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Abstract: As a main distributed computing system, Spark has been used to solve 

problems with more and more complex tasks. However, the native scheduling strategy of 

Spark assumes it works on a homogenized cluster, which is not so effective when it 

comes to heterogeneous cluster. The aim of this study is looking for a more effective 

strategy to schedule tasks and adding it to the source code of Spark. After investigating 

Spark scheduling principles and mechanisms, we developed a stratifying algorithm and a 

node scheduling algorithm is proposed in this paper to optimize the native scheduling 

strategy of Spark. In this new strategy, the static level of nodes is calculated, the dynamic 

factors such as the length of running tasks, and CPU usage of work nodes are considered 

comprehensively. And through a series of comparative experiments in alienation cluster, 

the new strategy costs less running time and lower CPU usage rate than the original 

Spark strategy, which verifies that the new schedule strategy is more effective one. 
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1 Introduction 

The born of Spark [Zaharia, Chowdhur, Franklin et al. (2010)] has given possibility to 

upgrading distributed computing on computer clusters, improving obviously in memory 

R/W and implement efficiency compared with earlier Hadoop [Zaharia, Chowdhur, Das 

et al. (2011a, 2012b)]. But, as a general platform, Spark still has some problems in 

producing process, waiting for optimization. 

For performance, in dealing with the underlying task scheduling, Spark does not consider 

two special impact factors hidden in actual production environment. One is the 

complexity of the task itself, the other one is heterogeneity of the cluster environment. 

The former will lead to bottleneck of a single point, resulting in localized distribution of 

tasks with high complexity, which will result in restrictions of overall efficiency of the 

cluster by single point blocking, making smooth completion of hydration operations 

unfeasible. The latter will cause that the cluster cannot fully play the potential of all 

computing nodes, that is, limited by the cluster platform, the advantage of high 

computing performance nodes is not able to be played, resulting in wasting of the 

efficiency upgrades brought by hardware. The above two, one is the inefficient 
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performance of Spark in the time dimension, the other is the limited performance in the 

hardware dimension. To solve problems above, in this paper, a new scheduling strategy is 

proposed for Heterogeneous cluster in Spark, looking forward to improve efficient of the 

whole system. 

In this paper, we will reveal some analyses of original Spark scheduling strategy with 

summary of the existing researches in distributed cluster heterogeneity in Section 2. In 

Section 3, our new strategy will be described in detail. Section 4 presents the feasibility 

and evaluation of the strategy by some experimental verification. In Section 5, we 

conclude the program and propose several future research directions. 

2 Related works 

Because Hadoop technology is more mature and wider and longer used in the enterprise, 

the optimization schemes for cluster heterogeneity of distributed computing platform are 

mainly focused on Hadoop platform. Many enterprises seek ways to use big data 

efficiently and effectively, which needs some new optimization algorithm proposed. In 

2005, Nightingale et al. [Nightingale, Chen and Flinn (2005)] proposed the Speculative 

Task Execution Strategy (STES), the idea is that when free nodes appear in the cluster, 

they silently predict the implementation of the local copy of other nodes’ tasks, thereby 

enhancing the utilization of the nodes to avoid unnecessary CPU-vacancy. And it saves 

snapshot before execution to keep track of recovery when the prediction fails. In 2008, 

Zaharia et al. [Zaharia, Konwinski, Joseph et al. (2008)] proposed Improved STES, 

which replaced task progress rate with expected completion time of the task as a 

scheduling basis. Zaharia et al. [Zaharia, Borthakur, Sen et al. (2010)] proposed the 

strategy of Delay Scheduling, and developed a multi-user FAIR Scheduler, which solves 

the problem of fairness of multi users’ resource allocation and the problem of single 

queue blocking. The Spark source FAIR Scheduler implementation comes from this. In 

2013, Tang et al. [Tang, Zhou, Li et al. (2013)] proposed the MapReduce Task Scheduler 

for Deadline (MTSD). MTSD first divides all the nodes in the heterogeneous cluster into 

multiple levels according to the computing power, and then estimates the duration of the 

tasks on different levels, distinguish Map tasks and Reduce tasks, and then make the 

completion time and task deadline as a basis for scheduling. In 2014, Xu et al. [Xu, Cao 

and Wang (2016)] proposed Adaptive Task Scheduling on Dynamic Workload 

Adjustment (ATSDWA), which deploys a monitoring module at each node to collect the 

node’s resource usage and execution time. Each node initiates the maximum number of 

tasks according to the hardware configuration, and feeds back by Task Scheduler when 

each heartbeat packet transmits, then dynamically adjusts the maximum number of 

operable tasks of each node according to the real-time monitoring information, thus 

realizing dynamic adaptation of Hadoop Scheduling. 

