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Fast Near-duplicate Image Detection in Riemannian Space by A 
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Abstract: There is a steep increase in data encoded as symmetric positive definite (SPD) 

matrix in the past decade. The set of SPD matrices forms a Riemannian manifold that 

constitutes a half convex cone in the vector space of matrices, which we sometimes call 

SPD manifold. One of the fundamental problems in the application of SPD manifold is to 

find the nearest neighbor of a queried SPD matrix. Hashing is a popular method that can 

be used for the nearest neighbor search. However, hashing cannot be directly applied to 

SPD manifold due to its non-Euclidean intrinsic geometry. Inspired by the idea of kernel 

trick, a new hashing scheme for SPD manifold by random projection and quantization in 

expanded data space is proposed in this paper. Experimental results in large scale near-

duplicate image detection show the effectiveness and efficiency of the proposed method. 
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1 Introduction 

A huge amount of multimedia (especially images, videos and photos) has been flooding 

websites such as YouTube, Facebook, Google video and many others. On one hand, the 

easy access to the multimedia big data gives a lot of fun to the public. On the other hand, 

the deluge of multimedia contents has undoubtedly created problems such as copyright 

infringements and wasteful usage of storage space and network bandwidth. 

Website owner can easily take measures to prevent the users from uploading the exactly 

same images or videos by using hash code (for example, MD5). According to some 

statistics, there are many images or videos on the Internet which are just the near-

duplicates instead of the exactly same copies. Any auxiliary textual information 

associated with the image or video would be of no use when it came to determining if the 

image or video had been illegally copied. Therefore, it is very challenging to detect the 

near-duplicate images or videos. 

A promising approach to tackle this problem is to look directly into the visual content of 

the videos or images. This is the so-called content-based copy detection (CBCD) 

approach [Zheng, Lei, Qiu et al. (2012); Lei, Qiu, Zheng et al. (2014a)]. 
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Unlike watermarking, CBCD extracts a small number of features (called the fingerprint 

or signature) from the original image or video content instead of inserting some external 

information [Wang, Zhu and Shi (2018); Ma, Luo, Li et al. (2018); Li, Castilione and 

Dong (2018)] into the image or video content prior to the distribution of image or video 

content. It is based on content similarity and relies on the assumption that an image or 

video will share a significant amount of information with its copies and will be 

distinguishable from other non-copies. A major challenge of CBCD lies in the fact that a 

copy is not necessarily an identical or a near replication, but rather a photometric or 

geometric transformation of the original that remains recognizable [Poullot, Crucianu and 

Buisson (2008); Douze, Jegou, Sandhawalia et al. (2009); Lei, Qiu, Zheng et al.(2014a); 

Lei, Zheng and Huang (2014b)]. The transformations may include changing 

color/brightness, camera recording, blurring, inserting logos/subtitles, cropping, and 

flipping, etc. 

A key issue to the successful detection of a copied video or image lies in the design of an 

effective image or video content descriptor. These descriptors can be classified into 

global and local statistical descriptors [Zheng, Lei, Qiu et al. (2012)]. The global statistics 

are generally efficient to compute, and compact to store, but less accurate in terms of 

their retrieval quality. On the other hand, local descriptors (such as SIFT [Lowe (2004)]) 

are relatively more robust to image transformations, such as occlusion, cropping, etc. 

Salient covariance (SCOV) [Zheng, Lei, Qiu et al. (2012)] is a kind of compact and 

robust descriptor based on visual saliency and region covariance matrices for near 

duplicate image and video detection. The salient covariance (SCOV) descriptor has 

shown its advantages of being compact, discriminative and robust over other state of the 

art global descriptors [Zheng, Qiu and Huang (2018)]. Like other region covariance based 

descriptors, SCOVs are symmetric positive defined (SPD) matrices, which is a kind of 

Riemannian manifold of non-positive curvature. Therefore, the Euclidean computation 

framework cannot directly applied to the SPD matrices. Instead the Riemannian 

computation framework should be adopted and the similarities of the descriptors have to 

be measured using the Riemannian metric such as affine invariant Riemannian metric 

(AIRM) [Pennec, Fillard and Ayache (2006)], log-Euclidean Riemannian metric (LERM) 

[Arsigny, Fillard, Pennec et al. (2006)] and Jensen-Bregman LogDet Divergence (JBLD) 

[Cherian, Sra, Banerjee et al. (2011)]. 

