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Abstract: The conventional sparse representation-based image classification usually 

codes the samples independently, which will ignore the correlation information existed in 

the data. Hence, if we can explore the correlation information hidden in the data, the 

classification result will be improved significantly. To this end, in this paper, a novel 

weighted supervised spare coding method is proposed to address the image classification 

problem. The proposed method firstly explores the structural information sufficiently 

hidden in the data based on the low rank representation. And then, it introduced the 

extracted structural information to a novel weighted sparse representation model to code 

the samples in a supervised way. Experimental results show that the proposed method is 

superiority to many conventional image classification methods. 
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1 Introduction 

Image classification is a fundamental issue in computer vision, which aims to classify an 

image into an accurate category. Many literatures about image classification are emerged 

in the past two decades [Liu, Fu and He (2017)], and several classification frameworks 

are formed to address the classification problem of vision task. During the mentioned 

frameworks, sparse-based classification attracted many attentions and are widely studied 

in recent years. Sparse signal representation has proven to be an extremely powerful tool 

for acquiring, representing, and compressing high-dimensional signals [Wright, Ma, 

Mairal et al. (2010)]. In the past few years, sparse representation has been applied to 

many vision tasks, including face recognition [Yang, Zhang, Yang et al. (2011); Liu, Tran 

and Sang (2016)], image super-resolution [Yang, Chu and Wang (2010); Yang, Wright, 

Huang et al. (2010)], denoising and inpainting [Fadili, Starck and Murtagh (2013); 
Guleryuz (2006)], and image classification [Kulkarni and Li (2011); Thiagarajan and 

Spanias (2012)]. Due to its wide applicability, people conducted detailed research on 

image classification based on sparse representation and achieved remarkable results 

[Tang, Huang and Xue (2016); Gao, Tsang and Chia (2010); Liu, Fu and He (2017)]. 
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According to the picture type, image classification is mainly applied in certain specific 

fields such as face recognition and hyperspectral image classification and remote sensing 

image classification. In face recognition, based on a sparse representation computed by 

1l -minimization, Wright et al. [Wright, Ma, Mairal et al. (2010)] proposed a general 

classification algorithm for (image-based) object recognition [Wright, Ganesh, Zhou et al. 

(2009)]. This new framework provided new insights into two crucial issues in face 

recognition: feature extraction and robustness to occlusion. The theory of sparse 

representation helped predict how much occlusion the recognition algorithm could handle 

and how to choose the training images to maximize robustness to occlusion. Recent 

research has shown the speed advantage of extreme learning machine (ELM) and the 

accuracy advantage of sparse representation classification (SRC) in the area of image 

classification. In order to unify such mutual complementarity and thus further enhance 

the classification performance, Cao et al. [Cao, Zhang, Luo et al. (2016)] proposed an 

efficient hybrid classifier to exploit the advantages of ELM and SRC in Cao et al. [Cao, 

Zhang, Luo et al. (2016)]. While the importance of sparsity is much emphasized in SRC 

and many related works, the use of collaborative representation (CR) in SRC is ignored 

by most literature. This paper [Zhang, Yang and Feng (2011)] devoted to analyze the 

working mechanism of SRC, and indicated that it was the CR but not the 1l -norm 

sparsity that made SRC powerful for face classification. The authors proposed a very 

simple yet much more efficient face classification scheme, namely CR based 

classification with regularized least square (CRC_RLS), which had very competitive 

classification results, many classic and contemporary face recognition algorithms work 

well on public data sets, but degrade sharply when they are used in a real recognition 

system. This is mostly due to the difficulty of simultaneously handling variations in 

illumination, image misalignment, and occlusion in the test image. Considering this 

problem, Wagner et al. [Wagner, Wright, Ganesh et al. (2012)] proposed a conceptually 

simple face recognition system that achieved a high degree of robustness and stability to 

illumination variation, image misalignment, and partial occlusion. Besides, Zhang et al. 