In Spark field, Yang et al. [Yang, Zheng and Wang (2016)] put forward Heterogeneous 

Spark Adaptive Task Scheduling (HSATS). In the similar case to ATSDWA, the 

monitoring module is added to the Worker nodes, and an algorithm to dynamically adjust 

weights of the nodes is added in TaskScheduler, to schedule nodes according to their 

real-time weights. And Kaur et al. proposed a fuzzy approach for the employee 

performance, which provides the idea of evaluating the node performance in this paper. 
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In summary, the developing process of solution for heterogeneous cluster scheduling is 

roughly from single queue to multi queue, static allocation to dynamic adjustment, 

sequential execution to forecast execution, and on this basis, scheduling feedback, 

residual time estimation, cluster partition and other ideas are constantly excavated and 

optimized. 

3 A new spark scheduling engine 

Before the researches are more concerned about how to achieve the balanced distribution 

of heterogeneous cluster resources, that is, through scheduling strategies to make 

heterogeneous clusters in the resource utilization level regarded as isomorphism. This 

paper hopes to make full use of cluster heterogeneity on this basis, in order to improve 

cluster efficiency. 

Storage system often improve the efficiency of the overall system with multi-level cache, 

the characteristics of the cache are high efficiency of single point and small capacity. 

This is the usage of the storage media heterogeneity, to promote efficiency of the overall 

system through the introduction of high-performance heterogeneous media. Similarly, the 

current distributed cluster is still in a single-tier structure, and the calculating components 

in fact are similar to the storage components, whose performance continues to increase. 

As a result, the single-tier cluster structure is capable to be optimized. Therefore, the 

heterogeneous cluster optimization ideas in this paper are to stratify the cluster, to 

optimize overall efficiency. In the practical application scenario, it can be improvable to 

efficiency of the whole distributed system that a small number of high speed components 

are introduced into the cluster as high-performance nodes. The key problem to the 

strategy exists in how to layer the cluster and distribute the tasks with different 

complexity on demand to all levels of nodes. 

3.1 Task identification 

After releasing a Job, Spark will divide it into several Stages, and further divide the 

Stages into multiple Tasks, according to the dependencies between each other. Task is the 

basic unit of the final scheduling. This part will analyze the feasibility of task 

identification from a micro perspective. 

First of all, when the submitted program calls Transformation or Action interface in 

Spark, SparkContext checks the incoming closures to ensure that they are transferred in 

serialization and executed in deserialization. The clean-up closure function is written into 

the created Resilient Distributed Datasets (RDD) [Zaharia and Matei (2011)] as the 

initialization parameter. At this point, Spark bounds RDD data and the function together. 

Because RDD is the main line of Spark’s data stream, nether the implementation of Stage 

scheduling nor Task scheduling can affect the RDD binding relationship with its closure. 

When the Executor assigned to the Worker node begins to actually work, it will parse and 

call the executional function bounded on the RDD to iterate over the data. 

So from the micro perspective, the closure operation can be traced back. As a result, it is 

available to analyze the complexity of closures written in the RDD when it is created, and 

write the complexity into the RDD as the reference indicators of the practical scheduling. 

𝐶𝑝 (𝑝 = 1, 2, … , 𝑀) is the complexity of each task, and M is the total number of tasks. 
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The scheduling policy will determine the priority of the scheduling based on complexity 

of the tasks. 

3.2 Cluster stratification 

With hardware updating and high-performance hardware introduced, cluster 

heterogeneity will tend to be obvious. Currently Spark scheduling is only based on the 

number of CPU cores, this assumption is not “fair” for actual heterogeneous clusters. 

Because computing power of single cores are significantly different and GPU and other 

high-computing-ability hardware perform much better than CPU. Actually, distributing 

tasks by the number of cores ignores the heterogeneity of each core itself, thus scheduling 

granularity is not enough satisfying. 

Therefore, we propose a scheduling scheme that stratifies the cluster according to their 

core power, which is served as one of the targets of the final scheduling strategy. The 

synoptic idea is to implement several benchmark works on each node and record every 

duration, then divide nodes according to the specified number of layers. 

