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Abstract: As the main communication mediums in industrial control networks, industrial 

communication protocols are always vulnerable to extreme exploitations, and it is very 

difficult to take protective measures due to their serious privacy. Based on the SDN 

(Software Defined Network) technology, this paper proposes a novel event-based 

anomaly detection approach to identify misbehaviors using non-public industrial 

communication protocols, and this approach can be installed in SDN switches as a 

security software appliance in SDN-based control systems. Furthermore, aiming at the 

unknown protocol specification and message format, this approach first restructures the 

industrial communication sessions and merges the payloads from industrial communication 

packets. After that, the feature selection and event sequence extraction can be carried out 

by using the N-gram model and K-means algorithm. Based on the obtained event 

sequences, this approach finally trains an event-based HMM (Hidden Markov Model) to 

identify aberrant industrial communication behaviors. Experimental results clearly show 

that the proposed approach has obvious advantages of classification accuracy and 

detection efficiency. 

 

Keywords: Event sequence, anomaly detection, non-public industrial communication 

protocols, SDN. 

1 Introduction 

In recent years, ICSs (Industrial Control Systems) are exposed to an increasing number of 

cyberattacks [NCCIC/ICS-CERT (2016); NCCIC/ICS-CERT (2017)]. Especially, with 

the development of network technology, the original closure of ICSs has been broken. 

Although industrial automation can benefit from the situation attaching ICSs to Internet, 

the corresponding cybersecurity can also be dramatically impacted. Actually, the original 

control systems are designed for the process safety [Knijff (2014)], and they are always 

used in the air-gapped security environments [Ponomarev and Atkison (2016)]. In other 

words, ICSs are very sensitive to various cyberattacks, because they contain few security 

features during the early design phases. As defined in SP800-82 [Padgette, Scarfone and 
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Chen (2013)], ICSs are a group of automation systems used in industrial production and 

manufacturing, and they are widely applied to many critical infrastructures, such as 

power stations and transportation systems. Therefore, if one destructive cyberattack is 

unavoidable, it may inflict enormous life and property losses. With the deepening of 

Industrial Internet, IoT (Internet of Things) and Big Data, some new ICTs (Information 

Communication Technologies) have been proposed and applied in ICSs, and the SDN 

technology is a typical one [Genge and Haller (2016)]. However, although SDN-based 

control systems improve the communication efficiency and reliability, they cannot avoid 

the destructive cyberattacks. 

Through analysis, we find that one of the core reasons to result in these cyberattacks is 

the vulnerability of industrial communication protocols, which are not designed with 

security in mind. As the main communication mediums in industrial control networks, 

industrial communication protocols are always vulnerable to extreme exploitations. 

Although NIST (National Institute of Standards Technology) presents the “defense in 

depth” strategy which emphasizes the security defense by parsing industrial 

communication protocols in depth, there exist a multitude of different protocols and most 

industry organizations generally tend to use different protocols in their control networks. 

In particular, because ICSs include a wide range of industrial components which are not 

compatible enough with one another, many industry organizations have developed their 

own industrial communication protocols, whose essential property is non-public and 

private. That is, the protocol specification and message format are unknown for the 

cybersecurity workforce. In this case, it heightens the difficulty to carry out the 

appropriate security mechanisms in ICSs. 

Compared with traditional IT systems, the availability and timeliness of ICSs is 

extremely critical [Zhou, Huang, Xiong et al. (2015)]. Although various flexible and 

appropriate IT security approaches have been developed by both academia and industry, 

these approaches cannot be directly applied due to industrial communication protocols 

and the special requirements [Han, Xie, Chen et al. (2014)]. At present, two categories of 

ICS security approaches have been concerned: device-based and network-based. In the 

device-based cases, the interesting approaches are vulnerability exploiting [Liu, Liu, Liu 

et al. (2013)] and trusted computing [Wang, Liu, Yang et al. (2015)] for industrial field 

devices. In the network-based cases, the researches on network defense [Wan, Shang, 

Kong et al. (2017)], penetration testing and intrusion detection [Han, Xie, Chen et al. 

