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Some Geometric Invariants of Pseudo-Spherical Evolutes in the
Hyperbolic 3-Space

H. S. Abdel-Aziz! , M. Khalifa Saad! 2 " and A. A. Abdel-Salam!

Abstract: In this paper, we study the pseudo-spherical evolutes of curves in three
dimensional hyperbolic space. We use techniques from singularity theory to investigate the
singularities of pseudo-spherical evolutes and establish some relationships between
singularities of these curves and geometric invariants of curves under the action of the
Lorentz group. Besides, we defray with illustration some computational examples in
support our main results.
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1 Introduction

The study of the extrinsic differential geometry of submanifolds in hyperbolic space is of
special interest in relativity theory. On the other hand, the evolute of a space curve in
Euclidean differential geometry is defined to be the locus of the center of osculating circles
of the curve. The principal tools for the study of evolutes are the Frenet-Serret formulae
and the distance squared functions on curves. In our case, we adopt a special pseudo-

orthogonal frame in Hf(—l). We also define hyperbolic height functions on hyperbolic

space curves. With the aid of a bit of singularity theory of hyperbolic height functions, we
study singularities of evolutes and establish the relation between these singularities and
hyperbolic invariants of the original curve. Torii studied other objects related to hyperbolic
plane curves by using a similar framework and method as used [Torii (1999)]. Here, for
convenience, we concentrate only on the hyperbolic evolutes of space curves. Similar
descriptions for Euclidean plane curves are found in Bruce et al. [Bruce and Giblin (1992)].

For a curve y e H? — E;', we choose the unit tangent vector field T(S) and another
normal vector fields E,(S) and E,(S) along y(s). As a result, we construct a pseudo-
orthonormal frame {y(s), T(s),E,(S),E,(S)} along the curve y. Also, we define two
families of functions on a curve which are a timelike height function H " and a spacelike
height function H ° . Differentiating these functions, we obtain two new invariants o, and

o, Whose properties are characterized by some conditions of derivation of H Tand H®.
For instance,
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oH" 0°H" o°H' o'H'
ot ot? ot® ot*
if and only if o, =0 and some other conditions [Bruce and Giblin (1992)].

01

Consider the surface M = H?(~1), in this case, we define two important curves; h, inthe
hyperbolic space and d, in de Sitter space by observing the conditions of first and second
derivation of H"and H °, respectively. We call hy, a hyperbolic evolute of y relative to
M andd ,» a de Sitter evolute of  relative to M . We show that the hyperbolic evolute
h, is constant if and only if o, =0. In this case, the curve y is a special curve on the
surface M , which is called a hyperbolic-slice (or an H-slice) of M . Also, we show that
the de Sitter evolute d, is constant if and only if o, =0 and define a special curve on the
surface M called a de Sitter-slice (or a D-slice) of M . We consider H-slice and D-slice
of M which is the model curves on the surface M [Sato (2012)]. As an application of the
theory of unfolding of functions, we give a classification of singularities of both the
hyperbolic evolute and the de Sitter evolute in Theorem 4.2, which is one of the main
results of this work.

The curves and their frames play an important role in differential geometry and in many
branches of Science such as Mechanics and Physics, so we are interested here in studying
one of these curves which has many applications in Computer Aided Design (CAD),
Computer Aided Geometric Design (CAGD) and mathematical modeling. Also, these
curves can be used in the discrete model and equivalent model which are usually adopted
for the design and mechanical analysis of grid structures. So, we are looking forward to see
that our results will be helpful to the researchers who are specialized in this field.

2 Basic concepts

In this section, we introduce some definitions and basic facts which are needed in the
subsequent sections (for more details see [Izumiya, Pei and Torii (2004); Liu (2014)]).

Let R* denotes the four-dimensional vector space. For any

X = (X, Xy, X5, X, ), Y = (Y1, ¥, Vi Vs) € R*, the pseudo-scalar product of x and y is
defined by (X, y) ==X Y, + X, ¥, + X;Y; + X, ;.

We call (R4,<,>) , the Minkowski 4-space and denoted by E14. We say that a vector
x e E; is spacelike, lightlike or timelike if (X, X,) > 0,(X,X,) =00r(x,X,) <0,
respectively. The norm of the vector x € E;’ is defined by|x||=/|(x,X)|. For a non-
zero vector v € Ef and a real numberc, we define a space with pseudo normal v by
S(v,¢) ={x e E |(x,v) =c}.

