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Abstract: Compressing encrypted images remains a challenge. As illustrated in our 

previous work on compression of encrypted binary images, it is preferable to exploit 

statistical characteristics at the receiver. Through this line, we characterize statistical 

correlations between adjacent bitplanes of a gray image with the Markov random field 

(MRF), represent it with a factor graph, and integrate the constructed MRF factor graph 

in that for binary image reconstruction, which gives rise to a joint factor graph for gray 

images reconstruction (JFGIR). By exploiting the JFGIR at the receiver to facilitate the 

reconstruction of the original bitplanes and deriving theoretically the sum-product 

algorithm (SPA) adapted to the JFGIR, a novel MRF-based encryption-then-compression 

(ETC) scheme is thus proposed. After preferable universal parameters of the MRF 

between adjacent bitplanes are sought via a numerical manner, extensive experimental 

simulations are then carried out to show that the proposed scheme successfully 

compresses the first 3 and 4 most significant bitplanes (MSBs) for most test gray images 

and the others with a large portion of smooth area, respectively. Thus, the proposed 

scheme achieves significant improvement against the state-of-the-art leveraging the 2-D 

Markov source model at the receiver and is comparable or somewhat inferior to that 

using the resolution-progressive strategy in recovery.       

 

Keywords: Encryption-then-compression, compressing encrypted image, Markov random 

field, compression efficiency, factor graph. 

1 Introduction 

Compressing encrypted signals is such a kind of technology that addresses the 

encryption-then-compression (ETC) problem in the service-oriented scenarios like 

distributed processing, cloud computing, etc. [Johnson, Ishwar and Prabhakaran (2004); 

Erkin, Piva, Katzenbeisser et al. (2007)]. In these scenarios, the content owner merely 

encrypts its signal and then sends it to the network or cloud service provider for the sake 

of limited computational resources. The service provider then compresses, without access 

to the encryption key, encrypted signals for saving bandwidth and storage space. The 

                                                      
1 South China Agricultural University, Guangzhou 510642, China. 

2 Shenzhen Key Laboratory of Media Security, Shenzhen University, Shenzhen 518060, China 

3 Chosun University, Gwangju 501-759, Republic of Korea. 

* Corresponding Author: Chuntao Wang. Email: wangct@scau.edu.cn. 



 

 

 

108   Copyright © 2018 Tech Science Press             CMC, vol.56, no.1, pp.107-121, 2018 

receiver finally performs the successive decompression and decryption to reconstruct the 

original signal. 

As the encryption prior to the compression masks the original signal, one may intuitively 

believe that it would be intractable to compress the encrypted signal. By taking the 

encryption key as the side information of the encrypted signal and further formulating the 

ETC problem as the distributed coding with side information at the decoder, however, 

Johnson et al. [Johnson, Ishwar, Prabhakaran et al. (2004)] demonstrated via the 

information theory that the ETC system would neither sacrifice the compression 

efficiency nor degrade the security, as achieved in the conventional compression-then-

encryption (CTE) scenario that compresses the original signal before encryption. 

According to [Johnson, Ishwar, Prabhakaran et al. (2004)], by taking the syndrome of a 

channel code as the compressed sequence, channel codes like the low-density parity-

check (LDPC) code can be exploited to compress the encrypted signal, and the DISCUS-

style Slepian-Wolf decoder [Pradhan and Ramchandran (2003)] can then be used to 

recover the original signal. To illustrate this, Johnson et al. [Johnson, Ishwar, 

Prabhakaran et al. (2004)] also proposed 2 practical ETC schemes, which well 

demonstrates the feasibility and effectiveness of the ETC system.  

From then on, a lot of ETC schemes [Schonberg, Draper and Ramchandran (2005, 2006); 

Schonberg, Draper, Yeo et al. (2008); Lazzeretti and Barni (2008); Kumar and Makur 

(2008); Zhou, An, Zhai et al. (2014); Liu, Zeng, Dong et al. (2010); Wang, Xiao, Peng et 

al. (2018)] have been developed. These schemes compress the cipher-stream-encrypted 

signal by generating the syndrome of LDPC code, and perfectly reconstruct the original 

signal via the joint LDPC decoding and decryption. Brief introduction to them are 

presented in the next section.  

In contrast to these lossless compression schemes, a number of lossy compression 

approaches [Kumar and Makur (2009); Zhang (2011); Song, Lin and Shen (2013); Zhang 

(2015); Zhang, Ren, Feng et al. (2011); Zhang, Feng, Ren et al. (2012); Zhang, Sun, Shen 

et al. (2013); Zhang, Ren, Shen et al. (2014); Wang and Ni (2015); Wang, Ni and Huang 

(2015); Kumar and Vaish (2017); Wang, Ni, Zhang et al. (2018); Kang, Peng, Xu et al. 

