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Abstract: A bio-inspired global finite time control using global fast-terminal sliding 

mode controller and radial basis function network is presented in this article, to address 

the attitude tracking control problem of the three degree-of-freedom four-rotor hover 

system. The proposed controller provides convergence of system states in a pre-

determined finite time and estimates the unmodeled dynamics of the four-rotor system. 

Dynamic model of the four-rotor system is derived with Newton’s force equations. The 

unknown dynamics of four-rotor systems are estimated using Radial basis function.  The 

bio-inspired global fast terminal sliding mode controller is proposed to provide chattering 

free finite time error convergence and to provide optimal tracking of the attitude angles 

while being subjected to unknown dynamics. The global stability proof of the designed 

controller is provided on the basis of Lyapunov stability theorem. The proposed 

controller is validated by (i) conducting an experiment through implementing it on the 

laboratory-based hover system, and (ii) through simulations. Performance of the proposed 

control scheme is also compared with classical and intelligent controllers. The 

performance comparison exhibits that the designed controller has quick transient 

response and improved chattering free steady state performance. The proposed bio-

inspired global fast terminal sliding mode controller offers improved estimation and 

better tracking performance than the traditional controllers. In addition, the proposed 

controller is computationally cost effective and can be implanted on multirotor unmanned 

air vehicles with limited computational processing capabilities. 
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1 Introduction 

A noticeable surge has been witnessed in use of Multirotor UAV (MUAV) for numerous 

civil and strategic defense applications including aerial shooting, transportation, urban 

surveillance, and rescue operations, in the recent past. It is because of several outstanding 

properties of MUAV(s) such as its low development cost, structural simplicity, hovering 

capability, and low speed maneuverability [Raptis and Valavanis (2011)]. Literature 

shows several configurations of MUAV(s) i.e. four-rotor, quadcopter, hexarotor, and 

octorotor for which various controllers have been designed to tackle variable operating 

conditions (e.g. [Bouabdallah, Noth, Siegwan et al. (2004); Hoffmann, Huang, Waslander 

et al. (2007); Pounds, Mahony and Corke (2010); Rinaldi, Chiesa and Quagliotti (2012); 

Chen and Huzmezan (2003); Amin and Aijun (2017)]). Conventional linear controllers 

(e.g. PID, Linear Quadratic, and robust H∞ controllers) implemented to control MUAV(s) 

(e.g. [Bouabdallah, Noth, Siegwan et al. (2004); Hoffmann, Huang, Waslander et al. 

(2007); Pounds, Mahony and Corke (2010); Rinaldi, Chiesa and Quagliotti (2012); Chen 

and Huzmezan (2003); Amin and Aijun (2017); Amin and Aijun (2016)]) are designed on 

the mathematical model linearized about the fixed heave state. These classical linear 

control methods were not found practically viable for controlling trajectory tracking of 

MUAV, especially in presence of parametric uncertainties and modeling inaccuracies. 

Hence, it can be concluded that apart of the availability of several controllers for MUAV 

[Amin, Aijun and Shamshirband (2016)], the effective control of MUAV(s) is still active 

control problem due to its complex nature and highly coupled system dynamics. 

Literature study reveals that nonlinear control techniques have outperformed classical 

control methods in dealing with parametric and un-parametric uncertainties and outward 

disturbances. Among others, Sliding Mode Controller (SMC) has been proved as the 

most efficient and effective robust technique in handling uncertain systems [Lantos and 

Márton (2011)]. Moreover, literature review also states several SMC based techniques 

developed for 3 DOF four-rotor system and quadcopter such as use of SMC for 

quadcopter control was introduced by Bouabdallah and Siegwart [Bouabdallah and 

Siegwart (2005)]. The results of the aforementioned technique exhibited poor 

performance and chattering in output states [Bouabdallah and Siegwart (2005)]. Xu et al. 

also employed SMC for quadcopter but the major limitation was that simulations were 

not performed on a real platform [Xu and Ozguner (2006)]. Exact feedback linearization 

was proposed for quadrotor control by Mian et al. [Mian and Wang (2008)], and Voos 

[Voos (2009)]. On comparison between feedback linearization controller and SMC, the 

latter showed efficient performance in noisy conditions [Lee, Kim and Sastry (2009)]. 