(2014); Zhu and Sastry (2010)] have been regarded as the significant breakthroughs. In 

practice, intrusion detection is the first step to secure ICSs, and its results can provide 

some necessary preparations for the self-adaptive protection or real-time response [Zhou, 

Huang, Xiong et al. (2015); Ten, Manimaran and Liu (2010)]. Besides, as a bypass 

monitoring technology, intrusion detection can effectively identify abnormal communication 

behaviors without affecting the availability and timeliness of ICSs. In the existing researches, 

anomaly detection, which is a representative class of intrusion detections, has been attracting 

many attentions of researchers, because the attack behaviors in ICSs always incorporate the 

characteristics of concealment and unpredictability. Simply stated, anomaly detection need 

not predefine and understand each attack behavior, and can build a normal 

communication behavior model to identify misbehaviors. However, one of the important 

prerequisites is that we can parse enough communication contents from the captured 
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packets. In ICSs, this prerequisite may get lost due to non-public industrial 

communication protocols. So, developing flexible and adaptive anomaly detection 

approach for non-public industrial communication protocols in ICSs becomes a severe 

challenge. 

Differently, ICSs are equipped with the relatively stable communication patterns [Valdes 

and Cheung (2009)], that is, the communication behaviors and states of ICSs are limited 

and regular. Additionally, because the network architecture of logic control and data 

forwarding separation is presented in SDN-based control systems, the security functions 

can be designed as a series of software appliances, which can be installed in SDN 

switches to offer diversified network security measures for ICSs. According to these 

characteristics, this paper proposes a new event-based anomaly detection approach to 

identify misbehaviors which use non-public industrial communication protocols, and this 

approach can be installed in SDN switches as a security software appliance in SDN-based 

control systems. Furthermore, aiming at the unknown protocol specification and message 

format, this approach carries out the feature selection and event sequence extraction by 

using the N-gram model and K-means algorithm, and trains a normal event-based HMM 

model to identify the unexpected industrial communication behaviors. In order to 

evaluate our approach, we also build a simulated SDN-based control system, whose 

communication is based on Siemens Profinet protocol. The experimental results and 

analysis show that our approach has obvious advantages of classification accuracy and 

detection efficiency. 

2 Related work 

According to the proposed classification in traditional IT systems [Garcia-Teodoro, Diaz-

Verdejo, Macia-Fernandez et al. (2009)], the anomaly detection approaches in ICSs can 

also fall into three categories: statistics-based, knowledge-based and machine learning-

based. In the statistics-based approaches, Wei et al. [Wei and Kim (2012)] propose an 

intrusion detection system for wireless industrial networks, and this system introduce a 

data traffic prediction model based on autoregressive moving average (ARMA) using the 

time series data. Ozcelik et al. [Ozcelik and Brooks (2016)] use the CUSUM method to 

present a statistics description of the communication traffic in ICSs, and identify its 

abnormal change point. By using both statistical analysis of traditional network features 

and specification-based metrics, Kwon et al. [Kwon, Kim, Lim et al. (2015)] present a 

novel behavior-based IDS for the smart grid infrastructure. In the knowledge-based 

approaches, Khalili et al. [Khalili and Sami (2015)] propose SysDetect (a Systematic 

approach to Critical State Determination), which is an iterative algorithm to 

systematically determine the critical states of industrial processes based on Apriori 

algorithm. A novel multimodel-based anomaly intrusion detection system for industrial 

process automation is designed in Zhou et al. [Zhou, Huang, Xiong et al. (2015)], and this 

system uses a classifier based on an intelligent hidden Markov model to differentiate the 

actual attacks from faults. Goldenberg et al. [Goldenberg and Wool (2013)] design an 

algorithm to automatically construct the DFA (Deterministic Finite Automaton) of each 

