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Abstract: The paper deals with a development of the discrete-analytical method for the 

solution of the dynamical problems of a hollow sphere with inhomogeneous initial stresses. 

The examinations are made with respect to the problem on the natural vibration of the 

hollow sphere the initial stresses in which is caused by internal and external uniformly 

distributed pressure. The initial stresses in the sphere are determined within the scope of 

the exact equations of elastostatics. It is assumed that after appearing this static initial 

stresses the sphere gets a dynamical excitation and mechanical behavior of the sphere 

caused by this excitation is described with the so-called three-dimensional linearized 

equations of elastic wave propagation in initially stressed bodies. For the solution of these 

equations, which have variable coefficients, the discrete analytical solution method is 

developed and applied. In particular, it is established that the convergence of the numerical 

results with respect to the number of discretization is very acceptable and applicable for 

the considered type dynamical problems. Numerical results on the influence of the initial 

stresses on the values of the natural frequencies of the hollow sphere are also presented and 

these results are discussed.  

Keywords: Discrete-analytical solution method, initial stress, hollow sphere, natural 

frequency, dynamical problem.  

1 Introduction    

Lamb started the investigations on the natural vibrations of a sphere [Lamb (1882)] in 

which it was assumed that the material of the sphere is homogeneous and isotropic. Note 

that in this work the mathematical procedures have been made by employing of the 

Cartesian coordinates and it was established that the sphere has two types of uncoupled 
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free vibrations the first (the second) of which is the torsional (spheroidal) vibration. As 

noted by Love [Love (1944)], in the historical aspect this investigation by Lamb and its 

developing by other researches were associated originally with interest in the oscillations 

of the earth. Later on many researchers, such as Chree [Chree (1889)], Sato et al. [Sato and 

Usami (1962a, 1962b)] and Sato et al. [Sato, Usami and Ewing (1962)] have developed the 

results by Lamb and in the works of these researches a detailed analysis of the natural 

frequencies and vibration modes of the homogeneous isotropic solid sphere were 

performed and tabulated. At the same time, these results were discussed in the monograph 

by Eringen et al. [Eringen and Suhubi (1975)]. 

It was also investigated the natural vibration of the homogeneous isotropic elastic hollow 

sphere (or spherical shell). As the examples of such investigations can be taken the studies 

made in Shah [Shah, Ramakrishnan and Datta (1969a, 1969b)] within the scope of the 

three-dimensional exact equations of the linear theory of elastodynamics. Note that in these 

studies numerical results on the natural frequencies are given in graphical form for varies 

values of the geometrical parameters of the hollow sphere. Moreover, note that in the book 

by Lapwood et al. [Lapwood and Usami (1981)] the aforementioned and other related 

results were associated with the free oscillation of the earth. 

The papers by Hasheminejad et al. [Hasheminejad and Mirzaei (2011)] and Sharma et al. 

[Sharma, Sharma and Dhaliwai (2013)] and others listed therein studied more complicated 

problems on the vibration of the solid and hollow spheres and the mentioned complication 

are caused with geometries and material properties of the spheres. It should be also noted 

that, in general, the recent years the investigations regarding the dynamics of the structural 

elements made of FGM, piezoelectric materials etc. are developed intensively. As an 

example for such investigations, it can be taken the papers [Asemi, Salehi and Sadighi 

(2014); Wang, Xu and Ding (2010); Asgari and Akhlaghi (2011); Ilhan and Koç (2015); 

Ye, Jin and Su (2014)] and others listed therein. 

It should be noted that one of the main questions under investigations of the vibration of 

the hollow spheres is the accuracy of the theories (for instance, the accuracy of the various 

type shell theories) which are applied for these investigations. The benchmark results for 

testing the mentioned accuracy are the results obtained within the scope of the 3D exact 

equations and relations of the elastodynamics. Such testing was made in the paper 

Grigorenko et al. [Grigorenko and Kilina (1989)] and it is established that (as it can be 

predicted) the accuracy of the approximate shell theories decreases with increasing of the 

ratio /h R , where h is the thickness and R is the radius of the middle surface of the sphere. 

