

Copyright © 2018 Tech Science Press CMC, vol.55, no.3, pp.405-417, 2018

CMC. doi:10.3970/cmc.2018.02527 www.techscience.com/cmc

A Spark Scheduling Strategy for Heterogeneous Cluster

Xuewen Zhang1, Zhonghao Li1 , Gongshen Liu1, *, Jiajun Xu1, Tiankai Xie2 and Jan

Pan Nees1

Abstract: As a main distributed computing system, Spark has been used to solve

problems with more and more complex tasks. However, the native scheduling strategy of

Spark assumes it works on a homogenized cluster, which is not so effective when it

comes to heterogeneous cluster. The aim of this study is looking for a more effective

strategy to schedule tasks and adding it to the source code of Spark. After investigating

Spark scheduling principles and mechanisms, we developed a stratifying algorithm and a

node scheduling algorithm is proposed in this paper to optimize the native scheduling

strategy of Spark. In this new strategy, the static level of nodes is calculated, the dynamic

factors such as the length of running tasks, and CPU usage of work nodes are considered

comprehensively. And through a series of comparative experiments in alienation cluster,

the new strategy costs less running time and lower CPU usage rate than the original

Spark strategy, which verifies that the new schedule strategy is more effective one.

Keywords: Spark, optimize scheduling, stratifying algorithm, performance optimization.

1 Introduction

The born of Spark [Zaharia, Chowdhur, Franklin et al. (2010)] has given possibility to

upgrading distributed computing on computer clusters, improving obviously in memory

R/W and implement efficiency compared with earlier Hadoop [Zaharia, Chowdhur, Das

et al. (2011a, 2012b)]. But, as a general platform, Spark still has some problems in

producing process, waiting for optimization.

For performance, in dealing with the underlying task scheduling, Spark does not consider

two special impact factors hidden in actual production environment. One is the

complexity of the task itself, the other one is heterogeneity of the cluster environment.

The former will lead to bottleneck of a single point, resulting in localized distribution of

tasks with high complexity, which will result in restrictions of overall efficiency of the

cluster by single point blocking, making smooth completion of hydration operations

unfeasible. The latter will cause that the cluster cannot fully play the potential of all

computing nodes, that is, limited by the cluster platform, the advantage of high

computing performance nodes is not able to be played, resulting in wasting of the

efficiency upgrades brought by hardware. The above two, one is the inefficient

1 School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai,

200240, P.R.C.

2 Eberly College of Science, Pennsylvania State University, Old Main, State College, PA 16801, U.S.A.

* Corresponding Author: Gongshen Liu. Email: lgshen@sjtu.edu.cn.

406 Copyright © 2018 Tech Science Press CMC, vol.55, no.3, pp.405-417, 2018

performance of Spark in the time dimension, the other is the limited performance in the

hardware dimension. To solve problems above, in this paper, a new scheduling strategy is

proposed for Heterogeneous cluster in Spark, looking forward to improve efficient of the

whole system.

In this paper, we will reveal some analyses of original Spark scheduling strategy with

summary of the existing researches in distributed cluster heterogeneity in Section 2. In

Section 3, our new strategy will be described in detail. Section 4 presents the feasibility

and evaluation of the strategy by some experimental verification. In Section 5, we

conclude the program and propose several future research directions.

2 Related works

Because Hadoop technology is more mature and wider and longer used in the enterprise,

the optimization schemes for cluster heterogeneity of distributed computing platform are

mainly focused on Hadoop platform. Many enterprises seek ways to use big data

efficiently and effectively, which needs some new optimization algorithm proposed. In

2005, Nightingale et al. [Nightingale, Chen and Flinn (2005)] proposed the Speculative

Task Execution Strategy (STES), the idea is that when free nodes appear in the cluster,

they silently predict the implementation of the local copy of other nodes’ tasks, thereby

enhancing the utilization of the nodes to avoid unnecessary CPU-vacancy. And it saves

snapshot before execution to keep track of recovery when the prediction fails. In 2008,