(2013); Hu, Li and Yang (2014); Zhou, Liu, An et al. (2014)] have also been developed 

to improve the compression efficiency at the cost of tolerable quality loss. The 

approaches of Kumar et al. [Kumar and Makur (2009); Zhang, Ren, Feng et al. (2011); 

Song, Lin and Shen (2013); Zhang, Wong, Zhang et al. (2015)] use the CS technique 

[Donoho (2006)] to compress the stream-cipher encrypted data and modified the basis 

pursuit (BP) algorithm to reconstruct the original signal. In an alternative way, the 

schemes of Zhang et al. [Zhang (2011); Zhang, Feng, Ren et al. (2012); Zhang, Sun, Shen 

et al. (2013); Zhang, Ren, Shen et al. (2014); Wang and Ni (2015); Wang, Ni and Huang 

(2015); Kumar and Vaish (2017); Wang, Ni, Zhang et al. (2018)] condense the stream-

ciphered or permutation-ciphered signal mainly using a scalar quantizer, while the 

methods of [Kang, Peng, Xu et al. (2013); Hu, Li and Yang (2014); Zhou, Liu, An et al. 

(2014)] compress the encrypted signal via the uniform down-sampling.  

Similar to conventional compression approaches, ETC schemes also exploit the 

redundancy of the original sign al to achieve good compression efficiency. For instance, 

the ETC methods of Lazzeretti et al. [Lazzeretti and Barni (2008); Kumar and Makur 
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(2008); Zhou, Au, Zhai et al. (2014)] and [Wang, Ni, Zhang et al. (2018)] leverage the 

redundancy by generating prediction errors before encryption. The approaches of Liu et 

al. [Liu, Zeng, Dong et al. (2010); Zhang, Ren, Feng et al. (2011); Zhang, Sun, Shen et al. 

(2013); Wang and Ni (2015); Wang, Ni and Huang (2015); Kumar and Vaish (2017)] 

exploit the redundancy by optimizing the compressor with statistical characteristics of the 

original signal that is intentionally revealed by the content owner. These two categories, 

however, either remarkably increase the computational burden at the content owner or 

considerably degrade the security by disclosing statistical distributions to the service 

provider.  

Regarding that the receiver has both the encryption key and feasible computational 

resources, it is preferable to make full use of statistical correlations of the original signal 

at the receiver, as analyzed in our recent work [Wang, Ni, Zhang et al. (2018)]. To 

illustrate this, the work of Wang et al. [Wang, Ni, Zhang et al. (2018)] uses the Markov 

random field (MRF) to characterize spatial statistical characteristics of a binary image 

and seamlessly integrates it with the LDPC decoding and decryption via the factor graph. 

By leveraging the MRF at the receiver side, the work of Wang et al. [Wang, Ni, Zhang et 

al. (2018)] achieves significant improvement in terms of compression efficiency over the 

method of Schonberg et al. [Schonberg, Draper and Ramchandran (2008)] using the 2-

dimensional (D) Markov source model at the receiver.  

In light of this, in this paper we extend our previous work [Wang, Ni, Zhang et al. (2018)] 

to gray images. Specifically, since each bit-plane of a gray image can be considered as a 

binary image, we apply the algorithm in Wang et al. [Wang, Ni, Zhang et al. (2018)] on 

each bit-plane of a gray image to achieve the lossless compression for each bit-plane. By 

observing that adjacent bit-planes resemble each other, we further exploit the MRF to 

characterize statistical correlations between adjacent bit-planes and incorporate it in the 

reconstruction of corresponding bitplanes, aiming to achieve higher compression 

efficiency for gray images. By representing the MRF between adjacent bitplanes with a 

factor graph and further incorporating it in the joint factor graph for binary image 

reconstruction, we construct a joint factor graph for gray image reconstruction (JFGIR) 

followed by theoretically deriving the sum-product algorithm (SPA) adapted to the 

JFGIR. Assisted by the stream-cipher-based encryption, LDPC-based compression, and 

JFGIR-involved reconstruction, this then gives rise to an MRF-based ETC scheme for 

gray images. Experimental results show that the proposed scheme achieves compression 

efficiency better than or comparable to the state-of-the-arts exploiting statistical 

correlations at the receiver.  

The contribution of this work is two-fold: i) Exploiting the MRF to characterize statistical 

correlations between two adjacent bit-planes of a gray image; and ii) Constructing a 

JFGIR to seamlessly integrate LDPC decoding, decryption, and the MRF within a bit-

plane and between adjacent bit-planes, and deriving theoretically the SPA adapted to the 

constructed JFGIR.    

