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Abstract: The performance of the transfer alignment has great impact on inertial navigation 
systems. As the transfer alignment is generally implemented using a filter to compensate the 
errors, its accuracy, rapidity and anti-disturbance capability are key properties to evaluate the 
filtering process. In terms of the superiority in dealing with the noise, H∞ filtering has been 
used to improve the anti-disturbance capability of the transfer alignment. However, there is 
still a need to incorporate system uncertainty due to various dynamic conditions. Based on 
the structural value theory, a robustness stability analysis method has been proposed for the 
transfer alignment to evaluate the impact of uncertainty on the navigation system. The 
mathematical derivation has been elaborated in this paper, and the simulation has been 
carried out to verify the effectiveness of the algorithm. 
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1 Introduction 
In the recent literature, the issue of stability in various systems has received considerable 
attention. The transfer alignment of navigation system is one of the most popular methods 
for a moving base, which uses the observation difference between MINS (master inertial 
navigation system) and the SINS (slave inertial navigation system) to estimate the system 
errors by filters [Zhou, Lian, Yang et al. (2018)]. Similar to the most systems in use today, 
there are usually uncertainties incorporated in the navigation systems, which may model a 
number of factors, including: dynamics that are neglected to make the model tractable, as 
with large scale structures; nonlinearities that are either too hard or too complicated to model; 
and parameters that are not known exactly, either because they are hard to measure or there 
are varying manufacturing conditions [Candès, Romberg and Tao (2006)]. 
Since the H∞ performance is robust with respect to the input and observation noises, it 
has attracted much attention since the 1980s. The H∞ filtering is a state estimation of 
minimizing the maximum energy in the estimation error over all the disturbance 
trajectories [Yang and Che (2008)]. The state estimation based on this criterion is valid 
when a significant uncertainty exists in the disturbance statistics. Plus, the design for an 
H∞ filter does not require knowledge of the statistics of the system or the observation 
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noise and it possesses the robustness against the systems and noise uncertainties. To 
reduce the effect of the uncertainties on the system, H∞ filter has been applied to deal 
with the parameter uncertainties by increasing the robustness of the system [Zhao (2018); 
Wang and Yang (2018); Liu, Wang, He et al. (2017); Li, Chen, Zhou et al. (2009)]. 
The most general and accurate means of analyzing and characterizing the effect of system 
uncertainty on robust performance and stability, is the structured singular value μ-
framework developed by Doyle and other researchers [Doyle (1985); Packard and Doyle 
(1993); Zhou, Doyle and Glover (1996)]. Allowing for the precise measurement of 
changing effects in operating conditions and uncertainty in model parameters on stability 
and performance robustness, this approach has been applied in various fields. For 
example, μ analysis was used to model the uncertainties and evaluate the stability of a 
power system [Liu (2018)]. Bottura et al. [Bottura and Neto (2000)] investigated μ-
analysis to test robust stability and performance variations in speed control of an 
induction motor system. Zhao et al. [Zhao, Qiu and Feng (2016)] examined the robust 
stability of an integrated navigation system; He et al. [He, Wu and She (2004)] employed 
the μ analysis in exploring the robustness of the uncertain neutral systems with mixed 
delays. Pavel [Pavel (2004)] from University of Toronto had done research on stability of 
the optical communication networks with μ-analysis. Kim et al. [Kim and Cho (2016)] 
evaluated the robustness of a biochemical network through μ-analysis.  
This paper presents an approach of robustness stability evaluation of transfer alignment 
for a moving base navigation system by using the structured singular value analysis(µ-
analysis). It takes the input, the output, the transfer function, and the parameter variation 
into linear association and reconstruction, and then modifies the system to standard 
feedback system for the eventual analysis. This paper is organized as follows. Section 2 is 
devoted to introducing some basic notations and definitions of the structured singular 
value theory. Section 3 establishes the system model of the H∞ transfer alignment filter. 
After that, the derivation of alignment system model and uncertainty module with Linear 
fractional transformation (LFT) of feedback transfer alignment system is given in Section 
4. Section 5 shows the simulation experiment with the proposed algorithm to test the 
validation of the algorithm. Concluding remarks are provided in Section 6. 