We call S(v,c) a spacelike space, a timelike space or a lightlike space if v is timelike,
spacelike or lightlike, respectively.
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Now, we define a hyperbolic space by

HI(-) ={xeE[{(x,x)=-1x >0},
and de Sitter 3-space by

S} ={xeE|(x,x)=1}
Forany X = (X, X,, X3, %,), ¥ = (Y1, ¥z, ¥s, ¥s) and z =(z,,2,, 25, 2,) € E’,

the pseudo vector product of X, y and z is defined as follows:

i ok
X, X, X5 X
XAYAZ= 1 2 M3 N
Yi Y2 Vs Vs

z, 1, 1 1,
X, X3 Xl X Xe X[ X X X X X

=1=1Y2 Yz YapiYr Y Yali(Yi Yo Vel (Vi Y2 Y5l
Z, Iy Z,| |7, I3 Z,|Z, I, Z,| |Z; I, I

We now prepare some basic facts of curves in hyperbolic 3-space.

Let ¥ : | > H2cE; () = (X (t), X, (1), % (t), X, (t)) be a smooth regular curve in
H? forany t e | where | isan open interval.

Here, we construct the explicit differential geometry on curves in Hf(—l) :

Let » : | - H?>(=1) be a regular curve. Since H>(~1) is a Riemannian manifold, then
we can reparameterize y by the arc-length. Hence, we may assume that y(S) is a unit
speed curve. So, we have the tangent vector T(s) = »'(s) with|T|| =1.

OEZON
[T ) -70)|
Moreover, define E,(S) =y(S) AT(S) AE,(S), we have a pseudo orthonormal frame

{r(s), T(s),E,(s),E,(s)} of E, alongy . By standard arguments, under the assumption
that <T' (s), T (s)> # —1, we have the following Frenet formulae:

If <-|—' (), T (s)> = —1, then we have a unit vector E,(s) =
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y'(8)=T(s),

T (s) = 7(s) + x,E4(9),

E.(s) =k, T(s)+7,E,(9),

E,(s) = —7,E,(s).

or in the matrix form:

)] |01 0 0|y
T@G)| (1 0 &, 0 T(s)
E)| |0 -5, 0 7 ||E®©
|E,(s)] |0 0 -z, 0| E,(s)

where

Ky =T 6)=7()),

__det(y(8).7(8), 7(8)". 7(5)")

’ (1 (5))°

are the geodesic curvature and geodesic torsion of the curve y in Hf(—l), respectively
(see [Liu (2014)]).
Since

(T'(8)= (), T ()= () =(T'(s), T () +1,

therefore, the condition (T'(s), T'(s))#—Lis equivalent to the condition ,(s)#0.

Moreover, we can show that the curve y(S) satisfies the condition Ky (s)=0 ifand only

if there exists a lightlike vector ¢ such that »(S) — C is a geodesic. Such a curve is called
an equidistant curve.

3 Height functions
In the following, we introduce two families of functionsonacurve y : | — Hf lying on

a spacelike surface M . Suppose thatHT' (S)H # 0, we can define these functions as follows:

3.1 Hyperbolic time-like height function
We call HT ; the time-like height function of ¥ on M = H?®(~1). We denote
h! (s)=H"(s,v) forany fixedv e H*(-1). We have
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H' © 1 AH3(=D) = R;(s,0) = (¥(3),0),
(3.2)
From Frenet formulae, we have
OHT ,
e (7'(s),0y =(T,0)=0.

Since ve H(=1) , there are A,u,veR such that v=Ay(s)+ LE,(S) +VE,(S) ,
therefore (v,v) =—1, hence

T
~ R+t v =—1, if o =0, then
0s
O°HT :
P =(T,v)
= (7(8) +&4E (), Ay () + 4E, (8) +VE, ())
=-A+x,u=0,
which implies A = x4, and
o°HT .
=(T ,v
e (T,v)

=(7'(8) + Kk, E,(8) + &, E{(5), A7 (8) + 1E, (5) +VE, (s))

=(T+ K';] E,(S) + 1y (-5, T(S) + 7,E,(S)), Ay (S) + &, (S) + VE,(S))
=((L—x5)T(S) + i, E1 () + 5,7, E,(5)), A¥(S) + LE, (S) + VE, (5))
= K;;,u—i-l('ngV =0,

then, we have

2
K.T K. T
p=—-332yv and 1=—-7"22Ly,
Kg Kg
therefore
oH' _o*H' _oH' |

0s 0s? 0s°
if and only if v=2y(s)+4E,(S) +VE,(S) , — A+’ +v=—1 and A=xyu, it
means that
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Ky
A== ,
, 2
K
K;—{ g J —1
KqTy
B 1
H=T — )
K
K‘;—( g J -1
KqTy
y
v=+=+ g

+
N
K
KqTyg Kg_( ° J -
KqTyg

Since A, u,v € R, therefore we can consider under the condition

, 2
K
k2—| —2 | >1, that
KT

«

g7g
1 K,
v== . Kg}/(s)+El(S)+FE2(S) .
) ( K'g } 99
Ky — ~
KQTQ

Moreover, we obtain

oH' O*H' o°HT oWHT
O )= 2 O )= —310 = T!U :OI
os os os os

and then

ds
Differentiating Eq. (3.5) and using Egs. (3.2)-(3.4), we get

. 1 . 1 23
KoKy Ty — Ky Ty — Ky KTy —Ky Ty — KT, =0.

