.3678 1.5079 1.5647 1.6129 1.6834 1.7654 

0.6 Present 1.7564 1.9745 2.0420 2.1154 2.1968 2.2969 

0.8 Present 2.1863 2.4821 2.5632 2.6613 2.7575 2.8784 

1.0 Present 2.6371 3.0094 3.1060 3.2280 3.3412 3.4845 

10 

0 Present 0.9290 0.9437 0.9928 0.9963 1.0618 1.1239 

 Anal-3D  0.9273 0.9418 0.9893 0.9952 1.0610 1.1247 

 Anal-TSDT 0.9284 0.9430 1.0386 0.9955 1.1053 1.1231 

 Anal-SSDT  0.9288 0.9433 1.0455 0.9952 1.0415 1.1346 

 IGA-TSDT 0.9288 0.9433 0.9923 0.9957 1.0612 1.1232 

0.2 Present 1.0323 1.0906 1.1429 1.1613 1.2288 1.2975 

0.4 Present 1.2934 1.4432 1.5049 1.5533 1.6289 1.7147 

0.6 Present 1.6381 1.8878 1.9635 2.0434 2.1330 2.2413 

0.8 Present 2.0240 2.3719 2.4645 2.5744 2.6819 2.8152 

1.0 Present 2.4315 2.8750 2.9861 3.129 3.2525 3.4119 

Table 9: The bi-axial non-dimensional critical buckling load 
cr  of the simply supported 

sandwich FG square microplate with a/h=10 

n l/h Theory cr  

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

0 

0 Present 6.5116 6.5116 6.5116 6.5116 6.5116 6.5116 

 Anal-TSDT  6.5025 6.5025 6.5025 6.5025 6.5025 6.5025 

 Anal-SSDT  6.5030 6.5030 6.5030 6.5030 6.5030 6.5030 

 MF-HSDT  6.5025 6.5025 6.5025 6.5025 6.5025 6.5025 

 IGA-TSDT  6.5025 6.5025 6.5025 6.5025 6.5025 6.5025 

0.2 Present  7.6543 7.6543 7.6543 7.6543 7.6543 7.6543 

 0.4 Present 11.0791 11.0791 11.0791 11.0791 11.0791 11.0791 
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 0.6 Present 16.7826 16.7826 16.7826 16.7826 16.7826 16.7826 