[Zhang, Zhang, Huang et al. (2013)] proposed a pose-robust face recognition method to 

handle the challenging task of face recognition in the presence of large pose difference 

between gallery and probe faces. The proposed method exploited the sparse property of 

the representation coefficients of a face image over its corresponding view-dictionary. In 

hyperspectral image classification, Tang et al. [Tang, Chen, Liu et al. (2015)] present a 

hyperspectral image classification method based on sparse representation and superpixel 

segmentation. By refining the spectral classification results with the spatial constraints, 

the accuracy of classification is improved by a substantial margin in Tang et al. [Tang, 

Chen, Liu et al. (2015)]. Noting that the structural information can earn some extra 

discrimination for the classification framework [Liu, Fu and He (2017)], some methods 

considering the structural and contextual information are presented. A new sparsity-based 

algorithm for the classification of hyperspectral imagery was proposed in Chen et al. 

[Chen, Nasrabadi and Tran (2011)], which relied on the observation that a hyperspectral 

pixel could be sparsely represented by a linear combination of a few training samples 

from a structured dictionary. They mainly used Laplacian constraint and joint sparsity 

model to incorporate the contextual information into the sparse recovery optimization 

problem in order to improve the classification performance. To overcome this problem 
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that the sparse representation-based classification (SRC) methods ignore the sparse 

representation residuals (i.e. outliers), Li et al. [Li, Ma, Mei et al. (2017)] proposed a 

robust SRC (RSRC) method which could handle outliers. They extended the RSRC to the 

joint robust sparsity model named JRSRC, where pixels in a small neighborhood around 

the test pixel were simultaneously represented by linear combinations of a few training 

samples and outliers. A superpixel tensor sparse coding (STSC) based hyperspectral 

image classification (HIC) method is proposed, by exploring the high-order structure of 

hyperspectral image and utilizing information along all dimensions to better understand 

data in Feng et al. [Feng, Wang, Yang et al. (2017)]. Article [Sun, Qu, Nasrabadi et al. 

(2014)] proposes a new structured prior called the low-rank (LR) group prior, which can 

be considered as a modification of the LR prior. Structured Priors for Sparse-

Representation-Based Hyperspectral Image Classification. The paper [Zhang, Song, Gao 

et al. (2016)] presents a new spectral–spatial feature learning method for hyperspectral 

image classification, which integrates spectral and Zeng et al. [Zeng, Li, Liang et al. 

(2010)] spatial information into group sparse coding (GSC) via clusters and propose a 

novel kernelized classification framework based on sparse representation considering the 

image classification problem based on the similarities between images [Zhang, Zhang, 

Liu et al. (2015)]. Article [Zeng, Li, Liang et al. (2010)] proposes a fast joint sparse 

representation classification method with multi-feature combination learning for 

hyperspectral imagery and incorporate contextual neighborhood information of the image 

into each kind of feature to further improve the classification performance. The paper 

[Wang, Xie, Li et al. (2015)] investigates STDA (Sparse Tensor Discriminant Analysis) 

for feature extraction and it is the first time that STDA is applied for HIS (Hyperspectral 

imagery) and attempts to adopt STDA to preserve useful structural information in the 

original data and obtain multiple interrelated sparse discriminant subspaces. In remote 

sensing image classification，The paper [Shivakumar, Natarajan and Murthy (2015)] 

presents a novel multi-kernel based sparse representation for the classification of 

Remotely sensed images. The sparse representation based feature extraction are in a run 

which is a signal dependent feature extraction and thus more accurate. The paper [Song, 

Li, Dalla et al. (2014)] proposes to exploit sparse representations of morphological 

attribute profiles for remotely sensed image classification. By using the sparse 

representation classification framework to exploit this characteristic of the EMAPs. 

With more and more sources of image data on the Internet, images are becoming more 

and more cluttered, making more and more images lack complete category information. 