, 2
K
Since, K‘: —( s } >1, therefore Eq. (3.6) leads to

KqTg

< d [(1— K'g )T(S) + K'é E,(s)+ K,T,E, (S)], Ay (S)+ tE,(s) +E, (S)> =0.

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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' ! , 2
K K
K'gZ'g KQTQ
Now, we define o, as
’ ! , 2
K K
O'HI( gJ—z’g( gJ+1.
KQTQ KQTQ
If we calculate the fifth derivative of H™ , we can show that the above conditions and
d ' ! , 2
K K
_[ ][ QJH 0
ds KT, KT,

are equivalent to the conditions o, (S) =0 and o7, (S) =0. As a consequence, we have
the following proposition.

Proposition 3.1 Suppose that T (s)=0 . Forany (s,0)elxH?3(=1) , we have

1) (h))(s)=(h])'(s)=0 if and only if o=Ay(s)+uE,(S)+VE,(S) where
A, u,veR suchthat — A + g +v> =—1.

2)  (N)(s)=(n])(s)=(h])"(s) =0 ifand only if

—1 =
V=1 K,y () +E () +——E,(9) |
2 K,

' T
) Kg g-g
Kg_ —
K. T

g°g

. N2
7% z(—,é%z) @1
3 ()(s)=(h))'(s)=(h;)"(s)=(n))“(s) =0 ifand only if

K,
vt L (Kg 2(5)+E,(5) + 5 EZ(S)J
, 2 K.T
2 ( « J o7
Ky — —
K.T

, 2
2 Kg 1 _
Ky — >1 and o, =0.

K'g‘l'g

2 (h)(s)=()"(s)=(h))"(s) =(h))¥(s) = (h)®(s) =0 ifand only if
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p
D=t ! (Kg #(5)+E,(5) + EZ(S)J
, 2 K.T
, K, alg
K = -
ng—g

. 2
2 Kg _ r_
Ko — >1, 0,=0 and (o,) =0.

In the light of Proposition 3.1, we have the invariant o, . So, we define the curve
h, 1 1 - H}(-1) as follows

1 K
h,(s) = - [zcg;/(s) +E,(s)+—>E, (s)}, (3.7)
K" Kg Tg
Ki—| 2| -
Kg Tg

and we call it a hyperbolic evolute of y relative to M .

By straightforward calculations, we have h; (s)=0, if and only if o, (s)=0. Also,
h, = v, is constant if and only if o, (s) =0.

From Proposition 3.1, we have h; is constant, that is, there is a real number ¢ € R such
that (y(s),u, =c). It means that Imy = P(v,,c) "M . It suggests that curves of the
form P(v,€) "M for v e H*(~1) are the candidates of model curves on M .

These curves play a similar role to curves in Euclidean space and call them (hyperbolic-
slices or H-slices) of M .

3.2 De Sitter space-like height function

We call H®: the spacelike height function of ¥ on M , where

H® : 1 AS? > R;(s,0) = (¥(),0).

We denote h>(s) = H®(s,v) forany fixed v e S2 | and by using Frenet-Serret
formulae, we get

aaH = (/(9).0) =(T.0) =O.
S

Since v € Sf, therefore there exist A, ¢£,v € R, such that
v =Ay(S)+ HE,(S) +VE,(9),
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where v € Sf’, then (v,v) =1, so we have

~ X+ v =,

S

and if oH =0, we get

62H S B
o5
= (7(s)+x4Ey(5), Ay (8) + E, () + VE,(8))

=A + K 1= 0,

(T, v)

this leads to
A ==Ky 1.
Also, we have
o°H* "
os® =0
=(7'(8) + K, E(S) + K, E, (), Ay (8) + LE, (8) +VE, (S))
= (T4 16, Ey (8) + &, (=5, T(S) + 74 E, (8)), 47 (5) + HE, (5) + VE, (5))
= (A~ Kg)T(S) + Ky EL(S) + 5,74 E, (8)), A7 () + LE,(S) +VE,(5))