Bouadi proposed SMC based adaptive tracking controller for quadcopter with model 

uncertainties and in presence of external turbulences [Bouadi, Simoes Cunha, Drouin et 

al. (2011)]. Yang et al. presented Adaptive Fuzzy SMC (AFSMC) for attitude and 

position tracking of quadcopter subjected to actuator failure [Yang, Jiang and Zhang 

(2014)]. Recently, Sumantri et al. [Sumantri, Uchiyama and Sano (2016)] proposed a 

least-square based SMC for chattering free quadrotor control. However, sliding surface 

was usually a linear subspace of the system states in the aforementioned sliding mode 

based controllers. This results in the convergence of errors to origin in infinite time that 

only ensures asymptotic stability. 
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Terminal SMC (TSMC) and fast terminal SMC (FTSMC) are the two variants of SMC 

designed to achieve stability in finite time. Venkataraman & Gulati introduced TSMC for 

nonlinear systems [Venkataraman and Gulati (1992)] which was then successfully 

employed for uncertain linear and MIMO systems (e.g. [Man and Yu (1997); Wu, Yu, 

and Man (1998)]). However, TSMC proved inefficient in finite time convergence in such 

operational conditions where system states are far-off from the origin. Moreover, TSMC 

suffers from singularity problem in robotic manipulators control. The singularity problem 

was addressed by Feng et al. by introducing nonsingular TSMC (NTSMC) for control of 

rigid manipulators [Feng, Yu and Man (2002)]. The first issue was resolved by Yu & 

Man, by introducing FTSMC for nonlinear dynamic systems for convergence of system 

states, whether being close or away in fast finite time [Yu and Man (2002)]. However, 

FTSMC also has singularity problem [Feng, Yu and Man (2002)] which was addressed 

by Yu et al. [Yu, Du, Yu et al. (2008)], by introducing a nonsingular FTSMC (NFTSMC); 

a recursive FTSMC for finite time convergence of nth-order system to resolve singularity 

problem. Nonetheless, FTSMC and NFTSMC both lack adaptability and learning 

properties and face chattering problem [Li, Dou and Su (2011)]. Therefore, it can be 

observed that system stability can be compromised with poor system performance. 

However, augmentation of an adaptive or learning based controller with FTSMC and 

NFTSMC and a bio-inspired switching law can serve purpose.  

With the advent of intelligent controllers, fuzzy logic and neural network-based 

controllers are gradually being employed in many applications and systems with 

uncertain system dynamics (e.g. [Yu, Li and Li (2011); Fu, Wu, Ko et al. (2011); Lian 

(2014); Kaiser, Chowdhury, Mamun et al. (2016); Sun and Li (2015); Chohra, 

Benmehrez and Farah (1998)]). In particular, Radial Basis Function Network (RBFN) 

controllers have been used in several mechanical and electro-mechanical systems (e.g. 

[Liu (2012); Feng, Xiao, Leung et al. (2014)]). An RBFN approximates the dynamical 

model and provides a unique solution for a specific data set. In addition, RBFN also 

provides noise tolerance, enhanced system stability, and quick learning as compared with 

other learning-based controllers [Yu and Xie (2011)]. Literature shows that a 

considerable number of studies have been conducted to cater parametric uncertainties, 

external disturbances, and actuator failure for different configurations of MUAV. 

However, attitude tracking problem with unmodeled dynamics approximation still needs 

attention, which can cause the MUAV instability during operation making it prone to 

intermittent issues. Recently, Amin et al. [Amin, Aijun, Khan et al. (2016)] proposed 

tracking controller using adaptive extended normalized radial basis function (AENRBF) 

to address the tracking problem with unmodeled dynamics estimation. The proposed 

controller was successfully tested on a four-rotor test bench system subjected to outward 

disturbances. However, the controller did not provide any means to control convergence 

time and high computation was required for the computation of ENRBF. This shows that 

the proposed controller is not feasible for micro MUAV aimed to operate in disturbance 

free environment with limited processing power. This provides the motivation to explore 

more on intelligent controllers for MUAV control. 