𝑃𝑖 (𝑖 = 1, 2, … , 𝑁) is index of node performance, N is the number of nodes. The index 

represents computing performance of CPU of corresponding node. The larger the index is, 

the more powerful the CPU is. 

K is the total of layers, 𝐿𝑗 is the level of the computing performance of node j. In the 

formula, 𝛼 is a constant greater than 1, defined as hierarchical exponent, so that the final 

stratification result obeys an exponential function with the hierarchical index, which 

means, there are less nodes in higher level, and nodes in lower levels exist more. This 

result meets the expectations of stratification. 

𝐿𝑗 =  {
𝐿𝑗−1  ×  𝛼,    1 ≤  𝑗 <  𝐾

  1,    𝑗 = 0  
   (1) 

Based on the two definitions above, we can get the stratifying algorithm of nodes in 

cluster. 

Algorithm 1 Nodes stratifying 

Input: workers in the cluster 

Output: L 

1: Traverse all Workers in Cluster, run the same set of 

benchmark tasks separately; 

2: Count the executing time t of each Worker, and get array 

T=1 𝑡⁄ ; 

3: Sort array T in ascending order; 

4: normalize array T according to T [0]; 

5: Sign the first node as 𝐿1; 

6: for i=2, 3…T. size -1 do 

7: get the corresponding layered result of each node 

according to Eq. (1) and save in array L; 

8: return L; 
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According to this algorithm, a set of nodes at each level are available, then we can define 

𝑃𝑖 for the corresponding 𝐿𝑗, that is, nodes in the same level have the same performing 

index, the main purpose of the dividing policy is to eliminate the haphazard of scheduling. 

In addition, various benchmark tasks in Algorithm 1 result in multiple grading results, 

then we can create a grading matrix, whose rows represent nodes and columns represent 

tasks. For every node, the majority of grades from all benchmark tasks can be referred to 

as the final stratifying consequence. 

3.3 Node detection 

In the above, we discuss task scheduling of Spark based on the number of cores, which is 

actually a static way of analysis to the system. Cores themselves may be busy or free, 

furthermore, busy cores may keep different task queue. So it is necessary to monitor the 

usage and task queue of each CPU dynamically, in order to optimize the task scheduling 

method. 

Spark cluster is a master-slave structure, Master and Worker communicate using RPC 

mechanism, so each Worker node can be added with a detecting module. To ensure the 

connection of Master and Worker, there will be information Interaction called Heartbeat 

between the two nodes, so that we can take advantage of the opportunity of each 

heartbeat to synchronize the current resource usage, Master preserves a resource 

utilization table of Workers in the local as the basis for the next resource allocation, to 

achieve the dynamic assignment of resources. 

Specific parameters to be detected are queue length, CPU usage and node-performance 

index. Length of the queue on a single node will affect the completing time of the node. 

Generally, the longer the queue is, the longer the expected executing time is, tasks 

scheduled for it should be reduced. There are dependences when Spark execute tasks. If 

the queue is too long and tasks on other nodes depend on a task in the queue, the block of 

entire operation is possible, so it is significant to detect the length of the queue to avoid 

too-long task queue during scheduling. CPU usage directly reflects whether the core is 

busy or not, if CPU occupancy is too high, it indicates that the node lacks available 

computing resources, and redistributing tasks may need to wait for the release of 

computing resources, resulting in delays, so the scheduling should balance the CPU usage 

of each node. Node-performance index, as described in Definition 2 above, reflects the 

capacity of the node, scheduling should reasonably distribute task according to the 

capacity of each node. In addition, tasks with high complexity should be allocated to the 

nodes with high capacity, to reduce load of low-performing nodes and thus improve 

overall efficiency. Fig. 1 shows the scheduling structure of Spark. 

After starting Job, Driver will create the corresponding TaskScheduler as the task 

scheduler of entire work. When tasks need for allocation, Driver requires resources from 

Cluster Manager of Master according to the task demand. At this time, Cluster Manager 

will get available Executors’ information on the Worker as the assignable resource pool 

for its task. When the task is assigned to an Executor, the Executor registers to the Driver 

and keeps connection through Heartbeat message. Therefore, it can synchronize the CPU 

status to TaskScheduler with a newly-created Heartbeat message, and TaskScheduler 

records and saves it as its scheduling metric. 
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The message interaction in detail is: 

 When Executor is assigned to the Driver by the Master for Job, it sends registration 

information to Driver, so that Driver obtains the basic information of Executor; 

 With instantiation and initialization starting, Executor starts a Heartbeater, as shown 

in Fig. 2, while Heartbeater will be bend with a HeartbeatTask, which means the task 

performed at each heartbeat; 

 At each heartbeat, Executor creates a Heartbeat message that wraps data needed to 

be transferred to Driver. The message can be reconstructed to transfer customized 

information; 

 The sent message will be received and analyzed by the Heartbeat Receiver of Driver. 