:Kg,u+1cgz'gV:0,

therefore
2
K.T K.T
u=—->3%y and 1=y,
Kg Kg

Hence, the following is satisfied
OH® &*H® o°H°
=—Z =3 =0
oS oS oS
if and only if ©=Ay(S)+ 4E,(S) +VE,(S), — A +p* +v?=land A=—x u

it means that

K
A=+ :

397
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K.T

2
K
Since A, u,v € R, therefore we can consider the condition K‘s —( g ] <1, sowe have

g‘g
1 K,
v=1= - Kgy(s)+El(S)+FEZ(S) )
i _K2+ g-9g
ng-g ’
Moreover,
oH® o*H® o°H°® 0“H*®
WO )=\—— O )=\—F73 V)= T’U =0,
oS oS oS oS
then

ds
After using the values of A, and v in Eq. (3.8), we obtain

" r 2 2 4 2.3 _
KoKoTy —KoKyTy =Ky T —2K‘gl'g +21<grg +K Ty = 0.

, 2
K
Under the condition; Kg —[ g ] <1, Eq. (3.9) leads to
K
g-g

' ! 2
K K 2 .
—74|1+2 — | —| — ||=0. Now, we define o, as
KQTQ Tg Tg

' ' 2
op = % -7, 142 5o —% :
KqTq Ty Ty

therefore, we can show that the above conditions with the extra condition:

< d (=2 )T(5)+ K, E,(5) + 5,7, E (5) ) A7 (5) + 1E, (5) +£2(s)> -0,

(3.8)

(3.9)
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’ ! 2
ds KyT, 7, 7,

are equivalent to the conditions o, (S) =0 and o, (S) =0. As a consequence, we have
the following proposition.

Proposition 3.2 If T (s)#0. Then, for any (s,0) € 1 xS/, we have

1) (h2)(s)=(h3)"(s)=0 ifand only if v =Ay(s)+ 1E,(S)+VE,(S), where
A u,veR; —/12+,uz+v2 =1.

2)  (h2)(s)=(h2)"(s)=(h3)"(s) =0 if and only if

vt L [Kgy(s) JE()s g (s)]

( K;] JZ , KyTy
—K5+
KyTy
, 2
K‘S‘—{KKz J <1.
g-g

3)  (h)(5)=(h?)"(s) = (h?)"(s) = (h¥)®(s) =0 if and only if

o
v=t - {ng/(s) +E,(s)+—=E, (S)J
, K,T
Kg ) 979
—Kk2+
Lfgfgj g

. 2
Kg—[ % ] <land o, =0.

KqTg

4 (h))(s)=(h))"(s) =(n7)"(s) = () ¥ (s) = (h})®(s) =0, if and only if

—weneeee
v="1 Kk, 7(8) +Ey(s) + ——E,(s)
K

, 2
K QTQ
| -k +
KQTQ

. 2
K’;—{ % ] <1, 0,=0 and (o,) =0".

N

KqTy

According to this proposition, we have the invariant of o . So, we define the curve
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d :1—>S’ by
1 K,
d (s)= - Ky7(8) +E(S) +——E,(5) |,
g _Kg +
g-g

and we call dy; a de Sitter evolute of y relativeto M .

By straightforward calculations, we have d ;(S) =0 if and only if o,(S)=0. Therefore,
dy =y, is constant if and only if o,(S)=0. Using Proposition 3.2, we have h; is
constant, that is, there is a real number c e R such that {y(S),u, =C). It means that

Imy =P(v,,¢) "M . It suggests that curves of the form P(v,c) "M for v e S’ are

the candidates of model curves on M . Also, these curves play a similar role to curves in
Euclidean space and we call them (de Sitter-slices or D-slices) of M .

3.3 Hyperbolic (De Sitter) invariants of curves
In this section, we study the geometric properties of the hyperbolic evolute of a curve in
H?. Forany reR and v, e H? or v, €S;, we denote

PS*(v,,r) ={v € H®|(v,v,) = r}, and we call it a pseudo-sphere in H> with center
v,

Proposition3.31f y : | —> Hf be a unit speed curve with Ké #0. Then, 7, =0 if

and only if
1 K,
v, =% — (Kg}/(S) +E,(s)+—% EZ(S)}
K 979
KQTQ

and y is a part of a pseudo-sphere in Hf whose center is v, .
Proof. We denote

P,(s) = v, = - (/cg #(5) +Ey(s) + L E, (s)}
, ( K, J KqTg
Ky — -
ng-g

then, we have
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2 '3 2.2 3. 3
(Kgk KTy — 2K Ky Ty — KoKy Ty —Kyk,T3)7(S)
non '3 2 2. '3
1 + (kg Kyky Ty — 2K, Ty — KKy Ty —Kgky Ty )E,(S)
, B "2 3.2.3 54 4 _ 2_2 |
4_2 2 2_2 — — —
(xic? k2 —Klcl|): + (KK Ty — 2K K, Ty — KTy —K K T Ty +K K, T,
2