The rest of the paper is organized as follows. Section 2 briefly reviews ETC schemes that 

perform lossless compression on encrypted images. Section 3 presents the construction of 

JFGIR and the theoretical derivation of the SPA for the JFGIR. The proposed scheme for 
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gray images are introduced in Section 4, and experimental results and analysis are given 

in Section 5. Section 6 finally draws the conclusion.  

2 Prior arts 

As this paper focuses on the lossless compression of encrypted images, in this section we 

mainly review ETC schemes for lossless compression of encrypted images. Brief 

introductions to these ETC schemes are presented below.  

Based on Johnson et al.’s work [Johnson, Ishwar, Ramchandran et al. (2004)], Schonberg 

et al. [Schonberg, Draper and Ramchandran (2005, 2006); Schonberg, Draper, Yeo et al. 

(2008)] further integrated the Markov model in image reconstruction. These well exploit 

statistical correlations between adjacent image pixels and thus significantly improve the 

compression efficiency.  

A number of ETC approaches generating prediction errors before encryption have also 

been proposed in the literature [Lazzeretti and Barni (2008); Kumar and Makur (2008); 

Zhou, Liu, Au et al. (2014)]. In Lazzeretti et al. [Lazzeretti and Barni (2008)], the authors 

extended the Johnson et al.’s scheme [Johnson, Ishwar, Ramchandran et al. (2004)] to 

gray and color images by leveraging the spatial, cross-plane, and cross-band correlations 

before stream-cipher-based encryption, achieving good compression efficiency. By 

imposing the LDPC-based compression on encrypted prediction errors rather than 

directly on image pixels, Kumar and Makur obtained higher compression efficiency 

[Kumar and Makur (2008)]. Zhou et al. [Zhou, Au, Zhai et al. (2014)] obtained nearly the 

same compression efficiency as the conventional compression schemes with original, 

unencrypted images as input through prediction error clustering and random permutation.  

In an alternative way, Liu et al. [Liu, Zeng, Au et al. (2010)] compressed the encrypted 

gray image in a progressive manner and exploited the low-resolution sub-image to learn 

source statistics for high-resolution ones. Compared to the practical lossless ETC scheme 

in Johnson et al. [Johnson, Ishwar and Ramchandran (2004)], the work of Liu et al. [Liu, 

Zeng, Au et al. (2010)] achieves better compression efficiency. 

Recently, Wang et al. [Wang, Ni, Zhang et al. (2018)] developed another ETC scheme 

using the MRF. They deployed the MRF [Li (1995)] to characterize the spatial statistical 

characteristic of a binary image, represented the MRF with a factor graph [Kschischang, 

Frey and Loeliger (2001)], sophisticatedly integrated the factor graph for the MRF with 

those for the decryption and LDPC decoding to construct a joint factor graph for binary 

image reconstruction, and derived theoretically the SPA for the constructed joint factor 

graph. This MRF-based scheme achieves significant improvement over the ETC approach 

using the 2-D Markov source model [Schonberg, Draper and Ramchandran (2006)].    

3 Design of JFGIR and derivation of SPA 

3.1 Characterization of statistical correlations between adjacent bitplanes 

Let ( , )I x y  be an 8-bit image of size m n . Then its th ( 1, , 8)k k =  bit-plane, says 

( , )kB x y , is obtained as: 



 

 

 

A New Encryption-Then-Compression Scheme on Gray Images                             111 

1

( , )
( , ) %2, 1, , 8

2

k

k

I x y
B x y k

−

 
= = 
 

, (1) 

where     
is a floor function. The 8( , )B x y  denotes the MSB while the 1( , )B x y  stands 

for the LSB.  

Fig. 1 illustrates 8 bit-planes of gray image “Man”. It is observed that any two adjacent 

bit-planes, ( , )kB x y  and 1( , )kB x y− ( 8, , 2k = ）, resemble each other. That is, if 

( , )kB x y  is equal to ( 0,1)b b = , then 1( , )kB x y b− =  may hold with high probability. 

Therefore, there exists statistical correlations between ( , )kB x y  and 1( , )kB x y− . Similar 

results can also be found in other gray images.  