HMI-PLC channel, and deploys a model-based intrusion detection system on 

Modbus/TCP networks. In the machine learning-based approaches, Almalawi et al. 
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[Almalawi, Fahad, Tari et al. (2016)] propose an innovative intrusion detection approach 

to detect SCADA tailored attacks, and it is based on a data-driven clustering technique of 

process parameters, which automatically identifies the normal and critical states of a 

given system. Linda et al. [Linda, Vollmer and Manic (2009)] present an intrusion 

detection system using neural network-based modeling to tailor the specifics of critical 

infrastructures. Anoop et al. [Anoop and Sreeja (2013)] put forward a new genetic 

algorithm-based approach for calculating filtering parameters for DDOS, R2L, U2R 

attacks to make SCADA systems more secure. Schuster et al. [Schuster, Paul, Rietz et al. 

(2015)] and Wan et al. [Wan, Shang and Zeng (2017)] suggest using one class SVM 

(Support Vector Machine) to identify protocol-specific misbehaviors in industrial control 

networks. From the above three categories of approaches, we can see that the anomaly 

detection in ICSs has been widespread concerned and acknowledged by both academia 

and industry. Furthermore, one common characteristic of anomaly detection in ICSs is to 

build a normal model (such as industrial communication behavior model or state model), 

and identify abnormal activities by comparing the observed industrial data with this 

model. In this paper, our approach also stems from this characteristic, because it do not 

require the specific attack samples, which are scarce and often not publicly disclosed by 

utility companies [Silva, Silva, Wickboldt et al. (2016)]. 

3 Software defined security function model 

Based on the SDN technology [Gelberger, Yemini and G iladi (2013)], the network archi-

tecture can be decoupled into two parts: control plane and data plane. Furthermore, SDN 

controllers in the control plane give the network control decisions, and SDN switches in 

the data plane only accomplish the data forwarding function according to these decisions. 

From this point, some security mechanisms based on the SDN architecture have been 

announced by many researchers [Silva, Silva, Wickboldt et al. (2016); Kalman (2015); 

Sainz, Iturbe, Garitano et al. (2017)]. Similarly, a novel security viewpoint is that security 

defense functions can be dynamically configured in accordance with different network 

security requirements. Fig. 1 shows the dynamic configuration model of security defense 

functions based on the SDN architecture. More specifically, SDN controllers can gather 

diversified security defense functions in the form of software appliances, and install these 

softwares into SDN switches on the basis of the specific network resources and different 

security requirements. After the deep packet parsing, SDN switches can perform different 

network security defenses by using the downloaded functions. As an application example, 

we propose an event-based anomaly detection approach for non-public industrial 

communication protocols, and this approach can be applied in SDN switches to identify 

misbehaviors. Due to the similar work in Silva et al. [Silva, Silva, Wickboldt et al. (2016); 

Kalman (2015); Sainz, Iturbe, Garitano et al. (2017)], it is worth mentioning that we do 

not emphasize the specific implementation process on this model, and we only focus on 

the detailed design and evaluation on our event-based anomaly detection approach. 

Besides, to detect the encrypted communication data is beyond the applied scope of our 

approach, and one of the main reasons is that the encryption-based methods have not 

been properly used in today’s ICSs because of the highly-available and real-time 

requirements. 
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Figure 1: Dynamic configuration model of security defense functions based on the SDN 

architecture 

4 Event-based anomaly detection for non-public industrial communication protocols 

By capturing and analyzing industrial communication packets, this approach can 

differentiate misbehaviors (such as intrusion behaviors, unauthorized behaviors or 

misoperations) from the normal technological operations. Fig. 2 presents the basic model 

of the proposed approach, and this model is a two-stage process, including online self-

learning stage and real-time detection stage. Furthermore, by using the extracted event 

sequences, the online self-learning stage mainly trains an effective event-based hidden 

Markov model, and achieves the behavior probability threshold by the iterative 

computing. The real-time detection stage calculates the responding behavior probability 

of the observed industrial communication data according to the trained hidden Markov 

model, and compares with the behavior probability threshold to realize anomaly detection. 