Based on this, the researchers proposed semi-supervised and unsupervised image 

classification methods. To address the problem of face recognition when there is only few, 

or even only a single, labeled examples of the face that we wish to recognize. The main 

idea was that: they used the variation dictionary to characterize the linear nuisance 

variables via the sparsity framework and prototype face images were estimated as a 

gallery dictionary via a Gaussian mixture model, with mixed labeled and unlabeled 

samples in a semi-supervised manner, to deal with the non-linear nuisance variations 

between labeled and unlabeled samples. Unsupervised learning methods for building 

feature extractors have a long and successful history in pattern recognition and computer 

vision. Document [Huang, Boureau and Le (2007)] proposes an unsupervised method to 

learn the sparse feature detector hierarchy, which is invariant for small shifts and 
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distortions. Article [Zeiler, Krishnan, Taylor et al. (2010)] present a learning framework 

where features that capture these mid-level cues spontaneously emerge from image data 

and the approach is based on the convolutional decomposition of images under a sparsity 

constraint and is totally unsupervised. The paper [Poultney, Chopra and Cun (2007)] 

describes a novel unsupervised method for learning sparse, overcomplete features. The 

model uses a linear encoder, and a linear decoder preceded by a sparsifying non-linearity 

that turns a code vector into a quasi-binary sparse code vector. The major contribution of 

paper [Hassairi, Ejbali and Zaied (2016)] is to show how to extract features and train an 

image classification system on large-scale datasets.  

In this paper, we proposed novel sparse representation-based image classification with 

weighted supervision sparse coding. It firstly constructed the supervision coefficient with 

Low rank representation, which would help to mine the structural information hidden in 

the data. And then, the supervision coefficient is incorporated into a weighted sparse 

representation framework to preserve the coding structure of similar samples. It is 

verified that the proposed method shows some advantage on the public test dataset. 

The remaining of the paper is arranged as follows. In section II, several similar previous 

works are analyzed. In section III, the proposed method is described in detail. In section 

IV, the experimental results are shown to demonstrate the superiority of the proposed 

method. Section V concludes the paper. 

2 Related work 

Although the traditional spatial pyramid matching (SPM) approach works well for image 

classification, people empirically found that, to achieve good performance, traditional 

SPM has to use classifiers with nonlinear Mercer kernels. Accordingly, the nonlinear 

classifier has to afford additional computational complexity, bearing O(n3) in training 

and O(n) for testing in SVM, where n is the number of support vectors. This implies a 

poor scalability of the SPM approach for real applications. 

To improve the scalability, researchers aim at obtaining nonlinear feature representations 

that work better with linear classifiers 

Let X be a set of D-dimensional local descriptors extracted from an image, 

 1 2. . , ,..., D N

Ni e X x x x R =  . Given a codebook with M entries,  1 2, ,..., D M

MB b b b R =  , 

different coding schemes convert each descriptor into adimensional code to generate the 

final image representation. This section reviews three existing coding schemes. 

2.1 Coding descriptors in VQ 

Traditional SPM uses VQ coding which solves the following constrained least square 

fitting problem: 

2

1

arg  min
N

i i
C

i

x Bc
=

−                                (1) 

1. . 1, 0,i is t c c i=    

where  1 2, ,..., NC c c c=  is the set of codes for X. The cardinality constraint 0 1ic =   
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means that there will be only one non-zero element in each code ic  , corresponding to the 

quantization id of ix .The non-negative, 1 constraint 1 1, 0i ic c=  means that the 

coding weight for x is 1. In practice, the single non-zero element is found by searching 

the nearest neighbor. 

2.2 Coding descriptors in ScSPM 

To ameliorate the quantization loss of VQ, the restrictive cardinality constraint 0 1ic =  

in Eq. (1) can be relaxed by using a sparsity regularization term. In ScSPM [Yang, Yu, 

Gong et al. (2009)], such a sparsity regularization term is selected to be the 1 norm of ic , 

and coding each local descriptor ix thus becomes a standard sparse coding (SC) [Lee, 

Battle, Raina et al. (2007)] problem: 

1

2

1

arg  min
N

i i i
C

i

x Bc c
=

− +                              (2) 

The sparsity regularization term plays several important roles: First, the codebook B is 

usually over-complete, . .i e M D , and hence 1  regularization is necessary to ensure that 

the under-determined system has a unique solution ; Second, the sparsity prior allows the 

learned representation to capture salient patterns of local descriptors; Third, the sparse 

coding can achieve much less quantization error than VQ. Accordingly, even with linear 

SVM classifier, ScSPM can outperform the nonlinear SPM approach by a large margin 

on benchmarks like Caltech-101 [Yang, Yu, Gong et al. (2009)]. 