As the MRF well characterizes the spatial statistical feature of binary images, as 

demonstrated in Wang et al. [Wang, Ni, Zhang et al. (2018)], we deploy the MRF [Li 

(1995)] to model statistical correlations between ( , )kB x y  and 1( , )kB x y− . As the MRF 

within a bitplane has, according to Wang et al. [Wang, Ni, Zhang et al. (2018)], already 

taken into account spatial statistical correlations between pixels in the neighborhood, we 

mainly characterize statistical correlations between bits ( , )kB x y  and 1( , )kB x y−  at the 

same coordination rather than modeling those between ( , )kB x y  and 1( ( ), ( ))kB x y− , 

where ( )x  denotes a set containing x  and its neighborhood. Thus, statistical 

correlations between bits ( , )kB x y  and 1( , )kB x y−  can be characterized with the MRF as: 

( )
( )1

1
F ( , ) | F ( , )1

F ( , ) | F ( , ) = exp

k k
ck k

V x y x y
p x y x y

Z T

−

−
 
 
 
 

−                                   (2) 

where ( )p   is a probability function, and F ( , )k x y  denotes a random variable for bit 

( , )kB x y  that takes on values in the state space, ={0,1} . The T in Eq. (2) is a 

temperature constant and Z  is a normalizing constant defined as: 

( )
exp

k

kU
Z

T


 
 
 
 

= −
F

F
 (3) 

where { =(F (1,1), , F ( , ), , F ( , )) | F ( , ) }k k k k kx y m n x y= F is a configuration set 

including all possible realizations of k
F . The ( )kU F  in Eq. (3) is an energy function 

defined as: 

               

Figure 1: Illustration of 8 bit-planes of Image “Man”, where bitplanes from left to 

right are 8( , )B x y , 7( , )B x y , ..., and 1( , )B x y , respectively 
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( ) ( )k k
c

c C

U V


=F F  (4) 

where C  is a set of cliques formed by the neighborhood system, and ( )cV   is a potential 

function defined on a given clique ( )c c C  (e.g. in our case bits ( , )kB x y  and 1( , )kB x y−  

form a clique). Eq. (2) calculates the probability of 1F ( , )k x y−  given F ( , )k x y , and 

1(F ( , ) | F ( , ))k kp x y x y−

 
can be computed similarly. 

3.2 Design of JFGIR 

To seamlessly integrate the MRF between adjacent bit-planes in the bit-plane 

reconstruction using the factor graph, we further represent the MRF between adjacent bit-

planes with a factor graph [Kschischang, Frey and Loeliger (2001)]. By denoting 

F ( , )k x y  
and 1F ( , )k x y−  with variable nodes (VNs) and characterizing the statistical 

correlation in Eq. (2) with a factor node (FN), we construct a factor graph for the MRF 

between adjacent bit-planes, as shown in Fig. 2, where circles and squares stand for VNs 

and FNs, respectively.   

1F ( , )k x y−

B
k

-1 B
k

F ( , )k x y
,

k

x yD

1
F ( , )

k
x y

−   F ( , )
k

x y ,

k

x yD  

 

Figure 2: Illustration of the factor graph for the MRF between adjacent bit-planes, where 
kB  and 

1kB −
 denotes 2 adjacent bit-planes and ,

k
x yD  stands for the statistical correlation 

between F ( , )k x y  and 1F ( , )k x y−  

According to our previous work [Wang, Ni, Zhang et al. (2018)], the factor graph for the 

reconstruction of each bit-plane can be constructed as Fig. 3, where the bit-plane index, 

k , is omitted for simplicity. As shown in Fig. 3, the factor graphs in boxes with solid 

lines, dot lines, and dot-and-dash lines are those for the MRF within a bit-plane, 

decryption, and LDPC-based decompression, respectively. S ( 1, , )j j q=  are LDPC 

syndrome bits, which are taken as the encrypted and decompressed bit sequence, 

Y ( 1, , )i i mn=  is the decompressed but encrypted sequence, K i  is the encryption key 

sequence, F ( ( 1) )i i y n x= − +  is a 1-D bit sequence converted from a given bit-plane, and 

,Fx y  denotes bits of a 2-D bit-plane. , ,M Nx y x y , ,Px y , t i , and jg  represent the 
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constraints imposed by the MRF within a bit-plane, image source prior, decryption, and 

LDPC code, respectively. 

By merging the same VNs of Figs. 2 and 3, we can build the JFGIR for the reconstruction 

of two adjacent bit-planes, ( , )kB x y  and 1( , )kB x y− ( 8, , 2)k = . As illustrated in Fig. 1, 

the randomness of ( , )kB x y  (i.e. entropy) is less than that of 1( , )kB x y− . Thus, 

( , )kB x y  would achieve higher lossless compression efficiency than 1( , )kB x y−  and 

provide more statistical information for 1( , )kB x y− , and vice versa. Therefore, it is 

preferable to first reconstruct ( , )kB x y  and then exploit its statistical correlation to 

recover 1( , )kB x y− .  
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Figure 3: Illustration of the factor graph for reconstruction of each bit-plane 
kB  of size 

m n  

3.3 Derivation of SPA adapted to JFGIR 

By taking the probability distribution of each bit in a bit-plane as a marginal function in 

the MRF, each bit-plane can thus be effectively recovered by running the SPA on the 

constructed JFGIR. By using the log( (0) (1))p p  as the message passed between VNs 

and FNs, where (0)p  and (1)p  denote the probabilities of bits 0 and 1, respectively, we 

then derive the SPA adapted to the JFGIR as follows.  