2" 2,2 2 ! 3.4
— KK Ty + K Ky Ty + KK Ty Ty +K,7)E,(5)]

9™gfg
4

P, (s) =7

Therefore, P,(s)' =0 if and only if r, =0. Under this condition, we put

K
r=% 2 :
, 2
K,
ng-g
and
K K"
v, =F J (Kgy(S) +E, (s)+—— EZ(S)}
' 2 K.T
) [ Kg g-g
Ky — -
ng-g

Thus, it is easy to show that 7(S) is a part of the pseudo-sphere PS*(v,,r) .

, 2
K
Let » : | —>Hf be a unit speed curve with ng—[ g ] >1.Forany s el ,we
K,T
g7 g

consider the pseudo-sphere PS*(u,,r.") where v, = h,(s) and

9

' 2
K
2
ng-g

Therefore, we can give the following proposition.

Proposition 3.4 Under the above assumptions, ¥ and PSl(uo, r) have at least 4-points
contact at (s,).

Proof. We assume that PS'(v,,r) = H? . In this case, we consider the hyperbolic
timelike height function H' . By definition, we have PS*(u,,1.) = (h] ) (1) . Proposition
3.1(2) means that » and PS'(v,,r) have at least a 4-point contact at y(s,) If

PS'(v.,r) c Sf, then we adopt the hyperbolic spacelike height function H*® , and the
assertion follows from exactly the same arguments as those of the previous case.

We call PSl(u ,I.) in Proposition 3.4, the osculating pseudo-sphere (or, the pseudo-

o
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sphere of geodesic curvature); its center v, is called the center of geodesic curvature. So,
the hyperbolic evolute is the locus of the center of geodesic curvature.

4 Unfolding of functions of one variable

In order to investigate the singularities of pseudo-spherical evolutes, we apply the theory
of unfolding of functions. First, we give a quick review on this theorem of one variable.
Detailed descriptions are found in Bruce et al. [Bruce and Giblin (1992); Izumiya (2013)].

Let F :(RxR",(sy,X%,)) = R be a smooth function defined around a specific point
(Sps %) - We call such a function germ at(S,, X,) . We call F an r -parameter unfolding
of f, where f(s)= F, (So1Xp). We say that f has type A -singularity at s, if
f(P(s,)=0, forall 1< p<k, f“(s,)#0. Let F be an unfolding of f and f(s)
has A, - singularity (k >1) at s,. We denote the Taylor series of the partial derivative
S—;at S, up to (k—1) terms by

=k-1 aF k1 i
I (—(S, Xo)j(so) = Zaji (s—50)’,
X, j=0
for i=1...,r. Then, F is called a (p) versal unfolding if the (k—1)xr matrix of
coefficients ¢, (j =1...,k—1) has rank k —1; (k—=1<r). Under the same condition
as the above, F is called an R -versal unfolding if the kxr matrix of coefficients
(@i, ;) hasrank k(k <r), where o, =2X—F(50,x0).

Now, we introduce an important set concerning the unfolding relative to the above notions.
The bifurcation set B of F is

0°F
0s®

Therefore, we have the following fundamental result of the unfolding theory.

Be Z{XE R’ |33;withi—i(s,x): (s,x)zo}.

Theorem 4.1 Let F :(RxR",(s,,X)) — R be an r -parameter unfolding of f which
has the type A, at S,. If F isan R -versal unfolding, then we have

1) If k=3, then B, is locally diffeomorphicto CxR"*

2) 1f k=4, then B, is locally diffeomorphic to SW xR"* |
where C ={(x,,%,) | x> = X3} is the ordinary cusp (see Fig.1) and
SW ={(%,, %, X3) | X, = 3u* +U?v, X, = 4u® +2uv, X, = v},
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is the swallowtail surface (see Fig. 4).

015

005 -

LRl N R S S S S B B
-0.15 —-0.10 —0.05 0.0 0.05 0.10 0.15

Figure 1: The ordinary cusp

We consider that H'(s,v) (respectively, H®(s,0) ) is an unfolding of h, (s)
(respectively, h; (s)). So, we have the following proposition.