Zaharia et al. [Zaharia, Konwinski, Joseph et al. (2008)] proposed Improved STES,

which replaced task progress rate with expected completion time of the task as a

scheduling basis. Zaharia et al. [Zaharia, Borthakur, Sen et al. (2010)] proposed the

strategy of Delay Scheduling, and developed a multi-user FAIR Scheduler, which solves

the problem of fairness of multi users’ resource allocation and the problem of single

queue blocking. The Spark source FAIR Scheduler implementation comes from this. In

2013, Tang et al. [Tang, Zhou, Li et al. (2013)] proposed the MapReduce Task Scheduler

for Deadline (MTSD). MTSD first divides all the nodes in the heterogeneous cluster into

multiple levels according to the computing power, and then estimates the duration of the

tasks on different levels, distinguish Map tasks and Reduce tasks, and then make the

completion time and task deadline as a basis for scheduling. In 2014, Xu et al. [Xu, Cao

and Wang (2016)] proposed Adaptive Task Scheduling on Dynamic Workload

Adjustment (ATSDWA), which deploys a monitoring module at each node to collect the

node’s resource usage and execution time. Each node initiates the maximum number of

tasks according to the hardware configuration, and feeds back by Task Scheduler when

each heartbeat packet transmits, then dynamically adjusts the maximum number of

operable tasks of each node according to the real-time monitoring information, thus

realizing dynamic adaptation of Hadoop Scheduling.

In Spark field, Yang et al. [Yang, Zheng and Wang (2016)] put forward Heterogeneous

Spark Adaptive Task Scheduling (HSATS). In the similar case to ATSDWA, the

monitoring module is added to the Worker nodes, and an algorithm to dynamically adjust

weights of the nodes is added in TaskScheduler, to schedule nodes according to their

real-time weights. And Kaur et al. proposed a fuzzy approach for the employee

performance, which provides the idea of evaluating the node performance in this paper.

A Spark Scheduling Strategy for Heterogeneous Cluster 407

In summary, the developing process of solution for heterogeneous cluster scheduling is

roughly from single queue to multi queue, static allocation to dynamic adjustment,

sequential execution to forecast execution, and on this basis, scheduling feedback,

residual time estimation, cluster partition and other ideas are constantly excavated and

optimized.

3 A new spark scheduling engine

Before the researches are more concerned about how to achieve the balanced distribution

of heterogeneous cluster resources, that is, through scheduling strategies to make

heterogeneous clusters in the resource utilization level regarded as isomorphism. This

paper hopes to make full use of cluster heterogeneity on this basis, in order to improve

cluster efficiency.

Storage system often improve the efficiency of the overall system with multi-level cache,

the characteristics of the cache are high efficiency of single point and small capacity.

This is the usage of the storage media heterogeneity, to promote efficiency of the overall

system through the introduction of high-performance heterogeneous media. Similarly, the

current distributed cluster is still in a single-tier structure, and the calculating components

in fact are similar to the storage components, whose performance continues to increase.

As a result, the single-tier cluster structure is capable to be optimized. Therefore, the

heterogeneous cluster optimization ideas in this paper are to stratify the cluster, to

optimize overall efficiency. In the practical application scenario, it can be improvable to

efficiency of the whole distributed system that a small number of high speed components

are introduced into the cluster as high-performance nodes. The key problem to the

strategy exists in how to layer the cluster and distribute the tasks with different

complexity on demand to all levels of nodes.

3.1 Task identification

After releasing a Job, Spark will divide it into several Stages, and further divide the

Stages into multiple Tasks, according to the dependencies between each other. Task is the

basic unit of the final scheduling. This part will analyze the feasibility of task

identification from a micro perspective.

First of all, when the submitted program calls Transformation or Action interface in

Spark, SparkContext checks the incoming closures to ensure that they are transferred in

serialization and executed in deserialization. The clean-up closure function is written into

the created Resilient Distributed Datasets (RDD) [Zaharia and Matei (2011)] as the

initialization parameter. At this point, Spark bounds RDD data and the function together.

Because RDD is the main line of Spark’s data stream, nether the implementation of Stage

scheduling nor Task scheduling can affect the RDD binding relationship with its closure.

When the Executor assigned to the Worker node begins to actually work, it will parse and

call the executional function bounded on the RDD to iterate over the data.

So from the micro perspective, the closure operation can be traced back. As a result, it is

available to analyze the complexity of closures written in the RDD when it is created, and

write the complexity into the RDD as the reference indicators of the practical scheduling.