Initialize
Update Update Estimate Estimate

Y
VN FN →FN VN →

( , )B x y

No
Yes

S HY?=

 

Figure 4: Flowchart of the SPA on the JFGIR 

Fig. 4 plots the flowchart of the SPA, where VN FNv →  and FN VN →  denote a message 

updated from a VN to an FN and that from an FN to a VN, respectively. The initialization 
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step initializes all VN FNv → s according to the received syndrome S ( 1, , )p p q= , the 

secret key K ( 1, , )i i mn= , and the source prior ,Px y
( [1, ], [1,m])x n y  . Via VN FNv → s, 

messages FN VN →  are updated via the product operation of the SPA, which are then used 

to yield messages VN FNv → s by means of the sum operation of the SPA. To check whether 

convergence is met or not, the decompressed but encrypted sequence Yi  is estimated 

using VN FNv → s and S HY = is calculated accordingly. If S  is equal to S , then 

convergence is met and the original bitplane ( , )B x y  can be perfectly recovered; 

otherwise, continue to execute these update and estimation steps until convergence is 

achieved or the predefined maximum iteration number is reached. Due to space limitation, 

details of these steps for the JFGIR within a bitplane is omitted here and recommended to 

refer to our previous work [Wang, Ni, Zhang et al. (2018)], while the involved details for 

the JFGIR between adjacent bitplanes are presented below, where the superscript k  

indicating the bit-plane index is re-inserted here to make symbols clear. 

1) Initialization. As ( , )kB x y  has been reconstructed in recovering 1( , )kB x y− , message 

, ,F D
( 8, , 2)k k

x y x y

k
→

=  (see also Fig. 2) is initialed as: 

, ,

,

F D

F 0
k k
x y x y

k

x yif

otherwise


→

− =
= 

+
 (5) 

2) Message update for 1
, ,D Fk k

x y x y

 −→
. It is derived via the SPA and the MRF as: 

, ,

1
, ,

, ,

1 1

, , , ,

F D

D F 1 1

, , , ,

F D

(F =0 | F =0) (F =0 | F =1)
exp exp

log
(F =1| F =0) (F =1| F =1)

exp exp

k k
x y x y

k k
x y x y

k k
x y x y

k k k k

c x y x y c x y x y

k k k k

c x y x y c x y x y

V V

T T

V V

T T







−

− −

→

→ − −
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− + −      

   
=

   
− + −      

   

 
(6) 

The derivation is omitted here for space limitation. 

3) Message update for VN FNv → . For bit-plane 1( , )kB x y− , it is unnecessary to send a 

message upward to ,

k

x yD  as ( , )kB x y  has already been recovered during the 

reconstruction of 1( , )kB x y− . It is noted that recovering 8( , )B x y  only uses the SPA for a 

binary image [Wang, Ni, Zhang et al. (2018)] as there does not exist 9( , )B x y . The 

1 1
, ,F Mk k

x y x y

 − −→
 can be calculated as  

( )
1 1 1

, , ,
1 1

, ,

F M F

F \M

k k k
x y x y x y

k k
x y x y

o

o

 − − −

− −
→ →



=   
(7) 

Messages 1 1
, 1,F Mk k

x y x y

 − −
−→

, 1 1
, ,F Nk k

x y x y

 − −→
, and 1 1

, , 1F Nk k
x y x y

 − −
−→

are updated in a way similar to Eq. (7). 
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4 Proposed scheme 

Fig. 5 illustrates the proposed MRF-based ETC scheme for encrypted gray images. 

Details for these steps are given below. 

Encrypt
bit-plane

Bk(x,y)

Reconstruct

Bk(x,y) via the
JFGIR

Reconstructed
image I'(x,y)

Content Owner Service Provider Receiver

Secret
channelKey Kk

Compress

Bk(x,y)  using
LDPC

Gray image
I(x,y)

Yk
Sk

Divide into 8
bit-planes

B
k
(x,y) (k=1,...,8)

Merge 8
recovered
bit-planes

 

Figure 5: The proposed scheme 

1) Bit-plane division. This step divides a gray image, ( , )I x y , of size m n  into 8 bit-

planes ( , ) ( =1, , 8)kB x y k  using Eq. (1). 