2.3 Coding descriptors in LLC 

Locality-constrained Linear Coding (LLC) was presented by Wang et al. [Wang, Yang, 

Yu et al. (2010)]. LLC incorporates locality constraint instead of the sparsity constraint in 

Eq. 2, which leads to several favorable properties, including better reconstruction, local 

smooth sparsity and analytical solution. Specifically, the LLC code uses the following 

criteria [Yuan, Ma and Yuille (2017)]: 

2 2

C
1

min x Bc d c
N

i i i i

i

λ
=

− +                                 (3) 

. . 1 c =1,  is t i                                          (4) 

where denotes the element-wise multiplication, and d M

i  is the locality adaptor that 

gives different freedom for each basis vector proportional to its similarity to the input 

descriptor x i . Specifically, 

( )dist x ,B
d exp

i

i
σ

 
=  

 
                      (5) 

where ( ) ( ) ( )1dist x ,B dist x ,b , ,dist x ,b
T

i i i M=    , and ( )dist x ,bi j  is the Euclidean 

distance between x i and b j .   is used for adjusting the weight decay speed for the 
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locality adaptor. Usually we further normalize d i  to be between (0, 1) by subtracting 

( )( )max dist x ,Bi  from ( )dist x ,Bi . The constraint 1 c =1i

  follows the shift-invariant 

requirements of the LLC code. Note that the LLC code in Eq. (5) is not sparse in the 

sense of 0l  norm, but is sparse in the sense that the solution only has few significant 

values. In practice, we simply threshold those small coefficients to be zero. 

With the above description of LLC coding, we can see that the locality constrain will earn 

extra discrimination for the coding coefficients. Because, some structure information  is 

introduced the coding by enforcing some coefficients with weak sample correlation to be 

zero, which will help to select more samples within the same subspace. Next, we will 

proposed a weighted sparse classification framework to improve the coding structure. 

And  then, to explore the supervision information hidden in the data, a novel supervision 

constraint item about coding approximation are also proposed as the part of the weighted 

sparse classification framework. 

3 Sparse image classification model based on low-rank supervision 

3.1 Low-rank representation model 

Low-rank matrix recovery is the development and promotion of the compressive sensing 

theory, using the rank as a measure of the matrix sparseness. The low-rank representation 

model has well capable of handling high-dimensional signal data. The model can be used 

to recover damaged observational samples and can find low-dimensional feature space 

from noisy samples. A matrix representation of the image data, the original observation 

data matrix m nX R  and the model that uses the rank of matrix for sparse representation 

is as follows: 

min ( )
X

rank X  . .s t  ( )X b =             (6) 

where ( )rank  is the rank of the matrix , ( )  is a linear mapping function from 

original data matrix to observed variable, namely m n pR R →  and pb R . In the model 1, 

we get a low-rank constraint on matrix X . However, since the function ()rank in the 

model equation is discrete and non-convex, solving model 1 is an NP-Hard problem. In 

order to solve such problem, it is a common practice to convert this NP-Hard 

combinatorial optimization problem to corresponding convex optimization problems by 

transforming some objective function to some convex function. ()rank can also represent 

the number of non-zero singular values in the matrix, so we can consider min ( )rank X  is 

a 0l -norm constraint problem of matrix singular value. That is to say, minimizing the  0l -

norm of vectors is to minimize the rank of the matrix. Therefore, the solution of 

minimizing matrix rank can refer to the relevant ideas and methods for solving the 

minimum 0l -norm. 