2 Preliminary 
Theoretically, the structured singular value is an extended concept of constant matrix 
singular value, which is also known as the m analysis. It is a powerful tool, to analyze the 
robust stability, nominal performance and the robust performance of dynamic systems.  
The general feedback framework of m analysis with system M(s) and the uncertainty D(s) 
is shown in Fig. 1. Any linear interconnection of inputs, outputs and commands along 
with perturbations and controller can be viewed in this context and rearranged to match 
this diagram. 
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Figure 1: General feedback framework 

Where, ω1, ω2 are the exogenous disturbing input vectors, e1, e2 are the error vectors. 
Given an uncertainty with known structure, bound value, the set B∆, a set of possibly real 
and/or complex uncertainties. 

∆={diag(δ1Ir1,…, δsIrs,∆1,…∆F),δi∈C,δj∈Cmj×mj}                          (1) 

B∆={∆∈∆|σ (∆)≤1}                           (2) 

Where, σ (.) denotes the maximum singular value of a matrix and two non-negative 
integers S and F represent the number of repeated scalar blocks and full blocks, 
respectively. Consider the closed loop system with the constant matrix M(s) and the 
uncertainty ∆(s), the structured singular value µ∆(M) is defined as: 

1( ) :
min{ ( ) : ,det( ) 0}

M
I M

µ
σ∆ =

∆ ∆∈∆ − ∆ =
                          (3) 

In a word, the structured singular value is defined as the inverse of the smallest possible 
uncertainty. 

The first step in the µ analysis is to derive a linear power converter model. The properties 
of µ, and the consequently the µ analysis results, refer to the LFT standard representation 
of the control problem. Linear fractional transformation is a matrix function, which is a 
useful way to standardize block diagrams for robust control analysis and design. Many 
control problems can be expressed within the framework of LFT, which is shown in Fig. 
2 and Fig. 3. This framework can be used in describing and analyzing the uncertain 
system, where M is assumed to be the invariable part of the control system, while ∆ is the 
block diagonal matrix. Then, the matrix M is partitioned as in Definition 1. 
Definition 1 For a complex matrix M 

1 2 1 211 12 ( )( )

21 22

C p p q qM M
M

M M
+ + 

= ∈ 
 

                             (4) 

And the complex matrices ∆l=Cq2×p2 and ∆u=Cq1×p1 of appropriate size define a lower LFT 
with respect to ∆l as: 

1
11 12 22 21( , ) : + ( )l l l lF M M M I M M−∆ = ∆ − ∆                (5) 
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Provided the inverse matrices 1
22( )lI M −− ∆ exists. 

And an upper LFT with respect to ∆u is defined as  

1
22 21 11 12( , ) : + ( )u u u uF M M M I M M−∆ = ∆ − ∆                                        (6) 

Provided the inverse matrices 
1

11( )uI M −− ∆  exists. 

Fu(M, ∆u) and Fl(M, ∆l) denote the upper LFT and the lower LFT separately, with the 
visual definition in Fig. 2 and Fig. 3, and the corresponding expressions are shown in Eqs. 
(7) and (8). 

M

∆l

1z

u1y1

ω1

 
Figure 2: Lower LFT structure frame 

M

∆u

u2y2

ω2z2
 

Figure 3: Upper LFT structure frame 

Eq. (7) and Eq. (8) correspond to Fig. 2 and Fig. 3, respectively. 

1 1 11 12 1

1 1 21 22 1

z M M
M

y u M M u
ω ω       

= =       
       

                                       (7) 

2 2 11 12 2

2 2 21 22 2

y u M M u
M

z M Mω ω
       

= =       
       

                                       (8) 

The explanation of LFT (take Fl(M, ∆) for example). A nominal mapping M11 is perturbed 
by uncertainty ∆, while M12, M21 and M22 reflect how the uncertainty influences the 
nominal mapping. 