In this study, a Bio-Inspired Global Fast-Terminal SMC (BIGFTSMC) in conjunction 

with RBFN is proposed for attitude tracking control of four-rotor test bench system. The 

RBFN is employed to estimate the neglected system dynamics and to overcome the 
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aforementioned FTSMC issues. BIGFTSMC provides fast and finite time tracking of 

attitude angles irrespective of system states’ position from the equilibrium point. The 

Bio-inspired switching law is employed to eradicate chattering phenomena. The closed-

loop system stability is analyzed using Lyapunov stability theorem and it is showed that 

the designed controller provides stable tracking performance. The efficiency of the 

designed controller is examined using numerical simulation and simulation results are 

also compared with classical PID controller and AENRBFN controller. Moreover, the 

proposed BIGFTSMC is tested on four-rotor test bench system to validate effectiveness 

through experiment. The contributions of this study are stated as:  

1. BIGFTSMC in conjunction with RBFN is used for tracking control problem of 

MUAV which is computationally cost effective as compared with the previous work 

such as AENRBFN (e.g. [Amin and Aijun (2017); Amin, Aijun, Khan et al. (2016)]). 

2. Fast finite time convergence of states is provided irrespective of the initial conditions, 

that is an exceptional feature of the designed controller unavailable in the previous 

work (AENRBFN) and classical controller i.e. PID (e.g. [Amin and Aijun (2017) ; 

Amin, Aijun, Khan et al. (2016)]). 

3. Bio-inspired switching law is introduced with FTSMC for chattering free response, 

which is not a characteristic of AENRBFN and PID controllers.  

4. The stability of the complete system with designed BIGFTSMC is investigated and 

proof of asymptotic stability of the closed loop system is also provided. 

The rest of the article is structured as follows. In Section 2, the four-rotor test bench 

experimental setup, dynamic model and problem statement are presented. In Section 3, 

the RBFN based dynamic estimation, BIGFTSMC design, and closed-loop system 

stability analysis is provided. Numerical simulation and experimental findings are given 

in Section 4. In the end, Section 5 concludes this article. 

2 Experimental setup 

2.1 Structure details 

The four-rotor system is a 3-DOF laboratory test bench system developed by Googol 

Systems [Googol Technology (2012)]. The four-rotor hover system is used to design and 

implement flight control laws for MUAV(s). The flight controllers designed for the four-

rotor test bench can also use for attitude tracking control of other variants of aerial 

vehicles. The four-rotor experimental system is shown in Fig. 1.  



 

 

 

A Bio-Inspired Global Finite Time Tracking Control                                                     369 

 

Figure 1: Four-rotor test bench experimental system 

The test bench system comprises of a moving platform and a control cabinet. The moving 

sub-system comprises of four propellers connected to a circular gimbal called front, back, 

left, and right propellers. The gimbal is fixed on a universal joint that restricts the linear 

motion (i.e. surge, sway, and heave) of the hover system and only allows the 3DOF 

rotational motion (i.e. pitch, roll, and yaw). The 3DOF rotational motion is caused by the 

torque(s) generated by propellers.  For instance, the pitch motion is caused by front, right, 

and left propellers; the roll motion is caused by right and left propellers; and the yaw 

motion is caused by the back propeller. High precision encoders are attached with the 

propellers’ motors that determine the angles of rotational motion. The hover system 

moving platform is connected to a computer system through a control cabinet.  The 

computer system provides the users with the facility to design and test flight controllers 

using MATLAB/Simulink. The computer system is connected to the control cabinet 

through a PCI card (GT400-SV-PCI). The PCI card comprises of D/A converters (DACs), 

decoders, digital, and analog inputs/outputs (I/Os). 

2.2 Dynamical model 

Four-rotor hover system has four inputs and three outputs. The thrust forces produced by 

the propellers denoted as Fl for left propeller, Fr for right propeller, Ff for front propeller, 

and Fb for back propeller are the inputs. The system outputs are denoted as 

 ,  ,     = where   represents roll angle,   is pitch angle and   is yaw angle.  

Front, right, and left propellers are at equal distance equidistant lf from center as 

presented in Fig. 2 [Amin, Aijun, Khan et al. (2016)]. 
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Figure 2: Four-rotor test bench system structure 

The assumptions made while modeling four-rotor test bench system are stated below:  

• The four-rotor system has a symmetrical and rigid structure. 

• The inertia matrix of the four-rotor system is time invariant.  

• Roll and pitch angle movements are limited to ±15° due to structural constraints. 

The roll motion is determined using the following equation 

r l a r aJ Fl F l = −
    

r fc l a fc r aJ K V l K V l = −
   (1) 

Where rJ is the roll axis inertial moment and fcK  is a constant that represents voltage to 

thrust ratio. Fig. 2 shows that  
3

sin 60
2

a f fl l l= = .  Therefore the Eq. (1) is rewritten as 

( )
3

2

fcl f

l r

r

K l
V V

J
 = −    (2) 

Likewise, the pitch movement is determined by the following equation 

p f f l c r cJ F l Fl F l = − − −    

p fc f f fc l c fc r cJ K V l K V l K V l = − − −    (3) 

Where pJ  is the pitch axis inertial moment. Fig. 2 shows that 
1

cos60
2

c f fl l l= = . 