2) Bit-plane encryption. First generate a pseudorandom Bernoulli(1/2) bit sequence of 

length mn , says K ={K , 1, , }k k

i i mn= , via the thk  secret key 2kKEY + , where KEY  

is a one-time-pad initial secret key. Then encrypt ( , )kB x y  with the stream cipher, i.e., 

Y = ( , ) K , ( 1)k k k

i iB x y i y m x = − + .  

3) Bit-plane compression. According to Johnson et al. [Johnson, Ishwar, Prabhakaran et 

al. (2004)], the service provider can compress, without access to the encryption key, each 

encrypted bit-plane using the channel code of LDPC. In particular, Yk  is compressed as 

S =HYk k , where H  is a parity-check matrix of size (1 )R mn mn−  , where R  is the code 

rate of LDPC.  

To compress bitplanes with nearly equiprobable 0 s and 1 s, a doping technology is 

employed [Wang, Ni, Zhang et al. (2018)]. That is, a number of encrypted but 

uncompressed bits are sent to the receiver, and these doped bits are then used at the 

receiver as the “catalyst” to guide the SPA towards convergence. This is essentially 

equivalent to construct the parity-check matrix in case of doping as follows [Wang, Ni, 

Zhang et al. (2018)]:    

H
H

D
new

 
=  
 

 (8) 

where the D  of size ( )_ (1 )dp rate R mn −   contains doped rows, each of which 

consists of one 1 at a random column and 1mn−  0 s. The _dp rate
 
denotes the doping 

rate, i.e. the ratio between the number of doped bits and the length of (1 )R mn−  . Thus, 

the compression rate in terms of bit per bit (bpb) is computed as:  

( )
( ) ( )

(1 ) 1 _
_ 1 1 _

R mn dp rate
cmp rate R dp rate

mn

−  +
= = −  +    (9) 

4) Bit-plane reconstruction. First reconstruct the MSB, 8( , )B x y , using the MRF-based 

method for a binary image [Wang, Ni, Zhang et al. (2018)] (see also Fig. 3), in which the 
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secret key 82KEY +  is used, where KEY  is sent through a secret channel from the 

content owner side. Based on the reconstructed 8( , )B x y , we then recover 7 ( , )B x y  
by 

running the SPA on the JFGIR (see also Figs. 2 and 4). After obtaining 7 ( , )B x y , we 

proceed to recover 6( , )B x y , and so on.  

5) Gray-image reconstruction. By merging the 8 recovered bit-planes ( , )kB x y  
( =1, , 8)k , we thus reconstruct the original gray image ( , )I x y .  

5 Experimental results and analysis 

In this section, we evaluate the proposed scheme. We first set parameters for the MRF 

and then compare compression efficiency of the proposed scheme with prior arts. 

 5.1 Experimental setting 

To characterize natural images with both smooth and context areas, we deploy the 

discontinuity-adaptive potential function [AL-Shaykh and Mersereau (1998); Wang, Xiao, 

Peng et al. (2018)], i.e.   

( )
( )

22 2

1 2 2 1 1 2 2 22

1 2

1 1
(F | F ) (F | F ) log F F log

+ F F
c cV V  


 = = + − + − −
  −

 
(10) 

where 1F  and 2F  are essentially a pair of elements in a clique of a given random field, 

and   is a model parameter to control the sharpness of edges.  

According to Eqs. (2)-(4) and (10), the concerned MRF has 3 parameters, i.e.  , P , and 

T . As assessed in our previous work [Wang, Ni, Zhang et al. (2018)], the MRF 

parameters of 45 =  and 0.00049T =  are a preferable setting, and P 0.35=  and P 0.5=  

are used for compression of encrypted binary images without and with doping, 

respectively. As each bit-plane of a gray image can be considered as a binary image, 

these MRF parameters in Wang et al. [Wang, Ni, Zhang et al. (2018)] are adopted in the 

reconstruction of each bit-plane. 

Considering that the MRF between adjacent bitplanes may be different to that within a 

bitplane, we further seek a feasible setting for the MRF between adjacent bitplanes. In 

more detail, parameters   and P  are set as 45 and 0.5, respectively, and parameter T is 

decreased gradually from 1. Extensive experimental simulation shows that 0.005T =  is 

desirable for the MRF between 8( , )B x y  and 7 ( , )B x y  and 0.05T =  is feasible for the 

MRF between adjacent bitplanes from 7 ( , )B x y  
to 5( , )B x y . The T  for the MRF between 

other adjacent bitplanes, however, are intractable because bitplanes from 4( , )B x y  
to 

1( , )B x y  
cannot be compressed, as demonstrated below. This universal parameter setting 

really works for all test gray images as it provides sufficient side information to guide the 

SPA towards convergence. 