4.1 Data preprocessing 

A detailed implementation of data preprocessing in both online self-learning stage and 

real-time detection stage can be listed as follows: 

Session reconstruction. By capturing industrial communication packets in real time, we 

recombine these packets in chronological order. In general, the non-public industrial 

communication protocols may involve two types: one is based on TCP/IP, and the other 

is directly layered on typical Ethernet. Furthermore, the biggest difference between these 

two types is to meet the special response time requirement. In the reconstruction process, 

if these packets are based on TCP/IP, we reconstruct each session according to the four 

tuples, including source IP address, destination IP address, source port and destination 

port; if these packet belongs to the second type, we reconstruct each session in 

accordance with the three tuples, including source MAC address, destination MAC 
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address and protocol type. Besides, we also rearrange the out-of-order packets according 

to the sequence number and drop the duplicate packets. 
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Figure 2: Basic model of event-based anomaly detection approach for non-public 

industrial communication protocols 

Payload data merging. For each session, we get the payload data from the application 

layer of each packet, and form the session messages by merging all payload data 

belonging to the same session. In this case, the merged payload data in one session may 

either be too large or be not suitable for the further analysis. In order to resolve this 

problem, we can break these data into several small session messages in order. 

Feature extraction. Although the protocol specifications of non-public industrial 

communication protocols are unknown, ICSs always implement the periodic 

technological process. So, the session messages belonging to different sessions have 

strong similarities. By establishing the N-gram model, we map the byte sequences in the 

session messages to a limited feature space, and all features in this feature space can 

represent the specific nature of session messages. Because ICSs have the relatively 

limited network scale and communication states, the “address field” or “function field” 

defined in industrial communication protocols generally do not exceed 2 bytes. So, we 

adopt N=2 when establishing the N-gram model. 

Cluster analysis. Because the initial dimension of feature space is very big, we use the 

cluster analysis to reduce the dimension of feature space, and improve the efficiency and 

accuracy of HMM model to some extent. In our approach, we introduce K-means 

algorithm to aggregate the features, and divide the whole feature space into several 

clusters. Specifically, the features in the same cluster have a remarkably general 

similarity, and the features in different clusters vary significantly. Besides, we regard 

each cluster as one kind of event. Above all, the interactive sessions belonging to non-

public industrial communication protocols can be described as a series of event sequences, 

and each event sequence can be considered as one industrial communication behavior. 
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4.2 Event-based hidden Markov model 

The hidden Markov model is a tool which can effectively represent the probability 

distributions of observed sequences [Ghahramani (2001)], and it is widely used to resolve 

three problems: decoding, evaluation and learning [Kohlschein (2013)]. In particular, our 

approach successfully utilizes its evaluation ability. The basic definition of a hidden 

Markov model can be briefly depicted by the following parameters: 

1) N : the number of the states in the model. N  states can be marked as 1 2, , , Ns s s , and 

if some state at time t  is tq , tq  must meet 1 2( , , , )t Nq s s s . 

2) M : the number of the observations in the model. M  observations can be marked as 

1 2, , , Mv v v , and if some observation at time t  is to , to  must meet 1 2( , , , )t Mo v v v . 

3)  : the probability distribution of initial states. Where 1 2( , , , )Np p p = , and 

( 1,2, , )ip i N=  denotes the probability of the HMM to start in state is . 

4) A : the matrix of state transition matrix. Where ( )ij M NA a = , and 
ija  denotes the 

probability of a transition from state is  to 
js . 

5) B : the matrix of emission matrix. Where ( )ij M NB b = , and 
ijb  denotes the probability 

of emitting observation 
jv  in state is . 

Based on the above parameters, the hidden Markov model can be further defined as 

( , , , , )N M A B =  or ( , , )A B = . 

According to the definition of the hidden Markov model, we use the event sequences 

obtained from the normal industrial communication data to train the event-based hidden 

Markov model through iterations, and build a normal behavior model for non-public 

industrial communication protocols. The detailed steps are the followings: 

Step 1: Establish the initial hidden Markov model 0  according to the selected initial 

parameters. 