If the sample matrix X exists in several low-dimensional spaces, the sample matrix X can 

be linearly represented by a set of low-dimensional space bases A, that is, the sample 

itself is selected as the dictionary, the lower rank represents the coefficient matrix Z, and 

the Z represents each data vector The weight of a linear combination. A low-rank 
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constraint on the coefficient Z results in a low-rank representation of the sample matrix X 

as follows: 

min ( )
Z

rank Z  . .s t  X XZ=                                    (7) 

which is a non-convex optimization problem. In the solution, we usually apply convex-

relaxation method and replace ( )rank Z  with the matrix kernel function 
*

Z . The 

following formula: 

*
min

Z
Z  . .s t  X XZ=                            (8) 

In practical applications, the signal is likely to be polluted by noise, so the above equation 

can be further expressed as: 

* 2,1,
min
Z E

Z λ E+  . .s t  X XZ E= +                       (9) 

where 2,1  is called 2,1l -norm, λ  is the regularization parameter, E  is the residual. For 

different types of noise, the 2,1l  -norm has strong processing power. 

In recent years, researchers have proposed many efficient optimization algorithms to 

solve the above problems, such as Iterative Thresholding, Exact Augmented Lagrange 

Multiplier, Inexact Augmented Lagrange Multiplier and so on. These algorithms can 

learn from 1l -norm minimization, the following describes the Exact and Inexact 

Augmented Lagrange Multiplier algorithm. Before that, we need Augmented Lagrange 

Multiplier (ALM) algorithm. 

The objective function for a constrained optimization problem can be described by: 

min ( )f X  . .s t  ( ) 0h X =                   (10) 

where f  is a convex function, which represents mapping from nR  to R . h  represents 

mapping from nR  to mR . Then the definition of Augmented Lagrange Multiplier 

function is as follows: 

2
( , , ) ( ) , ( ) ( )

2 F

μ
L X Y μ f X Y h X h X= +   +        (11) 

where Y  is Lagrange multiplier. μ  is known as the penalty coefficient that is a positive 

number.    is inner product operator. When the values of Y  and  are appropriate, the 

objective function can be solved by Augmented Lagrange algorithm. Asume that 

( , )X A E= , 
* 1

( )f X A λ E= + , ( )h X D A E= − − . The Eq. (11) can be expressed by 

this: 

2

* 1
( , , , ) ,

2 F

μ
L A E Y μ A λ E Y D A E D A E= + +  − −  + − −       (12) 

which can be solved by using alternate ways to optimize the update. Let Y  and E  be 

fixed values solving minimized L  to obtain A . Then fix Y  and A , and solve for 

minimized L  to obtain E . It is done iteratively until the convergent solution is 

eventually obtained that is called the Exact Augmented Lagrange Multiplier method. 

Since A  and E  are coupled to each other in Eq. (12), each iteration will be placed in the 
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same sub-problem during the iteration, which makes the solution feasible. In practice the 

Exact Augmented Lagrange Multiplier method requires multiple iterations, so the 

algorithm runs at a lower speed. On the basis of the former, an Inexact Augmented 

Lagrange Multiplier method is proposed, in which the A  and E  are updated once at each 

iteration to obtain the approximate solution of the sub-problem.  

 

Figure 1: Ideal structure of the coefficient matrix in SRC 

The core idea based on sparse representation is that the test sample is expressed by a 

linear combination of training samples. Because most non-zero elements have the same 

base corresponding to the test sample. In ideal case, we expect each sample to be in its 

own category subspace and all the category subspaces do not overlap. Specifically, given 

a category of images recorded as C  and dictionaries 1[ ,..., ]CD D D=  which CD  contains 

training samples from the category 1,...,c C= . That is meaning that a new sample y  

belonging to the category c  can be represented by c

cy D a , ca  is a representation 

coefficient  under a sub-dictionary cD . So we can use the dictionary D  to represent y : 
1

1 ... ...c C

c cy Da D a D a D a = + + + + . Most of the valid elements should be located in ca , 

so the coefficient vector ca  should be sparse. From vector to matrix form, 

1[ ,..., ,..., ]c CY Y Y Y=  is the entire sample set matrix containing the category samples, the 

coefficient matrix A  will be also sparse, and in the ideal case the matrix A  is a block 

diagonal matrix as shown in Fig. 1. 