Therefore the Eq. (3) can be rewritten as     
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( )
1

2
2

fc f

f l r

p

K l
V V V

J
 = − + +    (4) 

The yaw movement is determined by the following equation  

y b f fc b fJ F l K V l = =   

fc f

b

y

K l
V

J
 =    (5) 

Where yJ is the yaw axis inertial moment.  

Let system states defined as  1 , ,   =
2 , ,    =   and control input defined 

as , , ,
T

f l r bu V V V V =   . Using the above defined vectors, Eqs. (2), (4), and (5) can be 

rewritten as   

3 3 3 3 3 41

3 3 3 3 32

1

42

0 0

0 0

  

  

      
= +      

      

Iη η
u

Bη η
   (6) 

Where 

1 1

2 3 3

4

0 0

0

0 0 0

b b

B b b b

b

− 
 

=
 
  

  

1

0.866 fc f

r

K l
b

J
=  , 2

fc f

p

K l
b

J
= −  , 3

0.5 fc f

p

K l
b

J
= −  , 4

fc f

y

K l
b

J
=   

2.3 Problem formulation 

The complete dynamical model of four-rotor system is defined as follows 

( ),= +η f η η Bu    (7) 

Where ( ),f η η  is an unknown nonlinear function that denotes neglected dynamics and B 

is a constant matrix.  For the reference output state vector dη , the error vector is stated as 

= −
d

ξ η η    (8) 

This study is aimed to estimate the neglected dynamics and to propose a controller for the 

four-rotor hover system such that output vector   track the reference vector d within 

finite time and without any steady-state error. The assumptions made in the control 

design of four-rotor system are given as following: 

Assumption 1: The reference state vector d  and its time derivatives are bounded and 

continuous. 
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Assumption 2: The nonlinear function ( ),f η η  is bounded and differentiable.  

3 Controller design 

3.1 RBFN based dynamics estimation 

In this research, the unmodeled dynamics of four-rotor test bench system are estimated 

using RBFN. The RBFN has feed forward network structure with four layers: (i) An 

input layer having n inputs, (ii) A hidden layer having l neurons, (iii) A normalized layer 

having l nodes, and (iv) An output layer, as shown in Fig. 3.  

 

Figure 3: The RBFN architecture 

Input Layer: The input layer takes an input vector 
nx R  and passes on the input vector 

to the hidden layer. The input vector is comprised of error and error derivatives of all 

output states i.e. roll, pitch, and yaw. The error values are real numbers and error ranges 

are same for roll and pitch but are different for yaw. Hence, input vector is not 

normalized between [0, 1]. 

Hidden Layer: The hidden layer comprises of l neurons and each neuron node in the 

hidden layer receives an input vector x . Each node is comprised of a Gaussian function 

that changes the input to a nonlinear function, described as 

( )
2

2
, for 1, 2, ,

2

j

j

j

x c
h x exp lj



 −
= − =   

 

     (9) 

Where  jc  represents origin vector, 
? ?

x c j−  represents Euclidean distance, and   is 

the distance between input and origin of the Gaussian function. The hidden layer 

transmits the data to the normalized layer. 

Normalized Layer: In this layer, Gaussian functions are normalized to enhance the 

consistency of the input data range. The output of this layer is shown as 

( )
( )

( )
1

, for 1,2, ,
j

j l

jj

h x
N x l

h x
j

=

= = 


      (10) 
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Output Layer: The output layer is an algebraic summation of weighted normalized 

outputs, which is shown as 

( ) ( )
1

l

j

j

jy x w N x
=

=     (11) 

The optimization of the weight vector w is performed using Levenberg-Marquardt (LM) 

algorithm as a learning method. The cost function of RBFN is defined as 

( )
2 2

1 1

1 1

2 2

q q

di i

i

i

i

E y y e
= =

= − =    

Where diy and iy represents the expected response and actual response of the particular 

system output respectively. In LM algorithm, the weight update iw  is determined to 

minimize the following expression. 