K. T

, 2
K,
Proposition 4.1 Let y : | —> Hf be a unit speed curve with K‘; —( g J >1. Then,
g9

we have

1) If h} (s) hasthe A,-singularity at s_, then HTis the R versal unfolding of h, .
2) If h; (s) hasthe A,-singularityat s_, then H % isthe R™ versal unfolding of h, .
Proof. We denote 7(S) = (X,(S), X,(S), X5(S), X, (8)) ,

v= (ul,uz,z)s,\/—lJr V7 —v: —v}) e H(-1) and

HT (s,0) ==X, (S)v, + X, (s)v, + X3(S)0; + X, (5)\/_1"'012 ~u; _Ue? '

it follows that
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oHT v N i 0, y
ov. ¢ 0l —02—p2 " osov. ¢t 2 _,2_ 2 %
1 +U; —v;, —U; 1 =1+v —v; —v;
oHT v, o°HT v, ,
=X, — X4 =X, — Xy,
ov, —1+ 02 —v? - 0? 0s0v, R S
oHT U, OPHT v, :
= X3 — X4, = X3 - X4|
0y \/—1+1)12—1)22—U§ 080, \/—1+Uf—1)22—1)§
OHT v, . *HT o
8s%ou, AT PCIRSEAY 0530 =% I
! =1+vf —v; —v; b -1+v; —v; —v;
P°HT v, v *HT v, <
ds°0v, -1+0v! -0 -0? v ds°0v, -1+0vf -v? =02 v
SHT . L . o'HT v
m:&(S)— 23 — X, =% =X; — 23 —— X,
3 -1+v] —v; —u; S0, -1+v —v; —v;
. T . .
From Proposition 3.1, h, (s,) hasatype A, at s, if and only if
1 K,
1) v=+ K,y (S)+Ey(s)+——E,(s) |,
Ty K,T
) K, 9°g
Ky — -1
KTy
N
K
2) (xi-|—=|)>1,04,=0and (o,) =0.
K. T
9°g
For this purpose, the following matrix
SR S A S W
J-1+07 —vZ —v? J=1+07 —0v? —v? J-1+0f —vZ —0?
Ac| - X4 X2y e
-1+ —v2-v? -1+l —v?-v? -1+l —v?-0v?
-x + ! R . SR g . W—
| -1+v2-vZ-v! -1+0?-v2-v? —1+02-v2-v?

must be non-singular. Therefore, we calculate the determinant of it as follows

X

X,

X,
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det A = (=X X,Xg + XX, X3 + X, XpXg — Xy XpXg = Xy Xy Xg 4+ X; X X3)

U

F(XyXg Xy — Xy XXy — Xy Xg Xy + Xy Xg X, + Xy X3Xy — X5 X5X, ) =
-1+v] —v, —u;

L,

2 2

FXXg Xy = XXXy — Xy Xg Xy + X, Xg X + Xy XgX, — X, X5X;)
—1+0! -0 =V

U3

F(X XXy = X Xy Xy = Xy Xp Xy Xy XXy 4 Xy Xy Xg = Xg XpXy) — |
-1+0v] —v, —u;

or in another form

"o

dett A = (XX, —X6) X (6 —X %)+ X, (45 %)

N

00 X)X 06K, XX+ X, 05K % 6),

X (KX =X X )+ X5 (6 Xy =X %) =X, (X X5 =%, X)),
6K, 6 X)X 00 =X X0+ X, 06— )R,
where
b, Uy

%
2_

Qtr - _1 2 2 2 2 2 2 2 2
\/_1"‘01 -, — U \/—1+Ul -0, —U; \/—1+Ul -0, — U

and Q" is the transpose of a matrix Q. Then we get
Xl XZ X3 X2 X3 X4 Xl X3 X4 Xi X2

det A=||x X, x| x XL x  X[—x x5 x| |Q, therefore, we

X\ X XX Xy X [ PX Xg X | X X X,
have

-i j k 1

X, X X

1 2 3 4
detA=|| . 2 7 Q"

X, X X3 X,

KX

by using Frenet formulae, we can write
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det A=(TA(T ATHQ"
= ((T A (r(8) + 54 E,(8)) A (L= #5)T(S) + &, B4 (8) — &, 7, E, (5))) Q2"

_ —1 (2. 7(5) + K. 7.E, (5) + K.E, (5)) %
\/—1+012—022—032 e oo o Uy

2 2 2
\/—1+ U — U, —U;

-1 ) ,
= k. 7,7(8) +k,7,E, () + x,E,(S),0),
[\/—1+1)12—022—1)2J< o9 e o >

3
where

v== L > [’(gV(S)JFEl(S)JrK—;Ez(S)}

K Kng
2 g
Kg — —
KQTQ

then we have

3 Ky
— KT, +K,T, +
-1 979 979 KT
det A= ——— || £ i
\/—1+ v — U, — U

#0.