Obtained parameters are stored in Driver for subsequent use. 

 

Figure 1: Spark cluster scheduling structure 

 

Figure 2: Spark cluster scheduling structure 

3.4 Stratification scheduling 

After separately analyzing Spark features from task, cluster and node gradations, this 

section will combine the three factors to achieve an integral scheduling strategy. 

Firstly, before task is executed, nodes stratifying are pre-implemented to analyze the 

current cluster environment. As performance of all nodes, the analysis is written to the 

configuration of Spark system, which will be read as parameter and stored as SparkEnv 

during initialization. The pre-implementation can be triggered by the following event: 

 Hardware changes; 

 Stratification data is empty or changes; 
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 Duration is too long since last updating. 

When creating RDD, Spark parses operating complexity of the incoming closure and 

records as 𝐶𝑝  on the RDD. Through DAGScheduler [Mo, Yang and Cui (2014)] and 

TaskScheduler, Job will remain the following parameters before resource allocation: 

 𝐶𝑝 for Task; 

 (𝑃𝑖, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔𝑇𝑎𝑠𝑘𝑠. 𝑙𝑒𝑛, 𝐶𝑃𝑈𝑢𝑠𝑎𝑔𝑒) for Executor to be distributed, representing 

separately node performance of the Executor, the length of its task queue, and CPU 

usage of the nodes recorded in TaskScheduler. 

Related to the task to be scheduled, scores of each Executor are calculated by a module 

introduced in TaskScheduler. 

 Evaluation function. For Executor q, define 𝑙𝑒𝑛𝑞 as the length of its task queue, 𝑈𝑞 

as its CPU usage, 𝑓(𝑙𝑒𝑛𝑞 , 𝑈𝑞) as an index of its current executing power. 

𝑓(𝑙𝑒𝑛𝑞 , 𝑈𝑞) = 𝜃 × 𝑙𝑒𝑛𝑞 +  𝜇 ×  𝑈𝑞                                                                (2) 

where 𝜃 , 𝜇  are corresponding coefficient. Smaller the function equals, more 

powerful the Executor is. 

 Complexity conversion function. Define 𝑔(𝐶𝑝) as a function to converse complexity 

to the threshold of node-performance index. 

 𝑔(𝐶𝑝) =  
𝐶𝑝

𝐶𝑚𝑎𝑥
 ×  𝐾  (3) 

where 𝐶𝑚𝑎𝑥  is the peak of complexity. The result is the best node-performance 

index for the task. 

Based on the equations and analysis above, we can get the scheduling algorithm of nodes 

in cluster. 

Algorithm 2 Node scheduling 

Input: Executor array G, length, 𝑈𝑡ℎ 

Output: Selected executor S 

1: foreach Executor q: 

2: exclude all Executors whose queue length or CPU usage exceeds the 

threshold length and 𝑈𝑡ℎ. 

3: calculate the evaluation function of each Executor according to Eq. 2. 

4: sort the array G in descending order according to its level. 

5: Get 𝑔(𝐶𝑝) according to Eq. 3. 

6: for i=1, 2 …G.size do 

7: if there is an Executor greater than 𝑔(𝐶𝑝) in queue G, select the one 

with the smallest evaluation function; 

8: else select the executor S with the smallest evaluation function which 

level is closest to 𝑔(𝐶𝑝) 

9: Select randomly if step 3 and 4 both have no result; 

10: return S 
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4 Evaluation 

We conduct experiments from simulation in theory and real cluster condition to evaluate 

the algorithm. Indicators of experiments are mainly operation time and whether the 

distribution of nodes is balanced. 

4.1 Simulation 

 Node: parameters are performance index, CPU usage and task queue, created by 

Gaussian distribution; 

 Task: parameters are complexity and CPU demand, created by Gaussian distribution. 

Task generation obeys Poisson distribution. 

