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Abstract: In this paper, we study the pseudo-spherical evolutes of curves in three 

dimensional hyperbolic space. We use techniques from singularity theory to investigate the 

singularities of pseudo-spherical evolutes and establish some relationships between 

singularities of these curves and geometric invariants of curves under the action of the 

Lorentz group. Besides, we defray with illustration some computational examples in 

support our main results. 
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1 Introduction 

The study of the extrinsic differential geometry of submanifolds in hyperbolic space is of 

special interest in relativity theory. On the other hand, the evolute of a space curve in 

Euclidean differential geometry is defined to be the locus of the center of osculating circles 

of the curve. The principal tools for the study of evolutes are the Frenet-Serret formulae 

and the distance squared functions on curves. In our case, we adopt a special pseudo-

orthogonal frame in )1(3 −+H . We also define hyperbolic height functions on hyperbolic 

space curves. With the aid of a bit of singularity theory of hyperbolic height functions, we 

study singularities of evolutes and establish the relation between these singularities and 

hyperbolic invariants of the original curve. Torii studied other objects related to hyperbolic 

plane curves by using a similar framework and method as used [Torii (1999)]. Here, for 

convenience, we concentrate only on the hyperbolic evolutes of space curves. Similar 

descriptions for Euclidean plane curves are found in Bruce et al. [Bruce and Giblin (1992)].  

For a curve
4

1

3 EH  + , we choose the unit tangent vector field )(sT  and another 

normal vector fields )(1 sE  and )(2 sE  along )(s . As a result, we construct a pseudo-

orthonormal frame )}(),(),(),({ 21 ssss EET  along the curve  . Also, we define two 

families of functions on a curve which are a timelike height function 
TH and a spacelike 

height function
SH . Differentiating these functions, we obtain two new invariants 

H  and

D , whose properties are characterized by some conditions of derivation of 
TH and 

SH . 

For instance, 
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if and only if 0=H  and some other conditions [Bruce and Giblin (1992)]. 

Consider the surface )1(3 −= +HM , in this case, we define two important curves; h  in the 

hyperbolic space and d  in de Sitter space by observing the conditions of first and second 

derivation of 
TH and

SH , respectively. We call h , a hyperbolic evolute of   relative to 

M and d , a de Sitter evolute of   relative to M . We show that the hyperbolic evolute 

h  is constant if and only if 0=H . In this case, the curve   is a special curve on the 

surface M , which is called a hyperbolic-slice (or an H-slice) of M . Also, we show that 

the de Sitter evolute d  is constant if and only if 0=D  and define a special curve on the 

surface M  called a de Sitter-slice (or a D-slice) of M . We consider H-slice and D-slice 

of M which is the model curves on the surface M  [Sato (2012)]. As an application of the 

theory of unfolding of functions, we give a classification of singularities of both the 

hyperbolic evolute and the de Sitter evolute in Theorem 4.2, which is one of the main 

results of this work.  

The curves and their frames play an important role in differential geometry and in many 

branches of Science such as Mechanics and Physics, so we are interested here in studying 

one of these curves which has many applications in Computer Aided Design (CAD), 

Computer Aided Geometric Design (CAGD) and mathematical modeling. Also, these 

curves can be used in the discrete model and equivalent model which are usually adopted 

for the design and mechanical analysis of grid structures. So, we are looking forward to see 

that our results will be helpful to the researchers who are specialized in this field.  

2 Basic concepts 

In this section, we introduce some definitions and basic facts which are needed in the 

subsequent sections (for more details see [Izumiya, Pei and Torii (2004); Liu (2014)]). 

Let 
4R denotes the four-dimensional vector space. For any 

4

43214321 ),,,(),,,,( Ryyyyxxxx == yx , the pseudo-scalar product of x  and y is 

defined by 44332211, yxyxyxyx +++−= yx . 

We call ),,( 4 R , the Minkowski 4-space and denoted by
4

1E . We say that a vector 

4

1Ex  
is spacelike, lightlike or timelike if 0,,0, 2121 = xxxx or 0, 21  xx , 

respectively. The norm of the vector 
4

1Ex  is defined by |,| = xxx . For a non-

zero vector 
4

1E and a real number c , we define a space with pseudo normal   by  

}.,|{),( 4

1 cxExcS ==   

We call ),( cS   a spacelike space, a timelike space or a lightlike space if   is timelike, 

spacelike or lightlike, respectively. 
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Now, we define a hyperbolic space by  

},0,1,|{)1( 1

4

1

3 −==−+ xxxExH  

and de Sitter 3-space by  

}.1,|{ 4

1

3

1 == xxExS  

For any 
4

1432143214321 ),,,(),,,(),,,,( Ezzzzandyyyyxxxx === zyx , 

the pseudo vector product of x , y  and z  is defined as follows:  

.,,,
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We now prepare some basic facts of curves in hyperbolic 3-space. 