3.2 Correlation matrix construction 

Assume that the test sample matrix 1 2[ , ,..., ]nY y y y= ,  ny  denotes the no. n  test sample 

vector. Based on above analysis, we can use the sample as a dictionary and use the matrix 

Z  to explore the correlation between samples to obtain the low-rank representation 

model of the test sample as follows: 

* 1,
min
Z E

Z λ E+  . .s t  Y YZ E= +                 (13) 

where 
*
 is kernel function, E  is residual and λ  is regularization parameters. Eq. 13 

can be solved using the Augmented Lagrange Multiplier method which is introduced 

earlier to obtain a low-rank representation matrix Z  for Y . Z  contains some sample 

features. 
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3.3 Sparse image classification model based on low-rank supervision 

To make better use of correlations between samples and obtain feature representations 

with better discrimination capability, we use the low-rank representation matrix Z  to 

perform low-rank supervision constraints on the sparse coding process and propose a new 

low-rank supervised sparse coding model. 

First, we can obtain a supervisory matrix from a low-rank representation matrix, as 

shown in the following equation: 

2

TZ Z
W

+
=                     (14) 

where  represents the absolute value of each element in the matrix . Let the category-

known sample matrix 1 2[ , ,..., ]kX X X X=  and 1 2[ , ,..., ]m

k k k kX x x x= . m

kx represents the 

m th sample vector belonging to the category number k . Using a self-describing 

category-known sample as a dictionary, we can get a new sparse coding model as follows: 

22

1 2

1
min

2
i j ijF ijA

Y XA λ P A η A A W− + + −       (15) 

where A  is feature representation matrix, λ  and η  are regularization parameters. In the 

above model, we have added the supervision constraint item 
2

2
i j ijij

A A W−  to increase 

the difference in coding between different categories, where i  and j  are the column 

numbers of the feature representation matrix A . P  is the correlated weighted for the 

sparse coefficient.  2

2
expij i jP y D= − − . denotes the element-wise multiplication 

operator. ijW  is used to represent the elements of the row i  and column j  in the 

supervising matrix W . By solving the model 10, we can get the representation matrix A  

with stronger discrimination ability. 

After obtaining the feature representation matrix A , the reconstruction error can be used 

to classify and the classification model as follows: 
2

2
argmin i

k k i ki y X A= −                  (16) 

where {1,2,..., }k n , i

kA  is the feature code that represents the k th column in the matrix 

A  corresponding to the i th sample. Find the Eq. (16) to minimize the reconstruction 

error label is the classification result, that is the formula for the minimum value of k . 

4 Solving the sparse image classification model based on low-rank supervision 

This section describes the process of solving the above low-rank supervised coding 

model in detail. The model 10 can be transformed as follows: 

22

1 2

1
( )

2
i j ijF ij

P A Y XA λ P A η A A W= − + + −      (17) 

Eq. 17 is a non-convex problem. We can make an equidistant transformation to get the 

following based on 
2

2
( )T

i j ijij
A A W trace ALA− = : 
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2

1

1
( ) ( )

2

T

F
P A Y XA λ P A ηtrace ALA= − + +          (18) 

where ( )trace  is trace of matrix, L  is lagrange operator and L D W= − . The matrix D  

is a diagonal matrix whose elements on the diagonal correspond to the sum of all 

elements of the column vector in the matrix W , namely ii ijj
D W= , i  and j  are the 

row and column numbers of the matrix. This problem is transformed into a convex 

optimization problem. 