𝐶𝑝 (𝑝 = 1, 2, … , 𝑀) is the complexity of each task, and M is the total number of tasks.

408 Copyright © 2018 Tech Science Press CMC, vol.55, no.3, pp.405-417, 2018

The scheduling policy will determine the priority of the scheduling based on complexity

of the tasks.

3.2 Cluster stratification

With hardware updating and high-performance hardware introduced, cluster

heterogeneity will tend to be obvious. Currently Spark scheduling is only based on the

number of CPU cores, this assumption is not “fair” for actual heterogeneous clusters.

Because computing power of single cores are significantly different and GPU and other

high-computing-ability hardware perform much better than CPU. Actually, distributing

tasks by the number of cores ignores the heterogeneity of each core itself, thus scheduling

granularity is not enough satisfying.

Therefore, we propose a scheduling scheme that stratifies the cluster according to their

core power, which is served as one of the targets of the final scheduling strategy. The

synoptic idea is to implement several benchmark works on each node and record every

duration, then divide nodes according to the specified number of layers.

𝑃𝑖 (𝑖 = 1, 2, … , 𝑁) is index of node performance, N is the number of nodes. The index

represents computing performance of CPU of corresponding node. The larger the index is,

the more powerful the CPU is.

K is the total of layers, 𝐿𝑗 is the level of the computing performance of node j. In the

formula, 𝛼 is a constant greater than 1, defined as hierarchical exponent, so that the final

stratification result obeys an exponential function with the hierarchical index, which

means, there are less nodes in higher level, and nodes in lower levels exist more. This

result meets the expectations of stratification.

𝐿𝑗 = {
𝐿𝑗−1 × 𝛼, 1 ≤ 𝑗 < 𝐾

 1, 𝑗 = 0
 (1)

Based on the two definitions above, we can get the stratifying algorithm of nodes in

cluster.

Algorithm 1 Nodes stratifying

Input: workers in the cluster

Output: L

1: Traverse all Workers in Cluster, run the same set of

benchmark tasks separately;

2: Count the executing time t of each Worker, and get array

T=1 𝑡⁄ ;

3: Sort array T in ascending order;

4: normalize array T according to T [0];

5: Sign the first node as 𝐿1;

6: for i=2, 3…T. size -1 do

7: get the corresponding layered result of each node

according to Eq. (1) and save in array L;

8: return L;

A Spark Scheduling Strategy for Heterogeneous Cluster 409

According to this algorithm, a set of nodes at each level are available, then we can define

𝑃𝑖 for the corresponding 𝐿𝑗, that is, nodes in the same level have the same performing

index, the main purpose of the dividing policy is to eliminate the haphazard of scheduling.

In addition, various benchmark tasks in Algorithm 1 result in multiple grading results,

then we can create a grading matrix, whose rows represent nodes and columns represent

tasks. For every node, the majority of grades from all benchmark tasks can be referred to

as the final stratifying consequence.

3.3 Node detection

In the above, we discuss task scheduling of Spark based on the number of cores, which is

actually a static way of analysis to the system. Cores themselves may be busy or free,

furthermore, busy cores may keep different task queue. So it is necessary to monitor the

usage and task queue of each CPU dynamically, in order to optimize the task scheduling

method.

Spark cluster is a master-slave structure, Master and Worker communicate using RPC

mechanism, so each Worker node can be added with a detecting module. To ensure the

connection of Master and Worker, there will be information Interaction called Heartbeat

between the two nodes, so that we can take advantage of the opportunity of each

heartbeat to synchronize the current resource usage, Master preserves a resource

utilization table of Workers in the local as the basis for the next resource allocation, to

achieve the dynamic assignment of resources.

Specific parameters to be detected are queue length, CPU usage and node-performance

index. Length of the queue on a single node will affect the completing time of the node.