As a result of the nonlinear computational framework of SPD manifold, it is usually very 

time-demanding to conduct nearest neighbor (NN) search in SPD manifold. Many papers 

have made effort to design efficient NN search algorithm [Cherian, Sra, Banerjee et al. 

(2011)]. In spite of the hashing’s success in visual similarity search, existing techniques 

have some important restrictions. Current methods generally assumed the data to be 

processed lie in multidimensional vector space. In this paper, we investigate the hashing 

based methods for NN search in SPD manifold. Inspired by the idea of kernel trick, this 

paper tries to map the SPD matrices into a high-dimensional Euclidean space and then 

using random projection and quantization to get the binary bits representation of SPD 

matrix. Experimental results show the effectiveness and efficiency of the proposed 

method. 
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2 Preliminary 

2.1 Salient covariance 

In this part, we give a short introduction of a covariance matrix-based descriptor [Tuzel, 

Porikli and Meer (2006)] the salient covariance (SCOV), which is used for near-duplicate 

image/video detection. Given an image 
hwRI   and letting

dhwRF   be a d - 

dimensional feature image, there are many ways to derive the feature image. Usually, 

F can be set as, 
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Where 
1C ,

2C  and 3C  are the three color channels such as RGB or LMS. The salient 

features [Zheng, Lei, Qiu et al. (2012)], denoted as ),( yxSF , are those ),( yxF  with a 

corresponding saliency score ),( yxS greater than a threshold 

),(),( yxFyxSF =  if TyxF ),(                                                                                  (2) 

The covariance matrix of the salient features is defined as 
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where, SF  is the mean of features in the salient region, 
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SCOV  is a kind of symmetric positive definite matrix. 

2.2 Locality sensitive hashing 

Locality-sensitive hashing (LSH) reduces the dimensionality of high-dimensional data. 

LSH hashes input items so that similar items map to the same buckets with high 

probability (the number of buckets being much smaller than the universe of possible 

input items). LSH differs from conventional and cryptographic hash functions because it 

aims to maximize the probability of a collision for similar items. Locality-sensitive 

hashing has much in common with data clustering and nearest neighbor search. 

Given an input vector v and a hyper-plane defined by r , we can get the hash function by 

the following formula. 

)()( Trvsignvh =                                                                                                               (5) 

By using a set of hashing functions, we can easily get a binary code for the vector v . 
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2.3 Riemannian geometry 

The inner product between two vectors x  and y  is written as yxyx T=, . A matrix 

ddRP  is called positive, if 0, Pxx  for all  0\dRx . It is usually denoted by 

0P . Denote },{)( SSRSdS Tdd == 
 as the symmetric space of all 

dd  symmetric matrix and denote }0),({)( PdSPdP = . Thus, any P ( )(dPP ) 

is a SPD matrix. The space )(dP  forms a convex subset of
2dR . )(dP is not closed 

under multiplication with a negative scalar. Therefore, the space of SPD matrices, 

although a subset of vector space, is not a vector space. Instead, the set of SPD matrices 

forms a differential Riemannian manifold of non-positive curvature [Zheng, Kim, Adluru 

et al. (2017); Bhatia (2007); Hiai and Petz (2009)] which is usually called the SPD 

manifold. This forms a quotient space )(/)( dOdGL , where )(dGL denotes the general 

linear group (the group of dd   nonsingular matrices) and )(dO is the orthogonal group 

(the group of dd   orthogonal matrices). 