 Execution: tasks are allocated to nodes and added to their task queues, while CPU 

demand is appended to usage of nodes. Execution time is proportional to complexity 

of the task and inversely proportional to performance index of the node. 

 Scheduling: original theory of Spark is considered as random algorithm. 

With some fundamental conception above, this simulation experiment will statistic run 

several times. The mean of the running time is considered as the indicator of 

implementing efficiency. Keeping configuration of nodes constant, we execute ten 

different groups of tasks with the two algorithms. As the result, operating times of new 

algorithm are always shorter than the traditional one, as shown in Fig. 3. When we solely 

change the number of tasks, we get the result integrated to Fig. 4, which indicates that 

operating time grows by the task load increases, while operations with the new strategy 

are always efficient than the random method. 

 

Figure 3: Time comparison of multiple experiments with the same task number 
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Figure 4: Time comparison of multiple experiments with different task number 

4.2 Experiments 

To evaluate the algorithm in hardware platform, we prepared four programs to run in 

Spark system with separately original method and our algorithm, such as 

SparkWordCount, SparkKmeans, SparkPageRank and SparkLR (Spark Logistic 

Regression). 

Three machines from Ali Cloud Server Elastic Compute Service (ECS) are deployed to 

construct a simple heterogeneous cluster. One is both Master and Worker and the other 

two are Workers. The configurations are shown as following: 

Table 1: Configuration of nodes 

Hardware Master Node Worker Node 

CPU Two cores Single core 

memory 4 G DDR4 2 G DDR4 

OS Ubuntu 64 bit Ubuntu 64 bit 

HDD 40 G 40 G 

bandwidth 1 Mbps 1 Mbps 

We executed the four programs above on the micro-cluster to process data with multiple 

scales of samples. In terms of operating efficiency, operating time of tasks is an 

appropriate criterion. For SparkWordCount, SparkPageRank and SparkKmeans, we 

change the size of data set. For SparkLR, the number of sample points is 100,000 and 

dimension is configured to 10, and independent variable is the number of iterations. 

Dependent variables of all experiments are operating time. The results shown in Figs. 5-8 

indicate that our algorithm has an improvement of operation time. In terms of nodes, 

usage of CPU and balance of nodes both need to be considered. For a single worker node, 

we monitored its CPU usage when executing the same task with two different strategies. 

As shown in Fig. 9, at most time CPU loads less with our algorithm than traditional Spark 

method. Operating the same task with the same size of data for several times, Fig. 10 
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compared average task distribution for the three nodes in the cluster. The indicator is 

occupancy rate of task queue on each node. We made presentation of percentage of every 

node with each strategy. As calculated, variance of the new strategy is 6.08, compared 

with 9.25 using original Spark. Then it is absolute that the distribution of our algorithm is 

more uniform than traditional method. 

 

Figure 5: Word Count time consumptions of different job size 

 

Figure 6: Spark LR time consumptions of different job size 
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Figure 7: Spark Page Rank time consumptions of different job size 

 

Figure 8: Spark K Means time consumptions of different job size 

 

Figure 9: CPU usage monitor 
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Figure 10: CPU distribution in different system 

5 Conclusions 

To develop Spark and distributed computing, it is significant to improve the performance 

of Spark system. We propose several new ideas in the field of task scheduling and 

integrate a scheduling strategy for heterogeneous cluster, compared with the random 

method of original Spark system. This strategy stratifies all nodes in cluster according to 

their computing performance and monitor their usage. Then task with complexity 

identified will be distributed to proper node to execute. Furthermore, we conducted 

several simulations and experiments proving that the new method is more uniform and 

efficient than traditional one of Spark system. 

The new scheduling strategy takes advantage of capacity of computing nodes sufficiently, 

so that it effectively optimizes the operational efficiency of Spark in the actual cluster 

environment. Besides, it also enlightens a way to quickly increase the performance of 

cluster. Spark cluster can be recognized with high-performance components such as a 

small number of GPUs, and then the strategy will adjust structure of the cluster. Tasks 

with large-computing demand can be identified and assigned to these high-performance 

components in priority, so that the overall system improves its operational efficiency 

regardless of increasing complexity of tasks by making full use of the newly introduced 

high-performance components, which contains some engineering significance. 

The following work will concern optimization of specific algorithms in this paper, such 

as auto-identification of tasks’ complexity. Furthermore, optimization of parameters is 

also meaningful, some measures such as machine learning and probability methods are 

worth to be considered. 
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