Let ))(),(),(),(()(;: 4321

4

1

3 txtxtxtxtEHI =→ +   be a smooth regular curve in  

3

+H  for any It  where I is an open interval.  

Here, we construct the explicit differential geometry on curves in )1(3 −+H . 

Let )1(: 3 −→ +HI be a regular curve. Since )1(3 −+H  is a Riemannian manifold, then 

we can reparameterize   by the arc-length. Hence, we may assume that )(s  is a unit 

speed curve. So, we have the tangent vector )()( ss  =T with 1=T . 

 If 1)(),( − ss TT , then we have a unit vector 
)()(

)()(
)(1

ss

ss
s





−

−
=





T

T
E . 

Moreover, define )()()()( 12 ssss ETE = , we have a pseudo orthonormal frame 

)}(),(),(),({ 21 ssss EET  of 
4

1E  along . By standard arguments, under the assumption 

that 1)(),( − ss TT , we have the following Frenet formulae: 
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or in the matrix form: 
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where 
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are the geodesic curvature and geodesic torsion of the curve   in )1(3 −+H , respectively 

(see [Liu (2014)]).  

Since 

1)(),()()(),()( +=−−  ssssss TTTT  , 

therefore, the condition 1)(),( − ss TT is equivalent to the condition 0)( sg . 

Moreover, we can show that the curve )(s  satisfies the condition 0)( sg  if and only 

if there exists a lightlike vector c  such that cs −)( is a geodesic. Such a curve is called 

an equidistant curve.  

3 Height functions 

In the following, we introduce two families of functions on a curve 
3: +→ HI  lying on 

a spacelike surface M . Suppose that 0)(  sT , we can define these functions as follows: 

3.1 Hyperbolic time-like height function 

We call
TH ; the time-like height function of   on )1(3 −= +HM . We denote  

),()(  sHsh TT =  for any fixed )1(3 − +H . We have
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),),((),(;)1(: 3  ssRHIHT →− +

(3.1) 

From Frenet formulae, we have 

.0,),( ===



 Ts

s

H T

 

Since )1(3 − +H , there are R ,,  such that )()()( 21 sss EE  ++= ,

therefore 1, −=  , hence 

 ,1222 −=++−   if  0=
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then, we have 
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if and only if )()()( 21 sss EE  ++= , 1222 −=++−   and  g= , it 

means that  



 

 

 

394    Copyright © 2018 Tech Science Press              CMC, vol.57, no.3, pp.389-415, 2018 

,

1

2

2 −













−

=


gg

g

g

g







                                                                                 (3.2) 

,

1

1

2

2 −













−

=


gg

g

g





                                                                               (3.3)                 

.

1

2

2 −













−

=




gg

g

ggg

g







                                                                       (3.4) 

Since R ,, , therefore we can consider under the condition 
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Moreover, we obtain 
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and then 

( )  .0)()()(,)()()(1 2121

2 =++++−  ssssss
ds

d
gggg EEEET                 (3.5) 

Differentiating Eq. (3.5) and using Eqs. (3.2)-(3.4), we get 

 .03222 =−−−− 

gggggggggggg                                                          (3.6) 
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 , therefore Eq. (3.6) leads to 
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Now, we define 
H  as 
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If we calculate the fifth derivative of 
TH , we can show that the above conditions and 
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are equivalent to the conditions 0)( =sH  and 0)( = sH . As a consequence, we have 

the following proposition. 

Proposition 3.1 Suppose that  0)( 



 sT  .  For any  )1(),( 3 − +HIs   , we have 

1)  0)()()()( == shsh TT

  if and only if )()()( 21 sss EE  ++= where 

R ,,   such that 1222 −=++−   . 

2)  0)()()()()()( === shshsh TTT
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4)  0)()()()()()()()()()( )5()4( ===== shshshshsh TTTTT

   if and only if
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  ,  0=H   and  0)( =H  . 

In the light of Proposition 3.1, we have the invariant
H . So, we define the curve  

)1(: 3 −→ +HIh  as follows  
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and we call it a hyperbolic evolute of   relative to M . 

By straightforward calculations, we have 0)( = sh , if and only if 0)( sH . Also, 

 =h is constant if and only if 0)( sH . 