Robust Stability Theorem: Assuming β>0, the closed-loop system in Fig. 1 is stable if 
and only if the condition in Eq. (9) is satisfied. 

sup ( ( ))
R

G j
ω

µ ω β∆
∈

≤                                        (9) 

For all ∆ , such that ∆(⋅)∈µ(∆) while||∆||∞<1/β 
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3 The system model of the filter 
Unlike standard Kalman filter, there is no assumption on the statistical properties of the 
interference signal in H∞ filtering. Targeting at the systems with uncertainties and 
external interference, it is to build a filter that makes the H∞ norm of the filtering error 
output from the interference input minimized. The definition of the H∞ filter is: 

Given γ>0，resolve the causality filter F(s) ∈ RH∞(if it exits)，make 

2
22

2
[0, ] 2

ˆ|| ||: sup
|| ||L

z zJ
ω

γ
ω∈ ∞

−
= <                                      (10) 

Here, ẑ=F(s)y。 

The transfer alignment system with the H∞ filter can be modeled by the following 
equations: 
ẋ(k)=Ax(k)+B1ω(k), x(0)=0 
z(k)=C2x(k)+D21v(k)                                                                              (11) 
y(k)=C1x(k)+D11 

Fig. 4 shows the framework of the H∞ filter 

F(s)
-

+
y

z

ẑz∆

1

1 11

2 21

A B
C D
C D

 
 
 
  

 
Figure 4: Framework of the H∞ filter 

Where, z∆=z- ẑ.  
Using LFT to describe the H∞ filter, we could obtain the LFT of the H∞ filter. 

F(s)

P(s)
wz∆

y ẑ

 

Figure 5: LFT description of the H∞ filter 

Where, the system P(s) shows as 

1

1 11

2 21

0
( )

0

A B
P s C D I

C D

 
 = − 
  

                                      (12) 
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Where, filter F(s) ∈ RH∞, and the Eq. (13) has to be satisfied for the H∞ filter. 
2

22
2

[0, ] 2

|| ||sup
|| ||L

z
ω

γ
ω
∆

∈ ∞
<                                                  (13) 

According Fig. 5, Eq. (14) can be obtained as follows. 

2 2 1 112 2 2 1 112

1 112 2 112

ˆ ( )
A L C L D C L L D

z F s y y
C D C D
∞ ∞ ∞ ∞+ + − − 

= =  − 
                                    (14) 

Where, 

[ ] 1
1 2 1 11 1 1 21 2

T T T TL L B D Y C B D Y C R−
∞ ∞ ∞ ∞ = − + + 

                                      (15) 

In our case D11=0 and D21=0，and the filter can be simplified as: 

2 2 2

1

ˆ
0

T TA Y C C Y C
z y

C
∞ ∞ −

=  
 

                                     (16) 

Where, Y∞ is the positive definite solution of the equation in (17) 

 
2

1 1 2 2 1 1( ) 0T T T TY A AY Y C C C C Y B Bγ −
∞ ∞ ∞ ∞+ + − + =                         (17) 

The system matrix P(s), the filter matrix F(s) can be divided into four blocks, as follows: 

1

1 11

2 21

0

( )

0

A B

P s
C D I
C D

 
 
 =
 −
 
 



   





， 2 2 2

1

( )
0

T TA Y C C Y C
F s

C
∞ ∞ −

=  
 

 

Abbreviated as 11 12

21 22

P P
P

P P
 

=  
 

 and 11 12

21 22

F F
F

F F
 

=  
 

 

So, P11=A， [ ]12 1 0P B= ， 1
21

2

C
P

C
 

=  
 

， 22
0
0 0

I
P

− 
=  
 

 