Step 2: Based on the initial model 0  and the input event sequence O , introduce the 

Baum-Welch algorithm [Kohlschein (2013)] to train new hidden Markov model  . 

Step 3: By using the Forward algorithm [Kohlschein (2013)], calculate the behavior 

probabilities ( | )p O   and 0( | )p O   of the event sequence O  in the models   and 0 , 

respectively. Moreover, the behavior probability can be computed by 

log
( | ) o

o

P
p O

n
 = . Here, log oP  is the log probability of the event sequence O , and on  

is the number of the events in the event sequence O . 

Step 4: If the m consecutive comparisons are 0( | ) ( | )p O p O  −   (Here,   is a 

default value.), the trained process is over, and the final hidden Markov model K  and 

the behavior probability threshold K  are obtained. Here, the behavior probability 

threshold is the smallest one of m training behavior probabilities. 
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Step 5: Conversely, set 0  equal to  , and go to Step 2. 

4.3 Real-time detection 

In our real-time detection stage, we use the detection mechanism of HMM. That is, we 

calculate the behavior probability ( | )Kp X   by using the observed event sequence X  

and the hidden Markov model K , and compare ( | )Kp X   with the behavior probability 

threshold K  to identify misbehaviors. The real-time detection process can be stated as 

follows: 

Step 1: Capture industrial communication data in real time, and carry out the data 

preprocessing, including session reconstruction, payload data merging, feature extraction 

and cluster analysis. After that, generate the observed event sequence X . 

Step 2: Input the observed event sequence X  into the hidden Markov model K , and use 

the Forward algorithm to calculate the corresponding behavior probability ( | )Kp X  . 

Step 3: Compare ( | )Kp X   with the behavior probability threshold K . If ( | )Kp X K  , 

an alarm will be generated; conversely, go to Step 1. 

5 Experimental results and analysis 

5.1 Experimental environment and preprocessing 

In order to evaluate our approach, we build a simulated SDN-based control system in 

which some attack and detection experiments are performed. As shown in Fig. 3, this 

system simply simulates the automobile assembly line, and its control segment mainly 

consists of one master PLC and three slave controllers. Furthermore, the communication 

between master PLC and slave controllers conforms to Siemens Profinet protocol, which 

can be approximately considered as a non-public industrial communication protocol in 

our experiments. The technological process can be outlined as follows: Firstly, robot 

controller A receives the commands from master PLC to actuate industrial robot A, and 

industrial robot A catches the model car to the numerical control system; Secondly, 

master PLC sends the assembly commands to slave PLC, and salve PLC drives the 

numerical control system to complete the simulation assembly; Finally, based on the 

commands of master PLC, robot controller B controls industrial robot B to unload the 

assembled model car. In addition, we run this system and capture the Profinet packets 

from the SDN switch, which analyze the experimental data by using our anomaly 

detection approach to identify misbehaviors. 

According to the above technological process, we capture the normal communication 

packets at three intervals, and obtain 3 Profinet data samples by removing all 

insignificant packets, such as broadcast packets. Additionally, these data samples 

represent the normal communication activities of this simulated control system, and 

mainly involve the control commands and running states of field execution devices. After 

the session reconstruction, we totally get 233 normal communication sessions, and Fig. 4 

plots the number variation of packets in each session, which depicts the session 

comparison in different data samples. From this figure we can see that, the packet 
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numbers of all sessions are roughly distributed into three areas, which are [0, 12], [56, 60] 

and [92, 126], respectively. Moreover, most of packets belong to the first area, that is, the 

majority of sessions are composed of a small quantity of packets. By extracting features 

from the session messages, we win a total of 101854 feature values from all sessions, and 

the number of features after the removal of duplicate data is 5670. Fig. 5(a) shows the 

number variation of features under different sessions. Similarly, the number of features in 

each session also presents three statuses: small, medium and large numbers. Furthermore, 

most of sessions are assigned to the small and medium statuses, and each status changes 

steadily and with little volatility. Fig. 5(b) plots the accumulated percentage variation for 

all features. According to the stepped curve in this figure, there are plenty of duplicative 

feature values in the extracted features, and it also means that the session has the 

relatively high similarity with each other. In other words, we can exploit the similarity to 

accomplish the anomaly detection for non-public industrial communication protocols. 
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Figure 3: Simulated SDN-based control system based on Siemens Profinet protocol 