2 2 2
V=140 o) —uy

By the same way as the above, if we consider the spacelike height function H® , we can
prove Proposition 4.1(2).
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Theorem 4.2 Let y : | — H?(=1) be a regular curve such that HT (S)H #0. Then we
have the following assertions:
(A1) The hyperbolic evolute at h (s,) is regular if o, (s,) #0.
(A2) The following conditions are equivalent:
1. The germ of the hyperbolic evolute at h (s,) is diffeomorphic to a Swallowtail
surface,
2. o04(Sy)=0and oy, (s,) =0,
3. y(s) and the pseudo sphere PSl(uo, r,) have contact of order four where
v, =h,(s,)-
(B1) The de Sitter evolute at d_(s,) is regular if o, (s,) =0 .
(B2) The following conditions are equivalent:
1. The germ of the de Sitter evolute at d_(s,) is diffeomorphic to a Swallowtail
surface,
2. o05(8,)=0and o,(s,) =0,
3. 7(S) and the pseudo sphere PSI(UO, r,) have contact of order four where
Uy = d}/(SO) .
Proof. (Al) By the assertion of Proposition 3.1, we have h’ (s) =0 if o,,(s)=0. It
means that the hyperbolic evolute at h (s) # 0 is regular if o, (s)#0 .
(A2) By Proposition 3.1, the bifurcation set of H is

979

el KN G
B, =|h(s)= - Kgy(s)+E1(s)+K—E2(s) | x4 = o >1|

KqTq

By Theorem 4.1 and Proposition 4.1, the germ of the bifurcation set is diffeomorphic to a
Swallowtail surface if o, =0 and o}, = 0. Moreover, we have other equivalences from

Proposition 3.3 and Proposition 3.4. This completes the proof of (Al) and (A2). If we

consider the spacelike height function H ® |, then we can prove the remaining assertions of
the theorem.

5 Computational examples
In this section, we consider some illustrative examples to explain the evolute curve on a
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surface of graphical representation in H?(~1) and H>(~1) . From Theorem 4.1, the
evolute curve in H?(-1) at h,(s,) isregularif o, #0, and is the ordinary cusp locally

if o, =0,and o}, #0, see Example 5.1 and Example 5.2 .
Also, by Proposition 3.1, (h!)'(s) = (n})"(s) = (h])"(s) = (] ) (s) = (h])®(s) =0,
ifand only if h (s,) is the evolute curve in H(~1) and o, = o7, =0, see Example 5.3.
Example 5.1 In Hf(—l) , we have the hyperbolic Frenet formulae of a curve y:

7'(s) =T(s),

T (5) = 7(s) + &, (S)E(S),

E'(s) = -k, (s)T(s),

where «, is the geodesic curvature of y in Hf , Which is given by

K, (s) = det(y(s) T(s) T (s)). (5.1)
The hyperbolic evolute of y is given by
1
h, (5) = ———— (1 (8)(s) + E(5)) (52)
"(g (s) _q

Here, we have

—K, L KKy + 2K,
oy =— and o, =————5—— [Sato (2012)].

Kg g

Now, suppose that X (u,v) = (u?,u®,v) be a cuspidal edge surface, see Fig. 2. We
investigate the following curve

y(u) = (u?,u’,2), (5.3)
From Eq. (5.3), we have
T-1 L (2,30,0) (5.4)

71~ Jou? +4

Since E=y AT, therefore we get

ik
E:% u> u® 1 (5.5)
u® +4 5 3w 0

therefore, we have
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_
Vou? +4
: 1
T=—r—-—
(Qu® + 4)*'?
from Egs. (5.3), (5.4) and (5.7), we get

E: (3u121u3)!

(-18u,12,0),

u? u’ 1
. - 2 3u
Y |Vour+4a  Jour+4
—18u 12 0
(u? +4)"  (9u?+4):
B 6
(u?+4)
Then, we have
o = —108u
¢ (Qut+4)?’
and so
. 26244u* + 7776U% —1728
Ky = 2 2 .
(9u*+4)

At the point u =0, we have
y=(0,0,1), T=(0,0), E=(0,1,0),
3 " 27

Ky = E,K‘g =0, K, =—I,O'H :0,0','4 =3.

Thus, the hyperbolic evolute of » has a cusp at the origin.

409

(5.6)

(5.7)

(5.8)

Now, we find the equation of the hyperbolic evolute curve of cuspidal edge surface.