In the simulation, we test 10 100 100 gray images with diverse texture characteristics, as 

illustrated in Fig. 6. Each test gray image is encrypted, compressed, and reconstructed via 
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the algorithm in Section 4 (see also Fig. 5), and the lossless compression performance are 

assessed with compression rates in terms of bpb (bit per bit) and bit per pixel (bpp), 

where the bpb is used for each bitplane while the bpp is for a gray image. In compression 

stage, LDPC code rates, R , are set to be [0.03, 0.95] with step 0.025, and the achieved 

minimum compression rate (MinCR) (see Eq. (9)) is taken as the compression rate (CR) 

for the involved bitplane, where the minimum doping rate _dp rate corresponding to a 

given R  is sought via a binary search.  

Each LDPC code is of length 10000, its degree distribution is obtained from the LTHC 

website [Amraoui and Urbanke (2003)], and the Hnew in Eq. (8) is constructed via the 

PEG method [Hu, Eleftherious and Arnold (2005)].   

5.2 Experimental results and analysis 

Via the mentioned settings, we run the proposed algorithm on 10 test gray images. Table 

1 summarizes lossless compression rates for 8 bitplanes of each test image. It is found 

that the first 3 MSBs of most test images
 
can be successfully compressed while the other 

5 bitplanes cannot. This is because bitplanes from 5( , )B x y  
to 1( , )B x y  are nearly random 

(see also Fig. 1) and thus cannot be well characterized with the MRF, which in turn 

makes the compression and reconstruction of these bitplanes difficult. Nevertheless, 

bitplanes 5( , )B x y  of images “F16” and “Milkdrop” with a large portion of smooth area 

are two exceptions, which can be compressed by the proposed scheme. 

Table 1: Compression rates (CRs) for 8 bitplanes
 
of each gray image and their summary 

CRs (SCRs), where CRk (k=8, ..., 1) denotes the CR for bitplane ( , )kB x y  
in terms of bpb 

Image CR8 CR7 CR6 CR5 CR4 CR3 CR2 CR1 SCR 

Barb 0.4113 0.5841 0.8284 1.0 1.0 1.0 1.0 1.0 6.8238 

Couple 0.5505 0.6113 0.7947 1.0 1.0 1.0 1.0 1.0 6.9565 

Elain 0.4559 0.6233 0.8988 1.0 1.0 1.0 1.0 1.0 6.9780 

F16 0.3524 0.5957 0.6899 0.9355 1.0 1.0 1.0 1.0 6.6380 

Goldhill 0.3514 0.5813 0.8634 1.0 1.0 1.0 1.0 1.0 6.7961 

House 0.4240 0.6678 0.8802 1.0 1.0 1.0 1.0 1.0 6.9720 

Man 0.3017 0.6225 0.9154 1.0 1.0 1.0 1.0 1.0 6.8396 

Milkdrop 0.2747 0.5058 0.6494 0.7333 1.0 1.0 1.0 1.0 6.1632 

Lena 0.3658 0.5614 0.7711 1.0 1.0 1.0 1.0 1.0 6.6983 

Peppers 0.3842 0.5962 0.8144 1.0 1.0 1.0 1.0 1.0 6.7948 

(a) Barb (b) Couple (c) Elain (d) F16 (e) Goldhill (f) House (g) Man (i) Lena (j) Peppers(h) Milkdrop  

Figure 6: 10 test images of size 100 100  
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We further evaluate the proposed scheme by comparing it with the state of the arts 

[Schonberg (2006); Schonberg (2007); Liu, Zeng, Dong et al. (2010)] that also exploit 

statistical characteristics of natural images at the receiver. The work of Schonberg 

[Schonberg (2006, 2007)] incorporates the 2-D Markov source model in the 

reconstruction of binary image and successfully compresses the first 2 encrypted MSBs 

in a lossless way. Via a resolution-progressive manner, the approach of Liu et al. [Liu, 

Zeng, Dong et al. (2010)] uses low-resolution sub-images to learn source statistics for 

high-resolution ones, which can compress the first 4 encrypted MSBs. Regarding that the 

proposed scheme succeeds to compress the first 3 encrypted MSBs for most test gray 

images and the first 4 encrypted MSBs for a few test images with a large portion of 

smooth area (e.g. f16 and milkdrop), it achieves significant improvement in terms of 

compression efficiency against the method of Schonberg et al. [Schonberg, Draper and 

Ramchandran (2006); Schonberg (2007)], while it is comparable or somewhat inferior to 

the approach of Liu et al. [Liu, Zeng, Dong et al. (2010)]. The improvement over the 

method of Schonberg et al. [Schonberg, Draper and Ramchandran (2006); Schonberg 

(2007)] comes from the fact that the MRF is better than the 2-D Markov source model in 

characterizing natural gray images with complex intrinsic structure, while the weakness 

in comparison to the scheme of Liu et al. [Liu, Zeng, Dong et al. (2010)] attributes to the 

evidence that the first 4 or 5 encrypted LSBs are difficult to model with the MRF. 