Let 
21

( ) ( )
2

T

F
G A Y XA ηtrace ALA= − +  and 

1
( )H A λ P A= , then Eq. (18) can be 

replaced with the following form: 

( ) ( ) ( )P A G A H A= +          (19) 

For the optimization solution, we can get the gradient solution formula of ( )G A  as 

follows: 

( ) ( )T TG A X Y XA ηAL =− − +                (20) 

where   is a gradient indicator. According to Eq. (19) and Eq. (20), the iterative 

shrinking algorithm can be used to solve the original model (17), which iterative solution 

is as follows: 

( ) ( ) 
2

1 argmink k

F
A A G A H A+ = − +         (21) 

As for the Eq. (21), it is a typical weighted 1l -norm minimization problem, which can be 

solved with the numerical method in Guleryuz [Guleryuz (2006)]. And then, we can 

obtain the feature representation matrix A  and use the classification model shown in 

model (16) to classify images. 

5 Experimental results and analysis 

5.1 Experimental data 

For the weighted sparse image classification method based on low-rank representation 

proposed in this paper, we take the ORL and COIL-20 image datasets as the experimental 

datasets. 

The ORL face dataset contains 400 face images, which were shot by 10 people under 

different lighting conditions, varying view and expressions. Each person has about 10 

face images. Fig. 2 shows some face samples of the ORL dataset. 

 

Figure 2: Two groups of face samples of ORL dataset 
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The COIL-20 image dataset is collected by Columbia Object Image Library, which 

contains images of 20 items. During shooting the image, the object is placed on a rotating 

plate with black background. Through the 360 degree rotation of the plate to change the 

attitude of the item relative to the camera. Each object in the dataset has 72 images with 

different angles, and some examples are shown in Fig. 3. 

 

Figure 3: Example images of COIL-20 database 

In the experiment, we implemented the sparse representation-based image classification 

methods SRC, CRC, LRSRC on the above two public datasets. The algorithm proposed 

in this paper is compared to verify. 

5.2 Comparison and analysis of experiments 

First of all, in order to verify the validity of the method proposed in this chapter, we use the 

ORL face image data set to display, and visualize the obtained low-rank representation 

matrix and its corresponding feature representation matrix. The low-rank representation 

matrix is shown in Fig. 4, and the characteristic representation matrix is shown in Fig. 5. 

From these two figures, it can be observed that the representation matrix has a distinct 

diagonal block structure, indicating that the representation matrix should theoretically 

have the discriminative ability of classification, the experimental result of the latter also 

confirmed this prediction. From the comparison of these two graphs, we can also find that 

compared with the low rank representation matrix, the elements in the diagonal matrix of 

the representation matrix are enhanced after being coded from the supervision limit to 

make it have a more obvious diagonal block structure, indicating better class resolution. 

 

Figure 4: Visualization of low-rank representation matrix for ORL 
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Figure 5: Visualization of sparse representation matrix for ORL 

We performed simulation experiments on the above methods in the Extended YaleB face 

image dataset and COIL-20 image dataset and obtained the corresponding experimental 

results. We test five times for each method, and take the average accuracy as the final 

result, which is shown in Tab. 1. The number shown in the parentheses denotes the 

number of training samples. 

Table 1: Average accuracy of each classification method 

 ORL(5) COIL-20(30) 

SRC 88.35 2.31% 95.83 1.71% 

CRC 90.02 1.57% 96.21 2.56% 

LRSRC 91.79 1.89% 97.03 2.72% 

Proposed Method 93.81 1.96% 97.93 2.06% 

From Tab. 1, we can see that our proposed method shows higher accuracy classification 

result on all the experimental datasets over the comparison methods. It is verified that the 

weighted sparse coding with the low rank supervision can greatly improve the structure 

of coding to be more discriminative. 

6 Summary 

On the basis of the SRC method, this paper proposes a weighted sparse image 

classification method based on low-rank supervision. The proposed one strengthens the 

sample discrimination ability of the feature representation matrix, which makes full use 

of the correlation between samples to weighted code the image sparsely. Different types 

of sparse represent the degree of coding discrimination, which is believed to improve the 

accuracy of image classification. We replace the non-convex terms in the model 

equivalently, use the iterative shrinking algorithm to solve and verify the correctness 

through some experiments. Compared with related conventional classification methods, 

the method proposed in this paper is better than them. 
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