( ) ( ) ( )
1

T

i i i iw w w E w
−

  = − +  J J I   

Where iw  is the weight vector, ( )ie w  is the error vector, ( )iJ w  is the Jacobian matrix 

of ( )ie w , and   is the learning parameter. The LM algorithm continues to update 

weight matrix till the cost function is optimized. If the cost function is optimized at step n, 

the weight update of RBFN is given as 

( ) ( ) ( ) ( )
1

1

T T

i i i i

n

i

i

w w w w e w
−

=

  = − +  J J I J    (12) 

The steps used in RBFN training using LMA are given in algorithm 1. 

Definition 1 [Beirami (2006)]: Any continuous, bounded, and differentiable function can 

be defined as: 

( )( )x = +f N x w      (13) 

Where 
nx R  and   is the estimation error with a known limit m so that 

m
  . 

Remark 1: The size of a RBFN is characterized by the number of neurons in the hidden 

layer. In control applications, selection of hidden layer neurons is the most critical task. If 

number of neurons is limited, it may not fully solve the problem. On the contrary, a 

complex network is always inclined to memorize unnecessary data. This result in the 

form of noise added in the learning stage. 

The selection of hidden layer neurons in control application is still a challenging task as 

no analytical solution has been devised till date. The typical heuristic approach is used for 

selection, in which various networks are trained with increasing complexity and 

estimation errors of all networks are observed. After training, all the network models are 

compared and, the network with the lowest error is selected. 

Remark 2: According to Definition 1, any unknown bounded function can be estimated 

using RBFN with desired accuracy. The Eq. (13) can also be written as 
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( ) ( ) ( ) ( ) ( )ˆ ˆ= + = +f x f x f x N x w N x w     (14) 

Where ( )f̂ x and ( )f x represent estimated dynamics and estimation error, respectively. 

Also ŵ and w  denote estimated weight and error matrices with following properties 

[Macnab (1999)]: 

1. ˆ +w = w w  

2. ŵ  and w  are symmetrical matrices (i.e. , 
T=w w ). 

3. The derivative of matrix w  is very small and ˆ = −w w   

The RBFN output in Eq. (11) is rewritten as 

( ) ( )ˆ ˆ=f x N x w    (15) 

Algorithm 1: RBFN training algorithm using LMA 

1. Parameters ,c  and  are initialized. Weights are initialized randomly between 

 ,a a− +   where 0a  . 

2. Input vector x  is received. 

3. Gaussian basis functions ( )h x  are calculated for each node in hidden layer 

using Eq. (9). 

4. Each node in normalized layer is normalized using Eq. (10).  

5. The normalized outputs are multiplied with weights to calculate output using Eq. 

(11). 

6. The error vector and cost function are calculated as de y y= −  and 
21

2
E e=  

respectively where y is system output and dy is desired output. 

7. The Jacobian matrix J  of error is calculated and weight update is calculated as  

1
T Tw e

−

  = − + J J I J  

8. The weight vector is updated as 1i iw w w+ = +   

9. Steps 5-8 are repeated for the specific input vector x  until error is within 

allowable range. 

10. Step 2-9 for all input vectors in training data. 

3.2 Bio-inspired global fast terminal sliding mode control (BIGFTSMC) design  

The dynamical model of four-rotor system presented in Eq. (7) (Section 2.3) can also 

defined as 

( )= +η f x Bu    (16) 
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Where ( ) ( ), =f η η f x  shows unknown dynamics approximated using RBFN. Using 

Eq. (14), Eq. (16) is rewritten as 

( ) ( )ˆ= + +η f x f x Bu    (17) 

The global fast terminal sliding vector is proposed as 

= + + γ
s ξ λξ ξ    (18) 

Where
1 2, 3,diag s s s =  s , 0  , 

q

p
 =  such that p and q are odd integers ( 0)p q  , 

and 
1 2, 3,diag    =  λ  where ( 0,  for 1,2,3)i i  = . 

The time derivative of Eq. (18) results in 

d

dt
= + + γ

s ξ λξ ξ    

d

dt
= − + + γ

ds η η λξ ξ    (19) 

Substitution of Eq. (17) in Eq. (19) gives 

( ) ( )ˆ d

dt
= − − − + + γ

ds η f x f x Bu λξ ξ    (20) 

Theorem 1: The tracking error ξ of attitude angles of the four-rotor system will 

exponentially converge to origin in finite time if there exists a control law defined as 

( ) ( )† ˆ  
d

dt
  −  

+= − − − − 
 

γ γ

du B f x η λξ ξ s+ s sδ   (21) 

Where 
†−

B represents the pseudo inverse of matrix B, , 0   , and sδ  is the bio-

inspired switching law. 