Generally, the longer the queue is, the longer the expected executing time is, tasks

scheduled for it should be reduced. There are dependences when Spark execute tasks. If

the queue is too long and tasks on other nodes depend on a task in the queue, the block of

entire operation is possible, so it is significant to detect the length of the queue to avoid

too-long task queue during scheduling. CPU usage directly reflects whether the core is

busy or not, if CPU occupancy is too high, it indicates that the node lacks available

computing resources, and redistributing tasks may need to wait for the release of

computing resources, resulting in delays, so the scheduling should balance the CPU usage

of each node. Node-performance index, as described in Definition 2 above, reflects the

capacity of the node, scheduling should reasonably distribute task according to the

capacity of each node. In addition, tasks with high complexity should be allocated to the

nodes with high capacity, to reduce load of low-performing nodes and thus improve

overall efficiency. Fig. 1 shows the scheduling structure of Spark.

After starting Job, Driver will create the corresponding TaskScheduler as the task

scheduler of entire work. When tasks need for allocation, Driver requires resources from

Cluster Manager of Master according to the task demand. At this time, Cluster Manager

will get available Executors’ information on the Worker as the assignable resource pool

for its task. When the task is assigned to an Executor, the Executor registers to the Driver

and keeps connection through Heartbeat message. Therefore, it can synchronize the CPU

status to TaskScheduler with a newly-created Heartbeat message, and TaskScheduler

records and saves it as its scheduling metric.

410 Copyright © 2018 Tech Science Press CMC, vol.55, no.3, pp.405-417, 2018

The message interaction in detail is:

 When Executor is assigned to the Driver by the Master for Job, it sends registration

information to Driver, so that Driver obtains the basic information of Executor;

 With instantiation and initialization starting, Executor starts a Heartbeater, as shown

in Fig. 2, while Heartbeater will be bend with a HeartbeatTask, which means the task

performed at each heartbeat;

 At each heartbeat, Executor creates a Heartbeat message that wraps data needed to

be transferred to Driver. The message can be reconstructed to transfer customized

information;

 The sent message will be received and analyzed by the Heartbeat Receiver of Driver.

Obtained parameters are stored in Driver for subsequent use.

Figure 1: Spark cluster scheduling structure

Figure 2: Spark cluster scheduling structure

3.4 Stratification scheduling

After separately analyzing Spark features from task, cluster and node gradations, this

section will combine the three factors to achieve an integral scheduling strategy.

Firstly, before task is executed, nodes stratifying are pre-implemented to analyze the

current cluster environment. As performance of all nodes, the analysis is written to the

configuration of Spark system, which will be read as parameter and stored as SparkEnv

during initialization. The pre-implementation can be triggered by the following event:

 Hardware changes;

 Stratification data is empty or changes;

A Spark Scheduling Strategy for Heterogeneous Cluster 411

 Duration is too long since last updating.

When creating RDD, Spark parses operating complexity of the incoming closure and

records as 𝐶𝑝 on the RDD. Through DAGScheduler [Mo, Yang and Cui (2014)] and

TaskScheduler, Job will remain the following parameters before resource allocation:

 𝐶𝑝 for Task;

 (𝑃𝑖, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔𝑇𝑎𝑠𝑘𝑠. 𝑙𝑒𝑛, 𝐶𝑃𝑈𝑢𝑠𝑎𝑔𝑒) for Executor to be distributed, representing

separately node performance of the Executor, the length of its task queue, and CPU

usage of the nodes recorded in TaskScheduler.

Related to the task to be scheduled, scores of each Executor are calculated by a module

introduced in TaskScheduler.

 Evaluation function. For Executor q, define 𝑙𝑒𝑛𝑞 as the length of its task queue, 𝑈𝑞

as its CPU usage, 𝑓(𝑙𝑒𝑛𝑞 , 𝑈𝑞) as an index of its current executing power.

𝑓(𝑙𝑒𝑛𝑞 , 𝑈𝑞) = 𝜃 × 𝑙𝑒𝑛𝑞 + 𝜇 × 𝑈𝑞 (2)

where 𝜃 , 𝜇 are corresponding coefficient. Smaller the function equals, more

powerful the Executor is.

 Complexity conversion function. Define 𝑔(𝐶𝑝) as a function to converse complexity

to the threshold of node-performance index.

 𝑔(𝐶𝑝) =
𝐶𝑝

𝐶𝑚𝑎𝑥
 × 𝐾 (3)

where 𝐶𝑚𝑎𝑥 is the peak of complexity. The result is the best node-performance

index for the task.

Based on the equations and analysis above, we can get the scheduling algorithm of nodes

in cluster.