The inner product of two tangent vectors )(, dPTzy p , )(dPP  is as follows, 
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This defines the Fisher-Rao metric (also known as affine-invariant Riemannian metric 

[Pennec, Fillard and Ayache (2006)]) in the statistical model of multivariate distributions, 

which gives )(dP  the structure of a Riemannian homogeneous space of negative 

curvature. This metric is the starting point of this paper. 

Here, )(dPTP
 is a tangent space (vector space) at P  and it is the space of symmetric 

matrices of dimension dd )1(
2
1 + . This metric varies smoothly as P  moves. The 

geodesic distance with this metric is, 

F
AIRM YXXYX 2

1
2
1

log(),(
−−

=                                                                          (7) 

The geodesic distance with log-Euclidean Riemannian metric is as follows. 

FLE YXYX )log()log(),( −=                                                                                     (8) 

The manifold exponential operator )()(:),exp( dPdPTP P → maps the tangent vector 

v  to the location on the manifold reached by geodesic starting at P in the tangent 

direction. Its inverse, the Riemannian logarithm operator )()(:),log( dPTdPP p→ , 

gives the vectors in )(dPTP
 corresponding to the geodesic from P  to Q . The matrix 

logarithm )(Log and matrix exponential )(Exp of SPD matrices are calculated as     

TUSdiagExpUdiagDExp )))((()( =  
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TVTdiagLogVdiagELog )))((()( =                                                                              (9)   

Where two SPD matrices D and E are Eigen-decomposed as 
TUSUD = an 

TVTVE =  respectively. 

3 Proposed framework 

3.1 Randomized congruent transformation for SPD manifold 

Suppose A and B  are two dd   SPD matrices. S is an unitary matrix such that 

ISS T =  and
1−= SS T
. Considering the congruent transformation ASS T

, the geodesic 

distance of two transformed SPD matrices with LERM is as follows. 

F

TTTT

LE BSSASSBSSASS )log()log(),( −=              

F

T SBAS ))log()(log( −=             

FFF

T SBAS )log()log( −=             (10) 

F
BA )log()log( −=

       

),( BALE=                                                                                                                   

The above formula means that the congruent transformation with unitary matrices (an 

element of orthogonal group) can preserve the geodesic distance of two SPD matrices. 

The unitary matrices can be seen as an element of special orthogonal group - )(dSO . 

Therefore, the congruent transformation just changes the orientation of the original 

ellipsoid while preserving the shape. 

Since no single data structure can capture the diversity and richness of high-dimensional 

data, an ensemble strategy can be adopted to improve the diversity. Therefore we can get 

a set of randomized SPD matrices by choosing a set of stochastic unitary matrices. 

3.2 Random projection and quantization in high dimensional space 

Hashing techniques have achieved great success in visual similarity search. However, it 

only applied to the data which are assumed to lie in multidimensional vector space. Given 

that the data lying in the Riemannian manifold instead of linear vector space, it is usually 

embedding the manifold-valued data into the Reproducing kernel Hilbert space (RKHS) 

which is Euclidean while still honoring the manifold structure. 

The kernels usually have an infinite-dimensional embedding, making it seemingly 

impossible to build a random hyper-plane. Generally speaking, there are two methods to 

deal with the kernel mapping so far. One is to construct the hyper-plane as a weighted 

sum of a subset of the database items [Kulis and Grauman (2009)]. The other method is 

to use random feature map to approximate the kernel function [Mukuta and Harada 

(2016)]. 
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In this part, we propose a new method to deal with the kernel mapping, namely the data 

space expansion (DSE). We use a set of randomized congruent transformation to 

approximate the kernel embedding. The procedures are as follows. 

1). Create a set of random unitary matrices },,,{ 21 nSSSS = . 

2). For a SPD matrix X , we generate a new set of k  matrices },,,{ 21 kXXXX =  by 

congruent transformation. 