From Egs. (5.2), (5.3), (5.6) and (5.8), we have

h L (6u?+3uVou+4,6u°+2v0u+4,6+u°ou+4)

- 36— (9u +4)?

(5.9)
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Figure 2: The curve y, Cuspidal edge surface ¥
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Example 5.2 In this example, we consider a spacelike curve y(S) lying fully on an
oriented ruled surface Q inH?(-1), as follows
Q(s,V) = (s,5in(+/25),c0s(+/25)) + V(L cos(v/2s),—sin(+/2s)),
(see Fig. 3). We investigate the following curve:
7(s) = (s,5in(~/25),c0s(~/25)), (5.10)
it follows that
7' = (1,2 cos(v/25),~v/2 sin(~/2s)),
7" = (0,~2sin(~/2s),~2 cos(+/25)), (5.11)
y" = (O,—2\/§ cos(\/is), 2\/§sin(\/§s)).

From Eg. (5.11), we get
T= (1, J2cos(v/2s),—/2 sin(\/Es)) (5.12)
where E=y AT , and we get
—i j k
E=|s sin(+/2s) cos(~/2s) |,
1 2cos(v/2s) —~/2sin(+/25)
therefore, we have
E = (v/2,4/2ssin(~/25) + cos(v/25),/25 cos(v/25) —sin(+/25)), (5.13)
T = (0,—2sin(~/2s),—2c0s(~/2s)), (5.14)
using Egs. (5.9), (5.11) and (5.13), we get
S sin(\/fs) cos(\/is)
Kk, =|1 J2cos(v2s) —+/2sin(v2s)=-22s. (5.15)
0 —2sin(~2s) —2cos(v/2s)

Then, we have K'g = —2\/5, and then K'g' = 0. Therefore, we get oy # 0, this means
that the hyperbolic evolute curve is regular curve.
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- 10
o s

_1pn-05"
o

-5

Figure 3: A spacelike curve y(S) lying fully on an oriented ruled surface Q
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Example 5.3 Suppose that ®(u,Vv) = (3u* +u?v,4u® +2uv,Vv) be a Swallowtail surface
(see Fig. 4). In this example, we investigate the following curve S in Hf(—l) :
S(u) = (3u* +u?,4u® +2u,1,2), (5.16)
it follows that

£ = (12u® +2u,12u” +2,0,0),

B" = (36U’ +2,24u,0,0),

p" = (72u,24,0,0),

BY = (72,0,0,0),
B® =(0,0,0,0).
Therefore, we have
T-F 1 (6u® +u,6u? +1,0,0) (5.17)
18] V-36u° +24u* +1102 +1
and
—1296u® +576u° +336u* + 40u? +1
7 5 3
— 1 —1080u’ +468u° + 246u° + 23u (5.18)
(—36u° + 24u* +11u? +1)*'2 0 '
0
from Egs. (5.16) and (5.18), we get
(-1296u° +576u° +336u* + 40u +1) 30 +u?)
( (—36u° + 24u* +11u® +1)*? )
: —1080u’ + 468u° + 246u° + 23u
TP o e ) 19
-1
-1

therefore

1

((—1296u8 +576u° +336u° +40u° +1 ‘

2 \2
)— 3u* +u’
HT’ ﬂ” (—36u® +24u* +11u° +1)*? ( )j (5.20)
B - 7 5 3 2 ' '
+(( 1080u” + 468u° + 246u +23u)_(4u3+2u)] s

(—-36u° +24u* +11u* +1)*°
Then, from Egs. (5.19) and (5.20), we get
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c - T =T
T4
And we have
__det(8.B8.8".8")
g K_s
—3ut+u® 4ut+2u 101
_—_112u3+2u 12u°+2 0 0_0
Kj|36u+2  24u 0 O
72u 24 00
So, at the point u =0, we obtain
1 -1-1
B =(0,0,11), T—(O,l,0,0),El—(?,O,ﬁ,ﬁ}

and
e (0011 3 - o
2= O,O,ﬁ,ﬁ,lfg— 3, Tg—O, o, =0, o, =0.

Finally, from the previous calculations, we can find the equation of the evolute curve in
hyperbolic 3-space as given in Eq. (3.7).

05 0.0

Figure 4: The Swallowtail surface ®(u, V)
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6 Conclusion

In the three dimensional hyperbolic space, the pseudo-spherical evolutes of curves are
studied. Also, some relationships between singularities of these curves and geometric
invariants under the action of the Lorentz group are obtained. Furthermore, some
computational examples in support of main results are given and plotted.

Acknowledgment: The authors are very grateful to referees for the useful suggestions and
remarks for the revised version.
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