 0.8 Present 24.7636 24.7636 24.7636 24.7636 24.7636 24.7636 

 1.0 Present 35.0222 35.0222 35.0222 35.0222 35.0222 35.0222 

1 

0 Present 2.5881 2.9251 3.1023 3.2379 3.4805 3.7595 

 Anal-TSDT  2.5836 2.9200 3.0970 3.2324 3.4747 3.7533 

 Anal-SSDT  2.5842 2.9206 3.0973 3.2327 3.4749 3.7531 

 MF-HSDT  2.5392 2.8651 3.0368 3.1678 3.4027 3.6718 

 IGA-TSDT  2.5836 2.9200 3.0970 3.2324 3.4747 3.7533 

0.2 Present  3.2579 3.6872 3.8875 4.0613 4.3349   4.6596 

0.4 Present 5.2636 5.9690 6.2394 6.5273 6.8943 7.3568 

0.6 Present 8.5979 9.7620 10.1512 10.6278 11.1526 11.8449 

0.8 Present 13.2557 15.0603 15.6185 16.3574 17.1060 18.1205 

1.0 Present 19.2352 21.8619 22.6399 23.7144 24.7532 26.1824 

5 

0 Present 1.3316 1.5243 1.7051 1.7933 2.0600 2.3718 

 Anal-TSDT  1.3291 1.5213 1.7018 1.7898 2.0561 2.3673 

 Anal-SSDT  1.3300 1.5220 1.7022 1.7903 2.0564 2.3674 

 MF-HSDT  1.3234 1.5093 1.6860 1.7707 2.0308 2.3303 

 IGA-TSDT  1.3291 1.5213 1.7018 1.7898 2.0561 2.3674 

0.2 Present 1.6942 2.0421 2.2611 2.4139 2.7315 3.1196 

0.4 Present 2.7796 3.5892 3.9237 4.2678 4.7391 5.3552 

0.6 Present 4.5823 6.1524 6.6815 7.3389 8.0691 9.0629 

0.8 Present 7.0987 9.7201 10.5257 11.6127 12.7104 14.2297 

1.0 Present 10.3272 14.2857 15.4521 17.0812 18.6577 20.8491 

10 

 Present 1.2458 1.3759 1.5490 1.6006 1.8574 2.1441 

 Anal-TSDT  1.2436 1.3732 1.5460 1.5974 1.8538 2.1400 

 Anal-SSDT  1.2448 1.3742 1.5672 1.5973 1.5729 2.1909 

 MF-HSDT  1.2411 1.3654 1.5347 1.5842 1.8358 2.1090 

 IGA-TSDT  1.2436 1.3732 1.5460 1.5974 1.8538 2.1400 

0.2 Present 1.5383 1.8377 2.0525 2.1748 2.4873 2.8574 

0.4 Present 2.4147 3.2174 3.5582 3.8900 4.3700 4.9893 

0.6 Present 3.8730 5.5036 6.0560 6.7299 7.4916 8.5226 

0.8 Present 5.9119 8.6859 9.5380 10.6799 11.8407 13.4425 

1.0 Present 8.5311 12.7589 14.0007 15.7315 17.4116 19.7413 

 

 

 

 



 

 

 
478   Copyright © 2018 Tech Science Press             CMC, vol.57, no.3, pp.447-483, 2018 

Table 10: The first five non-dimensional natural frequencies   of the simply supported 

sandwich square microplate with n=1 and 2 ? ?b c th h h− − =  

n l/h Method 
Modes 

1 2 3 4 5 

1 

0 Present 1.3009 3.1619 3.1619 4.9151 6.0650 

 Anal-3D 1.3018 3.1588 3.1588 4.9166 6.0405 

 IGA-TSDT 1.3001 3.1492 3.1492 4.8941 - 

0.2 Present 1.4606 3.5555 3.5556 5.5377 6.8376 

0.4 Present 1.8585 4.5323 4.5329 7.0768 8.7446 

0.6 Present 2.3769 5.7998 5.8012 9.0666 11.2055 

0.8 Present 2.9525 7.2034 7.2059 11.2643 13.9203 

1.0 Present 3.5575 8.6764 8.6801 13.5673 16.7631 

10 

0 Present      

 Anal-3D 0.9404 2.2862 2.2862 3.5647 4.3844 

 IGA-TSDT 0.9430 2.3003 2.3003 3.5969 - 

0.2 Present 1.0906 2.6711 2.6711 4.1823 5.1806 

0.4 Present 1.4432 3.5338 3.5341 5.5366 6.8546 

0.6 Present 1.8878 4.6153 4.6161 7.2261 8.9379 

0.8 Present 2.3719 5.7873 5.7889 9.0498 11.1817 

1.0 Present 2.8750 7.0013 7.0040 10.9338 13.4963 

5 Conclusion 

A size-dependent HSDT meshfree model was presented for bending, free vibration and 

buckling analyses of FG microplates. The method retained one material length scale 

parameter and can capture the size effect. Material properties as Young’s modulus, 

Poison’s ratio and density mass varied the plate thickness according to the rule of mixture. 

The discrete system equations were obtained by employing the principle of virtual work 

and the MKI meshfree method. The present model can degenerate into the classical 

HSDT model when ignoring the material length scale parameter. For fully clamped 

boundary conditions, the normal slopes can be directly imposed by allocating zero values 

to the corresponding displacements at the boundary nodes and its adjacent nodes. By this 

way, it is not necessary to require additional variables in comparison with the traditional 

FEM. The effects of geometries, boundary conditions, aspect ratios, power index and 

material length-scale parameters on the displacement, natural frequency and critical 

buckling load of isotropic and sandwich FG microplates were studied. Numerical results 

indicated that a reduction of displacement and an increase of natural frequency as well as 

critical buckling load within the presence of size effects were conducted. It also shows 

that the stiffness of FG microplates were raised with respect to an increase of size effects. 

Besides, the results derived from the present and classical models were almost identical 

when the plate thickness was much far larger than the material length scale parameter. 
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Through numerical results, it shows that the present approach provided stable and 

accurate solutions in comparison with other methods.  
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