3). Transform each new SPD matrix into the log-Euclidean space by LERM and combine 

them sequentially to get a new vector x . The dimension of x is knn )1(
2
1 + . 

We can formalize the procedure as the following mapping. 

)(: dP  → 
pR                                                                                                     (11) 

Where knnp )1(
2
1 += . 

For a single SPD matrix, we can get a very high-dimensional vector by sequentially 

concatenating the vectors in log-Euclidean space. This process is to mimic the kernel 

embedding. The new expanded space can be seen as an approximation to the kernel space. 

As the set of unitary matrices are randomly generated, the vector x is also a randomized 

vector in a high-dimensional space. Just as stated in Subsection 3.1, the congruent 

transformation preserves the geodesic distance. Therefore their vectorial combination will 

preserve the Euclidean distance. In the new space, a random Gaussian matrix
kpRr   is 

adopted as a projection matrix. The projection and quantization is conducted by, 

)( xrsignb T=                                                                                                                 (12) 

Where b  is a binary hashing code of x . This random projection and quantization is 

conducted in the kernel space which is Euclidean. The kernel trick does not give an 

explicit mapping of data in a lower dimension to corresponding points in higher 

dimensional space. But using the proposed scheme, we can get an explicit mapping from 

low dimensional manifold to high dimensional space. In the approximate high 

dimensional space, the quantization is just the same as the traditional LSH. Therefore, we 

can conduct the nearest neighbor Search in the Riemannian space of SPD manifold which 

is a curved space. 

4 Experiments 

4.1 Dataset and evaluation criteria 

The proposed algorithm is used in near-duplicate image detection. The evaluation dataset 

contains 1) the INRIA Copydays dataset which contains 157 images [Douze, Jégou, 

Sandhawalia et al. (2009)] as the testing dataset and 2) 25,000 Flickr images and another 

40,000 images (65,000 total images) as the distracting image dataset. Examples of INRIA 

images are shown in Fig. 1. We create another 46 copies for each testing image. 

Therefore, there are totally 72222 (65,000+157×46) images. The transformations and 

parameters for creating the near-duplicate images please refer to [Zheng, Lei, Qiu et al. 
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(2012)]. For each image, an SCOV (SPD matrix) [Zheng, Lei, Qiu et al. (2012)] is 

extracted to represent the image. 

 

Figure 1: Examples of testing images used in the paper 

Two well-known and widely used evaluation methods are adopted to evaluate the algorithm, 

including the receiver operating characteristic (ROC) and the mean average precision (mAP). 

The ROC curve is a graphical plot of the true positive rate versus the false positive rate. The 

mAP is the query’s average precision which can be defined as follows. 

mAP. For each query q, R  ( 50=R in our experiments) images are returned. Then the 

average precision (AP) is calculated as 

i

r
AP

i

j j
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=

11  (13) 

Q

qAP

mAP
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=                                                                                                            (14) 

Where ir  is 1 if document i  is relevant to the topic, and 0 otherwise. N  is the number of 

relevant documents of the query and  Q  is the number of queries. 

This metric is also sometimes referred to geometrically as the area under the Precision 

Recall curve. So another way to compute the mAP is to calculate the area under PR curve 

[Douze, Jégou, Sandhawalia et al. (2009)]. 



 

 

 

536   Copyright © 2018 Tech Science Press             CMC, vol.56, no.3, pp.529-539, 2018 

4.2 Results and analysis 

4.2.1 Accuracy analysis 

In this part, the proposed method is compared with other kernel based methods such as 

KLSH [Kulis and Grauman (2009)] and Nystrom method. As we known the KLSH and 

Nystrom method both approximate the kernel by selecting a subset of data samples from 

the training dataset. On the contrary, the proposed method directly approximates the 

kernel by data space expansion (DSE). The brute-force method and LSH [Gionis, Indyk 

and Motwani (1999)] are used as a benchmark. LSH is conducted in the log-Euclidean 

space. The length of hashing code is set as 300 for all methods. In the DSE method, 10 

congruent transformations are used. 