Table 2: Compression rates (CRs) and numerical results of 1(X)H
 
and ( )H X  for the 

first 3 MSBs
 
of each test gray image 

Image 8 ( , )B x y  
7 ( , )B x y  

6 ( , )B x y  

CR8 H1(x) H∞(x) CR7 H1(x) H∞(x) CR6 H1(x) H∞(x) 

Barb 0.4113 0.9622 0.1599 0.5841 1.0000 0.3417 0.8284 1.0000 0.5730 

Couple 0.5505 0.9994 0.2378 0.6113 0.8452 0.3600 0.7947 0.9516 0.5574 

Elain 0.4559 0.9847 0.1714 0.6233 0.9999 0.3786 0.8988 0.9999 0.6157 

F16 0.3524 0.6645 0.1665 0.5957 0.8278 0.4135 0.6899 0.8640 0.4892 

Goldhill 0.3514 0.8664 0.1844 0.5813 0.9313 0.3426 0.8634 0.9889 0.6076 

House 0.4240 0.7197 0.2193 0.6678 1.0000 0.4041 0.8802 0.9570 0.6236 

Man 0.3017 0.9806 0.2432 0.6225 0.9706 0.4286 0.9154 0.9929 0.6677 

Milkdrop 0.2747 0.7063 0.047 0.5058 0.8948 0.1814 0.6494 0.9675 0.3316 

Lena 0.3658 0.9999 0.1768 0.5614 0.9878 0.3980 0.7711 1.0000 0.5443 

Peppers 0.3842 1.0000 0.1405 0.5962 0.9979 0.3559 0.8144 0.9918 0.5643 

In addition, we also examine the bound for compression of encrypted gray images. As 

compressing encrypted gray images is essentially equivalent to 8-bitplane compression, 

the bound for compression of encrypted binary images given in Wang et al. [Wang, Ni, 

Zhang et al. (2018)] can be taken for analysis here. As discussed in Wang et al. [Wang, 

Ni, Zhang et al. (2018)], the compression bound is equal to the entropy rate of the 

adopted MRF source, says ( )H X , the derivation for which is omitted her for space 

limitation and recommended to refer to Wang et al. [Wang, Ni, Zhang et al. (2018)]. For 

convenience, the entropy rate of independent identically distributed (i.i.d.) source, 
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namely 1(X)H , is also compared. Tab. 2 lists compression rates, 1(X)H  and ( )H X , for 

the first 3 MSBs of each test gray image, where results for the 4th MSB are not given as 

the 4th MSB of most test images cannot be compressed. It is observed that compression 

rates for the first 3 MSBs are far lower than 1(X)H
 
due to the exploitation of the MRF in 

the reconstruction process, while there still exist sizeable gaps from the bound ( )H X  
for the proposed scheme to improve. 

6 Conclusion 

In this paper, we have presented a new ETC scheme for gray images using the MRF. We 

deployed the MRF to characterize statistical correlations between adjacent bitplanes and 

within a bitplane, represented them with factor graphs, and further seamlessly integrated 

the built MRF factor graphs in those for decryption and LDPC decoding, yielding a 

JFGIR (joint factor graph for gray image reconstruction). The SPA adapted to the JFGIR 

is then derived theoretically by applying the theory of factor graph. Via the constructed 

JFGIR and the derived SPA, an MRF-based scheme for compression of encrypted gray 

images is thus developed, which uses the stream cipher to encrypt each bitplane, employs 

the LDPC code to compresses each bitplane, and exploits the JFGIR to facilitate inferring 

the original bitplane. Numerical results show that a universal MRF parameter setting 

works well for all gray images as the setting provides sufficient side information to guide 

the SPA towards convergence. Extensive experimental simulation demonstrates that the 

proposed scheme successfully compresses the first 3 and 4 MSBs for most test gray 

images and a few test images with a large portion of smooth area, respectively, which 

achieves significant improvement in terms of compression efficiency over the prior state-

of-the-art using the 2-D Markov source model while is comparable or somewhat inferior 

to that adopting the resolution-progressive strategy.  
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