F11=A-Y∞C2
TC2, F12=Y∞C2

T, F21=C1, F22=0 

 
4 Robust stability analysis 
According to the lower LFT, the transfer alignment system and the filter can be integrated 
into one representation M, as shown in Eq. (18) below: 

M=P11+P12F(I-P22F)-1P21                                                               (18) 

Applying the system model to Eq. (18), the following results can be obtained: 
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[ ] 11 12 11 11 12 11
1

21 22 21 21 22 2
0 ( )

0
F F D I F F C

M A B I
F F D F F C

−−       
= + −       

       
 

[ ] 11 11 21 11 12 22 11
1 11 1 12

21 11 21 12 2
( )

D F F D F F C
A B F B F I

D F D F C
−− −   

= + −    
   

          (19) 

D11=0，D21=0，F21=C1=I ，F22=0 

[ ] 121 22 1
1 11 1 12

2
( )

0 0
CF F

M A B F B F I
C

−− −   
∴ = + −   

   
 

1
1 11 1 12

2

1
2

C
A B F B F

C
  = +      

1 11 1 1 12 2
1
2

A B F C B F C= + +                                                   (20) 

11 2 2
TF A Y C C∞= − ， 12 2

TF Y C∞= ， 1C I=  

1 2 2 1 1 2 2
1 ( )
2

T TM A B A Y C C C B Y C C∞ ∞∴ = + − + 1 1 2 2 1 2 2
1 1
2 2

T TA B A B Y C C B Y C C∞ ∞= + − +
 

1 1 2 2
1 1( )
2 2

TB I A B Y C C∞= + +                                                                                               (21) 

In order to extract the structural perturbation and introduce it into the feedback system, it 
is necessary to apply a series of transformations to M. Firstly, it is converted into the form 
of a feedback form shown in Fig. 6. 

G

I
 

Figure 6: Standard feedback structure 

Assuming that G contains structural perturbation ∆G, G=G0+∆G, where G0 is the nominal 
system without structural perturbation. The extracted perturbation ∆G is then introduced 
to the feedback structure to do the robust analysis, shown in Fig. 7 

∆G

G0

I

⇒
G0

I+∆G/G
 

Figure 7: The feedback system with structural perturbation 

∆G is generated by the structure disturbance ∆M of system M, M0 is the non-disturbance 
part, and G0= M0(I-M0)-1  
G=G0+∆G=(M0+∆M)(I-M0-∆M)-1                                                   (22) 
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Then we have the structural perturbation:   

0 0 0

0

( )M M G I M MG
I M M

+ ∆ − − − ∆
∆ =

− − ∆                                                    (23) 

Therefore, the stability of the transfer alignment with H∞ filtering in Fig. 4 is equivalent 
to robust stability of the closed loop system in Fig. 7. Where, M=(I+G)-1G. 

Let GI
G
∆

∆ = + , and G∆ was obtained by M∆ : 

0 1 1 2 2
1 1( )( )
2 2

TM M M B I A A B Y C C∞= + ∆ = + + ∆ +

1 1 2 2 1
1 1 1( ) ( )
2 2 2

TB I A B Y C C B I A∞= + + + + ∆                                     (24) 

So, 

0 1 1 1 2 2
1 1 1( ) ( )
2 2 2

TM B I A C B I A B Y C C∞= + + = + +                                                             (25) 

1
1( )
2

M B I A∆ = + ∆                                                                              (26) 

According to the robust stability theorem, the infinite norm ||∆||∞ and the structured 
singular value µ∆(G0) of the nominal system G0 are then calculated to judge whether the 
items, namely, ||∆||∞<1/β and µ∆(G0)<β are satisfied at the same time, so as to evaluate the 
robust stability of the feedback system. 

5 Equations and Mathematical Expressions 
In this section, the mathematical simulations have been carried out to test the robust 
stability of the transfer alignment filter in the uniform motion, at the speed of 10m/s. The 
discrete filtering model of the transfer alignment can be expressed in Eq. (27), and the 
parameters setting are summarized in Tab. 1. 