Before evaluating the detection performance of our approach, we first use K-means 

algorithm to preprocess all features. In this experiment, we divide the whole feature space 

into 15 clusters, and Fig. 6 shows the distribution of the corresponding 15 cluster centers. 

On this basis, the event sequence description of each session can be established by using 

these 15 clusters. According to the 233 normal event sequences, we further introduce the 

Baum-Welch algorithm to train the event-based hidden Markov model. In order to build 

an optimal HMM model, it is worth mentioning that we select m=100 and 0.01 =  in 
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the training process. Furthermore, the whole training time is about 2749.63 seconds, and 

the behavior probability threshold of the optimal HMM model K  is K=1.1333. 

 

Figure 4: Number variation of packets in different data samples 

 

Figure 5: Number variation of features under different sessions and accumulated 

percentage variation for all features 
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5.2 Detection performance evaluation 

In order to evaluate the practical detection performance, we perform 10 experiments to 

analyze the predicted accuracy and consuming time. In each experiment, we forge and 

replay the false Profinet packets to simulate the attack to the robot controllers and slave 

PLC. More specifically, the percentage of the forged data in these packets is about 1 25 , 

and these forged data basically change Profinet protocol parameters, such as register 

values. Finally, we generate 120 malicious sessions in each experiment according to the 

data preprocessing. Additionally, we calculate the behavior probability for each malicious 

session, which is compared with the above behavior probability threshold to identify the 

corresponding abnormal communication behavior. Tab. 1 shows the experimental results 

on the predicted accuracy and consuming time in detail. From this table we can see that 

the average predicted accuracy and average consuming time are 91.08% and 2.11 s, 

respectively. Especially, the maximum predicted accuracy can reach 94.17% in the 5th 

and 9th experiments, and the minimum consuming time is only 1.49 s to detect 120 

malicious sessions. To some degrees, these results indicate that our approach has distinct 

advantages of classification accuracy and detection efficiency, and also indirectly verify 

it has the remarkable capacity to detect the abnormal communication behaviors under 

non-public industrial communication protocols. 

 

Figure 6: Distribution of 15 cluster centers 

In practice, the different percentages of the forged data in the packets can exert a 

noticeable influence on the predicted accuracy. Fig. 7 draws the predicted accuracy 

variation when detecting the malicious sessions which using various percentages of 

forged data in the packets. In this figure, 1 9p p  represent the different percentages of 

forged data, whose values are 1 45 , 1 40 , 1 35 , 1 30 , 1 25 , 1 20 , 1 15 , 1 10  and 1 5 , 

respectively. One step further, for each percentage we perform 3 experiments, and also 

generate 120 malicious sessions in each experiment. As shown in Fig. 7, we plot the 
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minimum predicted accuracies, the maximum predicted accuracies and the average 

predicted accuracies for every 3 experiments. The results indicate that the predicted 

accuracy markedly increases with the increment of the percentage of forged data in the 

packets. Especially, the predicted accuracy may reach 100%, when the percentage of forged 

data in the packets is 1 15 . In other words, our approach can be more effective to identify 

the abnormal communication behaviors caused by the large percentage of forged data. 