From Proposition 3.1, we have 
Th

 is constant, that is, there is a real number Rc  such 

that = cs  ),( . It means that McP = ),(Im  . It suggests that curves of the 

form McP ),( for )1(3 − +H  are the candidates of model curves on M . 

These curves play a similar role to curves in Euclidean space and call them (hyperbolic-

slices or H-slices) of M .  

3.2 De Sitter space-like height function  

We call 
SH ; the spacelike height function of   on M , where  

).),((),(;: 3

1  ssRSIH S →  

We denote ),()(  sHsh SS =   for any fixed  
3

1S  , and by using Frenet-Serret 

formulae, we get 

.0,),( ===



 Ts
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Since 
3

1S , therefore there exist R ,, , such that 

)()()( 21 sss EE  ++= , 
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After using the values of  ,  and   in Eq. (3.8), we obtain 
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therefore, we can show that the above conditions with the extra condition:  
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are equivalent to the conditions 0)( =sD  and 0)( = sD . As a consequence, we have 

the following proposition. 
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According to this proposition, we have the invariant of 
D . So, we define the curve 
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and we call d ; a de Sitter evolute of   relative to M . 

By straightforward calculations, we have 0)( = sd  if and only if 0)( =sD . Therefore,  

 =d  is constant if and only if 0)( sD . Using Proposition 3.2, we have 
Th


is 

constant, that is, there is a real number Rc  such that = cs  ),( . It means that 

McP = ),(Im  . It suggests that curves of the form McP ),(  for 
3

1S  are 

the candidates of model curves on M . Also, these curves play a similar role to curves in 

Euclidean space and we call them (de Sitter-slices or D-slices) of M .  

3.3 Hyperbolic (De Sitter) invariants of curves 

In this section, we study the geometric properties of the hyperbolic evolute of a curve in 
3

+H . For any Rr  and 
3
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3

1S , we denote 
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3
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Therefore, we can give the following proposition. 

Proposition 3.4 Under the above assumptions,   and ),(1

 rPS   have at least 4-points 

contact at )( s . 

Proof. We assume that  
31 ),( + HrPS   . In this case, we consider the hyperbolic 

timelike height function
TH . By definition, we have )()(),( 11

 
rhrPS T −=  . Proposition 

3.1(2) means that   and ),(1

 rPS  have at least a 4-point contact at )( s  If 

3

1

1 ),( SrPS  , then we adopt the hyperbolic spacelike height function 
SH , and the 

assertion follows from exactly the same arguments as those of the previous case. 

We call ),(1

 rPS   in Proposition 3.4, the osculating pseudo-sphere (or, the pseudo-
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sphere of geodesic curvature); its center   is called the center of geodesic curvature. So, 

the hyperbolic evolute is the locus of the center of geodesic curvature.  

4 Unfolding of functions of one variable 

 In order to investigate the singularities of pseudo-spherical evolutes, we apply the theory 

of unfolding of functions. First, we give a quick review on this theorem of one variable. 

Detailed descriptions are found in Bruce et al. [Bruce and Giblin (1992); Izumiya (2013)]. 

Let RxsRRF r → )),(,(: 00 be a smooth function defined around a specific point 

),( 00 xs . We call such a function germ at ),( 00 xs . We call F an r -parameter unfolding 
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as the above, F is called an  -versal unfolding if the rk   matrix of coefficients 

),( 0 jii   has rank  )( rkk  , where ),( 000 xs
x

F

i

i



= . 

Now, we introduce an important set concerning the unfolding relative to the above notions. 

The bifurcation set 
FB of F is 

.0),(),(;|
2

2









=



=




= xs

s

F
xs

s

F
withsRxB r

F  

Therefore, we have the following fundamental result of the unfolding theory. 

Theorem 4.1 Let RxsRRF r → )),(,(:   be an r -parameter unfolding of f which 

has the type kA  at 0s . If F  is an 
+ -versal unfolding, then we have 

1) If ,3=k   then 
FB  is locally diffeomorphic to 

2− rRC  , 

2) If ,4=k   then 
FB  is locally diffeomorphic to 

3− rRSW  , 

where }|),{( 3

2

2

121 xxxxC ==  is the ordinary cusp (see Fig.1) and 

},24,3|),,{( 3

3

2

24

1321 vxuvuxvuuxxxxSW =+=+== ,  
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is the swallowtail surface (see Fig. 4). 

 

 

Figure 1: The ordinary cusp 

We consider that ),( sH T
 (respectively, ),( sH S

) is an unfolding of )(shT


 

(respectively, )(sh S


). So, we have the following proposition. 