Proof: First we provide the proof of tracking error convergence to the zero with the 

defined sliding surface and then the proof of finite time conversion is provided. 

Substitution of the proposed control law (Eq. (21)) in Eq. (20) results in 

( ) ( )  = − − + γ
s f x s s sδ    (22) 

Multiplying s with the Eq. (22) results in 

( ) ( )2   = − − + γ+1
ss s f x s s sδ    (23) 

Since , and   are positive numbers and sδ  is a switching law, this implies 

2 20 0 −  s s  

In addition, ( ) ( )( )s − − += −γ+1 γ
s f x s f x s   
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where ( ) 0 + γ
f x s therefore ( )( ) 0s +− γ

f x s , which subsequently gives 

( )
 

γ

f x

s
. According to definition 1, ( )f x  is bounded, therefore we 

have
( )

max 
γ

f x

s
.  It is concluded that 0ss and hence showed that sliding surface 

and its differential converges to zero.  

The sliding surface defined in Eq. (18) at 0=s  can be written as 

= − − γ
ξ λξ ξ    (24) 

When the tracking error ξ  is far-off from the origin, the convergent time is dominated by 

the fast terminal term  γ
ξ . When the error approaches the sliding surface the convergent 

time is determined using = −ξ λξ . Eq. (24) can be written as  

d

dt
= − − γξ

λξ ξ   

0

0

0

1st

dt d
 

 
=  

− − 
  γ

ξ
λξ ξ

  

Thus, the time interval in which tracking error converges to zero is given as 

( )

( )
1

01
ln

1
st


 

  

−
+

=
−

   (25) 

Therefore, it is showed that by appropriate values of , ,   and  , the tracking error is 

converged to origin in finite predefined time st .  

Bio-Inspired Switching Law: 

The bio-inspired switching law was introduced by Yang et al. [Yang, Zhu, Yuan et al. 

(2012)]. In this work a modified bio-inspired switching law sδ  is combined with 

FTSMC for chattering free finite time convergence of system states. The switching law 

rate is defined as 

( ) ( )U L

d
k

dx
   + −= +− + − +s

s s s

δ
δ δ δ    (26) 

Where sδ  is the bio-inspired switching law, k is the decay constant, U and L  are upper 

and lower bounds of the switching law ( ), 0U L    , and  +
and  −

 are positive and 

negative switching functions such that 
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0

0

0

0

0

0





+

−


= 




= 



s    s

    s

s    s

    s

  

For positive sliding surface 0s , the negative switching function becomes zero and 

solution of Eq. (26) results in the following switching law: 

( )k t

U e
− +

=
s

ssδ   

Since 0k + s , it is clear from the above equation that as 0→s , 0→sδ . 

Similarly, for negative sliding surface, 0s , the positive switching function becomes 

zero and solution of Eq. (26) results in the following switching law: 

( )k t

L e
− −

=
s

ssδ  

Since 0k − s , it is clear from the above equation that as 0→s , 0→sδ . 

Hence, it shows that the bio-inspired switching law for different sliding surfaces results in 

smooth switching without any chattering.  

3.3 Stability analysis 

 The definitions used in the stability analysis are stated here [Slotine and Li (1991)].  

Definition 2: If a positive definite Lyapunov candidate function ( )V x  exists for a 

dynamical system so that ( )0 0V =  and  ( ) 0V x   , then the dynamical system is said to be 

asymptotically stable. 

Definition 3: If asymptotic stability holds for any of the initial states, the system is said 

to be globally asymptotically stable.  

Theorem 2: If the proposed controller (Eq. (21)) in conjunction with RBFN based 

estimated dynamics ( )f̂ x  is used for four-rotor system control, then global asymptotic 

stability of the closed-loop system is guaranteed. 

Proof: Let the Lyapunov function is defined as 

21 1

2 2
V = + w w

T
s    (27) 

The time derivative of the defined Lyapunov function results as 

V = + w w
T

ss   

Substituting ss from Eq. (23) and ˆ = −w w  from Remark 2 results in 

( ) ( )2 ˆ V  += − − −w w
γ+1 T

s f x s s sδ   

( ) ( )2ˆ  N  − −=  +−w w w
T T γ+1

s x s s sδ   
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( )( ) ( )2ˆ  N  − +  −= +w w
T γ+1

s x s s sδ    (28) 

The weight update is taken as  

( )1ˆ   N−= −w s x    (29) 

 Now the Eq. (28) becomes 

( )2  V  = − + γ+1
s s sδ    (30) 

Since  ,  and   are positive numbers, this implies 
2 0 + γ+1

s s so the Eq. (30) 

becomes 0V  . Since the Lyapunov function is steadily decreased, therefore closed loop 

system is globally stable. Thus, the designed system is globally asymptotically stable. 