Xk=φk,k-1 Xk-1+Γk,k-1Wk-1 
Zk=HkXk+Vk                                                                                         (27) 
Yk=Xk 

Where, Xk is the system state vector at time k, φk,k-1 is the state transition matrix, Γk,k-1 is 
the system noise matrix, Wk is the system noise, Zk is the measurement, Hk is the 
measurement matrix, Vk is the system measurement noise, Yk is the output. 
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Table 1: parameters setting 

Gyros’ drift 0.1 °/h 

Gyros’ random 0.05 °/h 

Accelerators’ bias 1 mg 

Accelerators’ random 0.5 mg 

The simulation is carried out in the North-East-Up (ENU) coordination system, and we 
simulated the velocity matching measurement for an illustration. The state vector is Xk= 
[δVe δVn ϕe ϕn ϕu ∇e ∇n εe εn εu] and the measurement vector is consist of the northern 
velocity and eastern velocity Zk=[δVe δVn]. The system model is: 

11 12 11 12

21 22 21 22

34 35 11 12 13

43 21 22 23

, 1
53 31 32 335 5 5 5

0 0 0 0
0 0 0 0

10 0 0 0

1 0 0 0 0

0 0 0 00 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

u n

u e

n

n

e n

nk k
x x

e n

F F f f c c
F F f f c c

F F c c c
R

VF c c c
R R

F C
VtgL F c c c

R R
φ −

−
 −


−



−
  = =   















 
 
 
 
 
 
 
 



                           (28) 

Where, cij (i,j=1,2,3) is the element of the attitude matrix, and

 

11
n u

n e

V VF tgL
R R

= − , 34 sin e
ie

e

VF L tgL
R

ω= + )cos(35
e

e
ie R

VLF +−= ω ， 3443 FF −= ， 3553 FF −=

 

Considering the system structure perturbation caused by the dynamic influence, we have 
assigned different uncertainties with several parameters in the system matrix: F11(±10%), 
F12(±2%) and F22(±4%). As it is seen that, the uncertain parameters mainly cover 
velocity-relative factors, they are two element of the principal diagonal, one element with 
velocity and one element with position. Then, the bode diagrams in Fig. 8-Fig. 10 are of 
help to analyze the robustness stability of the transfer alignment system. 
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Figure 8:  Frequency response of the attitudes 
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Figure 9: Frequency response of then northern and western velocities 
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Figure 10: Frequency response of the northern and western positions 

In these figures, due to the uncertainty of the system, the frequency response of the plant 
is different from the nominal model. The red “+” indicates the nominal model and the 
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blue dashed line indicates the results of 20 random samples for the model with 
uncertainty. Obviously, the uncertainty of the model changes the frequency response 
curve of the system. Because of the correlation and coupling of system parameters, the 
velocity uncertainties result in disturbances in the output of the alignment. It can be 
clearly seen that the perturbation on the attitudes are more serious, which easily lead to 
the operating frequency band. The positions are less perturbed by the uncertainties. 

6 Concluding remarks 
An algorithm of robustness stability analysis has been proposed for the transfer alignment 
to evaluate the impact of uncertainty on the navigation system. Based on the theory of the 
structured singular value analysis, a feedback structure of the transfer alignment filtering 
system has been developed, where the H∞ filter is adopted to perform the process. 
Furthermore, simulations have been carried out to exemplify the use of the proposed 
algorithm. The significance of this research is to find a way to evaluate the performance 
of the transfer alignment process when the system incorporates structural uncertainties 
under complex dynamic conditions, so as to further guide and improve the system design. 
This paper preliminarily validates the proposed algorithm, while different conditions like 
the vehicle maneuver motion, time delay, vibration and swaying environment that could 
introduce system uncertainties need elaborated robustness stability analysis. Such issue 
will be further addressed in the future study. 
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