Moreover, the results obtained in the paper [Jiang, Young and Dickinson (1996)], in which 

the natural vibration of the three-layered hollow sphere was studied by utilizing the 3D 

exact equations of elastodynamics, can be taken as benchmark ones for the corresponding 

results obtained within the scope of various approximate shell theories.  

The 3D exact equations of elastodynamics are also employed in the paper Chen et al. [Chen 

and Ding (2001)] for investigation of the vibration of the spherically isotropic (a special 

case of transversal isotropic materials) layered hollow sphere and numerical results are 

presented and discussed for the three-layered case, according to which, it is established the 

influence of the layers’ materials anisotropy on the natural frequencies and vibration modes 

of the hollow sphere.   
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As noted above, the study of the vibration of the sphere originally was associated with the 

investigations of the Earth’s oscillation and for acceptable applicability of these studies, it is 

necessary to use the modern Earth's real models and the modern real models on the bowels of 

the earth. Such models are detailed in many references (see, for instance, the monograph 

[Anderson (2007)] related to the modern Earth's theories. According to these theories, it is 

established that the mechanical properties, such as the modulus of elasticity and density of the 

mantle material increase continuously from the crust to the core. Namely, this statement allows 

researchers of the papers by Akbarov et al. [Akbarov, Guliyev and Yahnioglu (2016, 2017)] to 

use the FGM model for describing the mantle material and to consider within this framework 

the vibration problems of the layered solid and hollow spheres as the Earth's model and to 

investigate the natural frequencies of these spheres. 

The other particularity of the modern Earth theories is to take into consideration of the reference 

properties of the bowels of the earth one of which is the inhomogeneous initial stresses 

appearing because of the Earth’s gravitation. Consequently, this statement requires 

investigating the dynamics of the hollow and solid spheres with initial inhomogeneous stresses.  

It should be noted that the first attempt on the investigation the dynamics of the solid sphere 

with initial stresses has been made in the papers [Guz (1985a, 1985b)] in which it is 

considered the natural vibration of the compressible [Guz (1985a] and incompressible [Guz 

(1985b] homogeneous isotropic solid sphere with homogeneous initial stresses caused by 

the initial overall compression of that. The mathematical modelling of the problems was 

made by utilizing the 3D linearized theory of elastic waves in bodies with initial stresses 

and it was established that in the qualitative sense Lamb’s result on the types of natural 

vibration of the sphere occurs also for the initially stressed cases. 

At the same time, in the works of Stevanovic et al. [Stevanovic, Wodicka, Bourland et al. 

(1995); Li and Luo (2010); Piacsek, Abdul-Wahid and Taylor (2012)] and others listed 

therein, the attempts have been made within the scope of the experimental or FEM methods 

for study of the influence of the internal pressure acting in the interior of the hollow sphere 

to its dynamic response to the action of the external dynamical forces. 

However, up to now, there are not any investigations on the influence of the 

inhomogeneous initial stresses on the dynamic response of the layered hollow and solid 

spheres to the external dynamical loading. The mentioned inhomogeneous initial stresses 

can be caused by the internal or external overall compressions, as well as with the 

gravitational forces. In connection with this, in the present paper, we attempt to purpose 

the discrete-analytical approach for solution corresponding problems in the cases where 

the initial stresses distribution has central symmetry and these stresses are determined 

within the scope of the classical linear theory of elasticity. However, the dynamical 

behavior of the sphere is described within the scope of the 3D linearized theory of elastic 

waves in initially stressed bodies. For simplicity, all the mathematical procedures are made 

for the single-layer hollow sphere made of a homogeneous isotropic material in the case 

where in the initial state on the inner and outer face-surfaces of this sphere the uniformly 

distributed normal forces act.    
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2 Formulation of the problem 

We consider a hollow sphere with internal radius b  and external radius a and assume that 

this sphere is loaded with the uniformly distributed normal forces with intensities p  and 

q  on the outer and inner surfaces of that, respectively. The sketch of the sphere and 

external forces is shown in Fig. 1. We associate the Cartesian coordinate system 1 2 3Ox x x  

and spherical coordinate system Or with the center of the sphere (Fig. 1). It is known 

that (see, for instance, the reference Timoshenko et al. [Timoshenko and Goodier (1970)]) 

in the case under consideration, the stress state in the sphere is determined by the following 

expressions. 