Fig. 2(a) gives the results of LSH, KLSH, Nystrom method and proposed data space 

expansion (DSE) method. From the results, we can see that brute force search using 

LERM undoubtedly gets the best results when compared with hashing based methods. 

Kernel based methods including Nystrom method and KLSH achieve better results than 

LSH. Hashing with data space expansion (DSE) achieves best results amongst all hashing 

based methods, which demonstrate the effectiveness of the proposed scheme. 

Besides ROC curve, the mAP of each method are also calculated and shown in Fig. 2(b). 

It can be seen from the figure that brute force method (LERM) gets the best performance 

while LSH method which is hashing in very low dimensional log-Euclidean space gets 

the worst performance. DSE method achieves the best results amongst all kernel related 

methods. 

      

(a) ROC for INRIA Copydays                                  (b) Comparison of mAP 

Figure 2: Fig. 2(a) gives the ROC performance comparison of state of the art methods. 

Fig. 3(b) gives the mean average precision (mAP) performance comparison of state of the 

art methods. The length of hashing code is 300. The benchmark methods are kernelized 

LSH, LSH, Nystrom method and brute-force search using LERM 

4.2.2 Parameter analysis 

It is known that the length of hashing code has some effect on the precision of nearest 

neighbor search. In this part, we give a precision comparison of different state of the art 

methods while varying the bit length from 100 to 300. The results are given in Fig. 3(a). 
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From the figure, we can see that almost all algorithms have better precision performance 

when increasing the length of hashing code. The DSE method has the best performance 

when the length of hashing code is greater than 150. In this comparison, 10 congruent 

transformation matrices are adopted. 

The number of the congruent transformation determines the dimension of the expansion 

space. This paper also investigates the effect of the number of congruent matrices to the 

precision. Fig. 3(b) gives a precision comparison of DSE with different number of 

congruent transformations. We can see from the figure that more congruent 

transformations get better precision performance. The length of hashing code together 

with the number of congruent transformations determines the precision performance of 

the near-duplicate image detection. But the precision doesn’t improve much when the 

number of congruent transformation gets to a certain number, for example 10 in this 

experiment. 

   

(a)                                                                            (b) 

Figure 3: Fig. 3(a) gives a precision comparison of state of the art method with different 

bit length. Fig. 3(b) gives a precision comparison of DSE with different number of 

congruent transformations. 

4.2.3 Time efficiency 

In the large-scale near-duplicate image detection, we usually pay a lot of attention to the 

detecting efficiency. The SCOV and hashing code can be generated off-line, so we focus 

on the detecting time in this part. In the detecting stage, each image is finally represented 

with 300 bits binary code. As a comparison, the brute force LERM method is used as a 

benchmark. Tab. 1 shows the average time for 157 testing images. From the table, we can 

see it improves the time efficiency to more than 100 folds. As we know, some hashing 

algorithms improve time efficiency at the cost of bad searching accuracy. However, the 

accuracy degradation is not very large when using 300 hundred bits in our experiments, 

which can be seen from the Figs. 2(a) and 2(b). 
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Table 1: Time comparison for hashing based method and brute force LERM 

Methods Hashing based method LERM brute force 

second/image 0.005 0.6 

5 Discussion 

Due to the non-Euclidean essence of the SPD manifold, hashing techniques designed for 

vector space can’t be directly used in SPD manifold. In this paper, a novel hashing 

scheme in SPD manifold is investigated. Inspired by the idea of kernel trick, the proposed 

scheme tries to map the SPD matrix into a high-dimensional Euclidean space and then 

use random projection and quantization to get the binary bits representation of SPD 

matrix. The congruent transformation which preserves the geodesic distance is used in 

this process. Experiments in large scale near-duplicate image detection show the 

effectiveness and efficiency of the proposed method. 
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