Table 1: Predicted accuracy and consuming time under 15 clusters 

 Predicted accuracy Consuming time 

1 90.83% 2.37 s 

2 89.17% 1.69 s 

3 90.00% 2.24 s 

4 92.50% 2.23 s 

5 94.17% 2.27 s 

6 90.83% 1.49 s 

7 84.17% 1.70 s 

8 91.67% 2.64 s 

9 94.17% 2.21 s 

10 93.33% 2.29 s 

Average value 91.08% 2.11 s 

 

Figure 7: Predicted accuracy variation under different percentages of forged data in the 

packets 

In particular, cluster analysis is an important link in our approach, because the event 
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sequences which are used to build the HMM model are generated by this step. However, 

different numbers of clusters can have some performance impacts on the predicted 

accuracy. Fig. 8 shows the predicted accuracy comparison under different numbers of 

clusters. Furthermore, we perform 10 experiments for each number of clusters, and 120 

malicious sessions in each experiment are generated. Additionally, the percentage of the 

forged data in the malicious packets is also about 1 25 . From this figure we can see that, 

the predicted accuracy for each number of clusters holds the characteristic of fluctuation, 

and the average predicted accuracies under 15 clusters, 20 clusters and 25 clusters are 

91.08%, 92.42% and 95.08%, respectively. That is, the larger the number of cluster is, the 

higher the predicted accuracy is. However, it is infeasible to enlarge the number of 

clusters without constraint, because the large number of clusters can consume excessive 

time for the data preprocessing, and increase the computational complexity of the event-

based HMM model. In short, we should carefully consider setting the number of clusters 

in accordance with actual experiences and network circumstances. 

 

Figure 8: Predicted accuracy comparison under different cluster numbers 

5.3 Performance comparison 

Based on the general idea of data preprocessing, we introduce two different anomaly 

detection approaches to perform the predicted accuracy comparison, and analyze the 

reasons for the adopted HMM model in this paper. Moreover, two other detection 

approaches are BP neural network and NB (Naïve Bayes) detection algorithms, 

respectively. In these experiments, we still generate 120 malicious sessions in each 

experiment, and the percentage of the forged data in the malicious packets is also about 

1 25 . Differently, we carry out the cluster analysis for each malicious session to generate 

15 cluster centers, because these two detection algorithms need the test samples which 

have the same dimension. Fig. 9 plots the predicted accuracies of 6 experiments, and Tab. 
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2 depicts the comparison results of average predicted accuracies of these three anomaly 

detection approaches. From this table we can conclude that, the average predicted 

accuracies of BP and NB detection algorithms are 74.58% and 80.83% respectively, and 

the corresponding predicted accuracy of our approach is well above the ones of BP and 

NB detection algorithms. In conclusion, the proposed approach in this paper is more 

specifically suited to detecting abnormal behaviors for non-public industrial 

communication protocols, and two causes are related to this situation: one is that our 

approach can provide considerably better detection performance, and the other is that the 

event-based HMM model does not require the event sequences in all sessions to have the 

same dimension. 

Table 2: Comparison of different anomaly detection approaches 

Average predicted accuracy 

Our approach BP neural network NB (Naïve Bayes) 

91.08% 74.58% 80.83% 

 

Figure 9: Predicted accuracies of BP neural network and NB (Naïve Bayes) detection 

algorithms 

6 Conclusion 

Based on the SDN technology, this paper first introduces the software defined security 

function model by using the architecture of logic control and data forwarding separation. 

After that, an event-based anomaly detection approach for non-public industrial 

communication protocols is proposed in SDN-based control systems, and the basic idea 

behind it is highly accessible. That is, identifying and diagnosing the anomalous 

communication behaviors for non-public industrial communication protocols by 

establishing the event-based HMM model. Actually, in order to overcome the difficulties 
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of the unknown protocol specification and message format, we first design the practicable 

data preprocessing, including session reconstruction, payload data merging, feature 

extraction and cluster analysis. By obtaining the event sequences of all sessions, the 

event-based hidden Markov model is built to identify the corresponding misbehaviors. At 

last, many experiments are completed to evaluate our approach. We show that, the 

proposed approach has obvious advantages of classification accuracy and detection 

efficiency. Due to its salient characteristics, we believe that our approach is serviceable. 
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