Algorithm 2 Node scheduling

Input: Executor array G, length, 𝑈𝑡ℎ

Output: Selected executor S

1: foreach Executor q:

2: exclude all Executors whose queue length or CPU usage exceeds the

threshold length and 𝑈𝑡ℎ.

3: calculate the evaluation function of each Executor according to Eq. 2.

4: sort the array G in descending order according to its level.

5: Get 𝑔(𝐶𝑝) according to Eq. 3.

6: for i=1, 2 …G.size do

7: if there is an Executor greater than 𝑔(𝐶𝑝) in queue G, select the one

with the smallest evaluation function;

8: else select the executor S with the smallest evaluation function which

level is closest to 𝑔(𝐶𝑝)

9: Select randomly if step 3 and 4 both have no result;

10: return S

412 Copyright © 2018 Tech Science Press CMC, vol.55, no.3, pp.405-417, 2018

4 Evaluation

We conduct experiments from simulation in theory and real cluster condition to evaluate

the algorithm. Indicators of experiments are mainly operation time and whether the

distribution of nodes is balanced.

4.1 Simulation

 Node: parameters are performance index, CPU usage and task queue, created by

Gaussian distribution;

 Task: parameters are complexity and CPU demand, created by Gaussian distribution.

Task generation obeys Poisson distribution.

 Execution: tasks are allocated to nodes and added to their task queues, while CPU

demand is appended to usage of nodes. Execution time is proportional to complexity

of the task and inversely proportional to performance index of the node.

 Scheduling: original theory of Spark is considered as random algorithm.

With some fundamental conception above, this simulation experiment will statistic run

several times. The mean of the running time is considered as the indicator of

implementing efficiency. Keeping configuration of nodes constant, we execute ten

different groups of tasks with the two algorithms. As the result, operating times of new

algorithm are always shorter than the traditional one, as shown in Fig. 3. When we solely

change the number of tasks, we get the result integrated to Fig. 4, which indicates that

operating time grows by the task load increases, while operations with the new strategy

are always efficient than the random method.

Figure 3: Time comparison of multiple experiments with the same task number

A Spark Scheduling Strategy for Heterogeneous Cluster 413

Figure 4: Time comparison of multiple experiments with different task number

4.2 Experiments

To evaluate the algorithm in hardware platform, we prepared four programs to run in

Spark system with separately original method and our algorithm, such as

SparkWordCount, SparkKmeans, SparkPageRank and SparkLR (Spark Logistic

Regression).

Three machines from Ali Cloud Server Elastic Compute Service (ECS) are deployed to

construct a simple heterogeneous cluster. One is both Master and Worker and the other

two are Workers. The configurations are shown as following:

Table 1: Configuration of nodes

Hardware Master Node Worker Node

CPU Two cores Single core

memory 4 G DDR4 2 G DDR4

OS Ubuntu 64 bit Ubuntu 64 bit

HDD 40 G 40 G

bandwidth 1 Mbps 1 Mbps

We executed the four programs above on the micro-cluster to process data with multiple

scales of samples. In terms of operating efficiency, operating time of tasks is an

appropriate criterion. For SparkWordCount, SparkPageRank and SparkKmeans, we

change the size of data set. For SparkLR, the number of sample points is 100,000 and

dimension is configured to 10, and independent variable is the number of iterations.

Dependent variables of all experiments are operating time. The results shown in Figs. 5-8

indicate that our algorithm has an improvement of operation time. In terms of nodes,

usage of CPU and balance of nodes both need to be considered. For a single worker node,

we monitored its CPU usage when executing the same task with two different strategies.

As shown in Fig. 9, at most time CPU loads less with our algorithm than traditional Spark

method. Operating the same task with the same size of data for several times, Fig. 10

414 Copyright © 2018 Tech Science Press CMC, vol.55, no.3, pp.405-417, 2018

compared average task distribution for the three nodes in the cluster. The indicator is

occupancy rate of task queue on each node. We made presentation of percentage of every

node with each strategy. As calculated, variance of the new strategy is 6.08, compared

with 9.25 using original Spark. Then it is absolute that the distribution of our algorithm is

more uniform than traditional method.