Proposition 4.1 Let 
3: +→ HI  be a unit speed curve with 1

2

2 













−



gg

g

g



 . Then, 

we have 

1) If  )(shT


 has the 

4A -singularity at s , then 
TH is the 

+ versal unfolding of 
Th

 , 

2) If  )(sh S


 has the 

4A -singularity at s , then 
SH is the 

+ versal unfolding of 
Sh

 . 

Proof. We denote ))(),(),(),(()( 4321 sxsxsxsxs = , 

 )1()1,,,( 32

3

2

2

2

1321 −−−+−= +H  and 

,1)()()()(),( 2

3

2

2

2

14332211  −−+−+++−= sxsxsxsxsH T
 

it follows that 



 

 

 

404    Copyright © 2018 Tech Science Press              CMC, vol.57, no.3, pp.389-415, 2018 

 

















−−+−
−=





−−+−
−=





−−+−
+−=





















−−+−
−=





−−+−
−=





−−+−
+−=











,
1

,
1

,
1

,
1

,
1

,
1

4
2

3

2

2

2

1

3
3

3

2

4
2

3

2

2

2

1

2
2

2

2

4
2

3

2

2

2

1

1
1

1

2

4
2

3

2

2

2

1

3
3

3

4
2

3

2

2

2

1

2
2

2

4
2

3

2

2

2

1

1
1

1

xx
s

H

xx
s

H

xx
s

H

xx
H

xx
H

xx
H

T

T

T

T

T

T





































 

















−−+−
−=





−−+−
−=





−−+−
+−=





















−−+−
−=





−−+−
−=





−−+−
+−=

















.
1

,
1

,
1

,
1

)(

,
1

,
1

4
2

3

2

2

2

1

3
3

3

3

4

4
2

3

2

2

2

1

2
2

2

3

4

4
2

3

2

2

2

1

1
1

1

3

4

4
2

3

2

2

2

1

3
3

3

2

3

4
2

3

2

2

2

1

2
2

2

2

3

4
2

3

2

2

2

1

1
1

1

2

3

xx
s

H

xx
s

H

xx
s

H

xsx
s

H

xx
s

H

xx
s

H

T

T

T

T

T

T




































 

From Proposition 3.1, )( shT

  has a type 
4A  at s  if and only if 
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 , 0=H  and 0)( =H . 

For this purpose, the following matrix  
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 must be non-singular. Therefore, we calculate the determinant of it as follows  
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and 
tr is the transpose of a matrix  . Then we get 
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by using Frenet formulae, we can write
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By the same way as the above, if we consider the spacelike height function 
SH , we can 

prove Proposition 4.1(2). 
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Theorem 4.2 Let )1(: 3 −→ +HI  be a regular curve such that 0)(  sT . Then we 

have the following assertions: 

(A1) The hyperbolic evolute at )( 0sh  is regular if 0)( 0 sH . 

(A2) The following conditions are equivalent: 

1. The germ of the hyperbolic evolute at )( 0sh  is diffeomorphic to a Swallowtail 

surface, 

2. 0)( 0 =sH  and 0)( 0  sH  , 

3. )(s  and the pseudo sphere ),( 00

1 rPS   have contact of order four where 

)( 00 sh = . 

(B1) The de Sitter evolute at )( 0sd  is regular if 0)( 0 sD  . 

(B2) The following conditions are equivalent: 

1. The germ of the de Sitter evolute at )( 0sd  is diffeomorphic to a Swallowtail 

surface, 

2. 0)( 0 =sD  and 0)( 0  sD  , 

3. )(s  and the pseudo sphere ),( 00

1 rPS   have contact of order four where 

)( 00 sd = . 

Proof. )1(A  By the assertion of Proposition 3.1, we have 0)( = sh  if 0)( =sH . It 

means that the hyperbolic evolute at 0)( sh  is regular if 0)( sH  . 

)2(A  By Proposition 3.1, the bifurcation set of 
TH is 
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 EE

 

By Theorem 4.1 and Proposition 4.1, the germ of the bifurcation set is diffeomorphic to a 

Swallowtail surface if 0=H  and 0H . Moreover, we have other equivalences from 

Proposition 3.3 and Proposition 3.4. This completes the proof of )1(A  and )2(A . If we 

consider the spacelike height function
SH , then we can prove the remaining assertions of 

the theorem. 

5 Computational examples 

In this section, we consider some illustrative examples to explain the evolute curve on a 
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surface of graphical representation in )1(2 −+H and )1(3 −+H . From Theorem 4.1, the 

evolute curve in )1(2 −+H  at )( 0sh  is regular if 0H , and is the ordinary cusp locally 

if  0=H , and  0H , see Example 5.1 and Example 5.2 . 