4 Results and discussions 

In this section simulation and experimental findings are shown to demonstrate the 

efficiency of the designed controller. The simulations and experiment are performed to 

validate the proposed controller and to implement the controller on the laboratory-based 

hover system. First of all, unit step output of BIGFTSMC is determined and compared 

with outputs of classical PID and AENRBFN controllers. Next, tracking response of 

BIGFTSMC is studied with sinusoidal input trajectory. The four-rotor test bench system 

parameters are listed in Tab. 1.  

Table 1: Four-rotor hover system parameters 

Parameter Description Value Unit 

m System mass 1 Kg 

l Distance between each motor and origin 0.50 m 

JP Pitch axis inertial moment 0.91 Kg.m2 

JR Roll axis inertial moment 0.41 Kg.m2 

JY Yaw axis inertial moment 1.31 Kg.m2 

Kfc Voltage to lift ratio 15 N/V 

4.1 RBFN supervised training 

The RBFN is trained to estimate the four-rotor system unknown dynamics. The proposed 

RBFN has three substructures with respect to system outputs. Each substructure is 

comprised of two input nodes, five hidden nodes, five normalized nodes, and an output 

node. The input vector is comprised of error and error derivatives for all output states i.e. 

roll, pitch, and yaw, expressed as ( )  1 1 2 2 3 3

T
x t e de e de e de= . The initial 

weights of the hidden neurons are randomly generated within the interval [-1, 1].  The 

training data covers the learning space { 15 , 10 , 5 ,0 ,5 ,10 ,15 }− − − considering the 

maneuverability of the hover system. The number of learning episodes is set to 10000 

with learning rate 0.1 = .  Each learning episode will stop if the hover system tracks the 
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desired reference input and error is within allowable range 0.05 = . The heuristic 

approach is considered for selection of number of learning episodes i.e.  RBFN is trained 

with various learning episodes and it is found that optimal solution can be obtained with 

around 10000 learning episodes. 

The error convergence for the RBFN training is shown in Fig. 4. 

 

Figure 4: Error convergence in RBFN training 

4.2 Simulation results 

Simulation results are presented in this sub-section. Initially, step output of BIGFTSMC 

is determined and compared with step outputs of PID and AENRBFN controllers. In the 

second case, the response of four-rotor system with sinusoidal reference trajectory is 

presented. For simulation, frictional moment is supposed as unknown dynamics to 

investigate the performance of proposed RBFN. Therefore, unknown dynamics is 

considered as 

( ) Κ =f x η    (31) 

where Κ represents friction constant matrix i.e.
1 2 3Κ diag Κ ,Κ ,Κfr fr fr

 =   . After few 

trials, selected controller parameters are  2,2,2diag=λ , 1 = , 0.15 = ,
3

5
 = , 

and


 


= +
s

, where 0.50 =  and 0.10 = .  Firstly, step input of 2° is used as a 

reference input for both tilt angles. The tracking response of the proposed BIGFTSMC, 

as well as PID and AENRBFN controller responses are shown in Fig. 5. The responses 

clearly show that the proposed BIGFTSMC controller has an improved transient response 

and system’s outputs follow the given reference input faster than PID and AENRBFN 

controllers. In addition, BIGFTSMC’s response is free form chattering or oscillations 

which are normally present in SMC based controllers. PID controller offers slightly fast 



 

 

 

380   Copyright © 2018 Tech Science Press             CMC, vol.57, no.3, pp.365-388, 2018  

settling time as compared to AENRFBN but the response has unwanted overshoots with 

constant steady state error. Error plots are presented in Fig. 6. Error plots clearly show 

that error states converge to equilibrium faster than AENRBFN controller, which offers 

better error response as compared with LQR and AFSMC [Amin, Aijun, Khan et al. 

(2016)]. Hence, it indicates that BIGFTSMC is capable of steady and improved tracking 

as compared with conventional and AENRBFN controllers. The performance comparison 

is summarized in Tab. 2. 