Figure 5: Word Count time consumptions of different job size

Figure 6: Spark LR time consumptions of different job size

A Spark Scheduling Strategy for Heterogeneous Cluster 415

Figure 7: Spark Page Rank time consumptions of different job size

Figure 8: Spark K Means time consumptions of different job size

Figure 9: CPU usage monitor

416 Copyright © 2018 Tech Science Press CMC, vol.55, no.3, pp.405-417, 2018

Figure 10: CPU distribution in different system

5 Conclusions

To develop Spark and distributed computing, it is significant to improve the performance

of Spark system. We propose several new ideas in the field of task scheduling and

integrate a scheduling strategy for heterogeneous cluster, compared with the random

method of original Spark system. This strategy stratifies all nodes in cluster according to

their computing performance and monitor their usage. Then task with complexity

identified will be distributed to proper node to execute. Furthermore, we conducted

several simulations and experiments proving that the new method is more uniform and

efficient than traditional one of Spark system.

The new scheduling strategy takes advantage of capacity of computing nodes sufficiently,

so that it effectively optimizes the operational efficiency of Spark in the actual cluster

environment. Besides, it also enlightens a way to quickly increase the performance of

cluster. Spark cluster can be recognized with high-performance components such as a

small number of GPUs, and then the strategy will adjust structure of the cluster. Tasks

with large-computing demand can be identified and assigned to these high-performance

components in priority, so that the overall system improves its operational efficiency

regardless of increasing complexity of tasks by making full use of the newly introduced

high-performance components, which contains some engineering significance.

The following work will concern optimization of specific algorithms in this paper, such

as auto-identification of tasks’ complexity. Furthermore, optimization of parameters is

also meaningful, some measures such as machine learning and probability methods are

worth to be considered.

Acknowledgement: This work is supported by the National Natural Science Foundation

of China (Grant No. 61472248, 61772337) and the SJTU-Shanghai Songheng Content

Analysis Joint Lab.

A Spark Scheduling Strategy for Heterogeneous Cluster 417

References

Mo, K.; Yang, Y.; Cui, Y. (2014): A homochiral metal-organic framework as an

effective asymmetric catalyst for cyanohydrin synthesis. Journal of the American

Chemical Society, vol. 136, pp. 1746-1746.

Nightingale, E. B.; Chen, P. M.; Flinn, J. (2005): Speculative execution in a distributed

file system. ACM Special Interest Group on Operating Systems: Operating Systems

Review, vol. 39, no. 5, pp. 191-205.

Tang, Z.; Zhou, J.; Li, K.; Li, R. (2013): A mapreduce task scheduling algorithm for

deadline constraints. Cluster computing, vol. 16, no. 4, pp. 651-662.

Xu, X.; Cao, L.; Wang, X. (2016): Adaptive task scheduling strategy based on dynamic

workload adjustment for heterogeneous Hadoop clusters. IEEE Systems Journal, vol. 10,

no. 2, pp. 471-482.

Yang, Z.; Zheng, Q.; Wang, S. (2016): Adaptive task scheduling strategy for

heterogeneous Spark cluster. Computer Engineering, vol. 42, no. 1, pp. 31-35, 40.

Zaharia, M.; Chowdhury, M.; Franklin, M. J.; Shenker, S.; Stoica, I. (2010): Spark:

Cluster computing with working sets. Hot Cloud, vol. 10, pp. 10.

Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J. et al. (2012b): Resilient

distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.

Proceedings of the 9th USENIX Conference on Networked Systems Design and

Implementation. USENIX Association.

Zaharia, M.; Konwinski, A.; Joseph, A. D.; Katz, R.; Stoica, I. (2008): Improving

mapreduce performance in heterogeneous environments. Operating Systems Design and

Implementation, vol. 8, no. 4, pp. 7.

Zaharia, M.; Borthakur, D.; Sen, S. J.; Elmeleegy, K.; Shenker, S. et al. (2010):

Delay scheduling: A simple technique for achieving locality and fairness in cluster

scheduling. Proceedings of the 5th European conference on Computer systems.

Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J. et al. (2011a): Resilient

distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.

Technical Report UCB/EECS-2011-82, EECS Department, University of California,

Berkeley.

https://dl.acm.org/author_page.cfm?id=81490649069&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=81436600149&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=81330490271&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=81490649069&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=81490649069&coll=DL&dl=ACM&trk=0