Also, by Proposition 3.1, 0)()()()()()()()()()( )5()4( ===== shshshshsh TTTTT

 , 

 if and only if )( 0sh  is the evolute curve in )1(3 −+H  and 0== HH  , see Example 5.3. 

Example 5.1 In )1(2 −+H , we have the hyperbolic Frenet formulae of a curve  :  
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g
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ET
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where g  is the geodesic curvature of   in 
2

+H , which is given by   

)).()()(det()( ssssg

= TT                                                                                     (5.1) 

The hyperbolic evolute of  is given by 

( ),)()()(
1)(

1
)(

2
sss

s
sh g

g

E+
−

= 


                                                               (5.2) 

Here, we have 

2

g

g

H





−
=   and  

3

22

g

ggg

H








+−

=  [Sato (2012)]. 

Now, suppose that ),,(),( 32 vuuvuX =  be a cuspidal edge surface, see Fig. 2. We 

investigate the following curve   

),1,,()( 32 uuu =                                                                                                           (5.3)                                

From Eq. (5.3), we have 

( ),0,3,2
49

1

2
u

u +
=




=



T                                                                              (5.4) 

Since TE =  , therefore we get   

,

032

1
49

1 32

2

u

uu

kji

u

−

+
=E                                                                                           (5.5) 

therefore, we have   
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49

1 3

2
uu

u +
=E                                                                                           (5.6) 

( ),0,12,18
)49(

1
2/32

u
u

−
+

=T                                                                                 (5.7) 

from Eqs. (5.3), (5.4) and (5.7), we get   
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Then, we have   
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−
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u
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At the point 0=u , we have 
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),0,1,0(),0,0,1(),1,0,0(

==−===

===



HHggg 

 ET

 

Thus, the hyperbolic evolute of   has a cusp at the origin.  

Now, we find the equation of the hyperbolic evolute curve of cuspidal edge surface. 

From Eqs. (5.2), (5.3), (5.6) and (5.8), we have 

( ).496,4926,4936
)49(36

1 332

2
++++++

+−
= uuuuuuu

u
h          (5.9) 
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Figure 2: The curve γ, Cuspidal edge surface Ψ 
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Example 5.2 In this example, we consider a spacelike curve )(s  lying fully on an 

oriented ruled surface   in )1(2 −+H , as follows 

))2sin(),2cos(,1())2cos(),2sin(,(),( ssvsssvs −+= , 

(see Fig. 3). We investigate the following curve: 

)),2cos(),2sin(,()( ssss =                                                                           (5.10) 

it follows that  
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)).2sin(22),2cos(22,0(
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ss







                                                        (5.11) 

From Eq. (5.11), we get 

( ),)2sin(2),2cos(2,1 ss −=T                                                                    (5.12) 

where  TE =   , and we get 

,

)2sin(2)2cos(21

)2cos()2sin(

ss

sss

kji

−

−

=E  

therefore, we have 

)),2sin()2cos(2),2cos()2sin(2,2( ssssss −+=E                           (5.13) 

)),2cos(2),2sin(2,0( ss −−=T                                                                        (5.14) 

using Eqs. (5.9), (5.11) and (5.13), we get 

.22

)2cos(2)2sin(20

)2sin(2)2cos(21

)2cos()2sin(

s

ss

ss

sss

g −=

−−

−=                                         (5.15) 

Then, we have ,22−=

g and then .0=

g  Therefore, we get 0H , this means 

that the hyperbolic evolute curve is regular curve.   
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Figure 3: A spacelike curve )(s lying fully on an oriented ruled surface  
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Example 5.3 Suppose that ),24,3(),( 324 vuvuvuuvu ++= be a Swallowtail surface 

(see Fig. 4). In this example, we investigate the following curve   in )1(3 −+H :  

),1,1,24,3()( 324 uuuuu ++=                                                                            (5.16) 

it follows that 
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(5.18) 

 

from Eqs. (5.16) and (5.18), we get 
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therefore 
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Then, from Eqs. (5.19) and (5.20), we get 
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And we have 
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So, at the point 0=u , we obtain 
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=== ET  
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1
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 −
= 

HHgg E  

Finally, from the previous calculations, we can find the equation of the evolute curve in 

hyperbolic 3-space as given in Eq. (3.7). 

  

 

Figure 4: The Swallowtail surface ),( vu  
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6 Conclusion 

In the three dimensional hyperbolic space, the pseudo-spherical evolutes of curves are 

studied. Also, some relationships between singularities of these curves and geometric 

invariants under the action of the Lorentz group are obtained. Furthermore, some 

computational examples in support of main results are given and plotted. 
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