 

Figure 5: Step responses of PID, ANERBF and BIGFTSMC controllers 

 

Figure 6: Error responses of PID, ANERBF and BIGFTSMC controllers 

 

 



 

 

 

A Bio-Inspired Global Finite Time Tracking Control                                                     381 

Table 2: Comparison of PID, AENRBFN and BIGFTSMC controllers 

Control law Settling time (sec) Percent Overshoot Steady state error 

PID    

Roll 0.90 12.1 0.04 

Pitch 0.90 18.2 0.06 

AENRBF    

Roll 0.97 0 0 

Pitch 0.98 0 0 

BIGFTSMC    

Roll 0.48 0 0 

Pitch 0.33 0 0 

In the second case, sine wave of 3° is used as the reference inputs for roll, pitch and yaw 

angles to evaluate controller efficiency. The tracking outputs of this case are presented in 

Fig. 7. The outputs show that the designed BIGFTSMC follows the input trajectory in 

real-time without any observable error. Error plots are presented in Fig. 8. The plots 

clearly show that within no time errors are converged to less than 0.01% amplitude of the 

input signal and remain in that limit. This limit is quite suitable for practical applications 

as it is due to electromechanical nature of the system. The unknown dynamics 

approximation errors are presented in Fig. 9. The approximation errors are within 

acceptable range which is obvious from Fig. 9. In a nutshell, simulations clearly exhibit 

that BIGFTSMC provides an improved and better tracking response. Moreover, RBFN 

very quickly estimates the unknown dynamics and prevents the system to become 

unstable due to modeling inaccuracies. 

 

Figure 7: BIGFTSMC output response to sine inputs 
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Figure 8: BIGFTSMC error response 

 

Figure 9: Unknown dynamics estimation errors 

4.3 Experimental results 

After achieving satisfactory simulations, the proposed control law is applied to a four-

rotor hover test bench system for controller validation. The four-rotor test bench system 

is presented in Section 2. The computer with the test bench is available with Simulink 

based software interface for implementation of designed control laws. The software 

interface is available with LQR controller as shown in Fig. 10. The LQR block is 

replaced by the proposed controller defined in Eq. (21). The RBFN parameters used in 
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simulations are also used in the experiment. The sine waves of amplitude 3° with 180° 

phase shift are used as reference inputs for roll and pitch angles. The tracking outputs are 

presented in Fig. 11. The outputs clearly show that roll and pitch outputs track the 

reference signals without any error and chattering. The error plots are presented in Fig. 12. 

The errors magnitudes are slightly higher than that the ones obtained in simulation but are 

still in the acceptable error limit for real-time tracking. Unknown dynamics estimation 

plots are presented in Fig. 13. The plots clearly show that estimation response is 

consistent with the reference input. Thus, RBFN has proved very effective in real time 

unknown dynamics approximation. It is concluded form experimental results that the 

designed BIGFTSMC provides improved tracking performance. Moreover, controller 

performance in experimental results validates the numerical simulations.  

 

Figure 10: Four-rotor hover system controller relaization 
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Figure 11: Four-rotor test bench system output response 

 

Figure 12: Four-rotor test bench system error response 
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Figure 13: Four-rotor test bench system dynamics estimation response 

5 Conclusion 

In this work, RBFN based BIGFTSMC is presented to address tracking control problem 

of four-rotor test bench system. Dynamic model of the four-rotor system is derived with 

Newton’s force equations. The unknown dynamics of four-rotor systems are estimated 

using RBFN and LMA is used as learning algorithm to train RBFN. The BIGFTSMC is 

designed using bio-inspired switching law to ensure fast convergence of errors and to 

provide improved chattering free tracking response even with modeling inaccuracies. The 

global stability proof of BIGFTSMC is provided using Lyapunov stability theorem. The 

comparison with PID and adaptive ENRFBN controller verifies that the proposed 

controller achieves improved and fast transient response and chattering free steady state 

response. In addition, the proposed BIGFTSMC controller is computationally cost 

effective and can be implanted even on micro MUAV with limited computation 

processing capabilities. Simulation and experimental results show acceptable estimation 

and tracking performance which demonstrate the effectiveness of the designed controller. 

This work can be combined with fault tolerant control (FTC) method to address actuator 

failure problem. Furthermore, disturbance observer can be designed and included to 

mitigate the external disturbance effect for operation in extreme weather conditions.  
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