 

 

(a) Hollow sphere 
(b) A cross-section of the hollow sphere at 

3 0x =   

Figure 1: The sketch of the hollow sphere and initial external forces 
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where upper index (0)  indicates that the corresponding quantity belongs to the initial 

stress state.   

Note that the stress state determined by the expressions in (1) is called the initial stress state 

in the sphere in the case under consideration. It is assumed that the sphere (with these initial 

stresses) gets dynamic time-harmonic excitation and it is required to determine how these 

initial stresses influence on the dynamical behavior (for instance, on the natural frequencies) 

of the sphere. In order to take into consideration this influence, it is necessary to make the 
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mathematical formulation of the related problem within the scope of the three-dimensional 

linearized theory of elastic waves in initially stressed bodies. Note that these equations are 

obtained from the linearization of the corresponding geometrically non-linear equations. 

Thus, we consider the mathematical formulation of the problem on the dynamics of the 

hollow sphere with the initial stresses given in (1) within the scope of the aforementioned 

linearized field equations. According to the references [Eringen and Suhubi (1975); Guz 

(2004)], these equations in the spherical coordinates ( , ,r )   can be presented as follows. 

Equations of motion: 
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Elasticity relations: 

( ) 2rr rr rr      = + + +  , ( ) 2rr        = + + + , 

( ) 2rr        = + + + , 2r r  = ; 2  = ; 

2r r  = .                                                                                                                     (4) 

Strain-displacement relations: 
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In (2) and (3) the notation rrt ,…, t  indicates the component of the Kirchhoff stress 

tensor in the spherical coordinate system, however, the other notation used in (1)-(5) is the 

conventional one. 

It must be added to the field Eqs. (2)-(5) the corresponding boundary conditions that are 

satisfied on the hollow sphere’s inner and outer face surfaces. As an example of these 

conditions, we consider the case where the following homogeneous ones are satisfied.                       

0rr r a
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It is evident that it can be formulated the nonhomogeneous boundary conditions instead of 

the homogeneous boundary conditions given in (6). Moreover, it can also be formulated 

corresponding initial conditions for the non-stationary dynamical problems.  

This completes the formulation of the problem and according to expressions given in (1) 

for the initial stresses, this formulation contains the system of partial differential equations 

with variable coefficients the analytical solution of which, in general, is impossible. 

Namely for such cases below a method is developed, according to which, the solution to 

these equations is reduced to the solutions to the series corresponding equations which have 

analytical solutions.  

Note that in the case where the initial stresses in the sphere are absent, i.e. in the case where 

0p q= =  the foregoing formulation coincides with the corresponding one made within 

the scope of the classical linear elastodynamics. 

3 Method of solution 

According to expressions in (1), the system of equations in (2)-(5) are the equations with 

variable coefficients the analytical solution of which, in general, is very difficult and in 

many cases is impossible. Therefore, in many cases for solutions, the problems formulated 

through the Eqs. (2)-(5) are solved numerically with employing various numerical methods 

described for instance in the works Babuscu Yesil et al. [Babuscu Yesil (2017); Wei, Chen 

and Chen (2015)] and others listed therein.  However, in the case under consideration there 

is the following particularity with respect to the variable coefficients of the Eqs. (2)-(5): 

these coefficients depend only on the coordinate r . Namely, this particularity of the 

coefficients allows us to employ the discrete-analytical method developed and employed 
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in the works by Akbarov et al. [Akbarov (2006); Akbarov (2015); Akbarov and Panakhli 

(2015, 2017); Akbarov, Guliyev and Yahnioglu (2016, 2017)] for solution of the Eqs. (2)-

(5).  

Thus, we attempt to develop and employ the aforementioned discrete-analytical method to 

solve the Eqs. (2)-(5) and illustrate what kinds of difficulties appear under this employing 

and how these difficulties are overcome. 

3.1 Discretization of the solution domain and obtaining the equations for the functions 

which enter into the classical Lame decomposition 

First, for employing the discrete-analytical method, it is necessary to divide of the interval 

[ , ]r a b  a certain number subintervals. For describing this dividing we introduce notation 
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At the same time, within each subdomain 1 2[ , ]k kR R  the system of Eqs. (2)-(5) are 

satisfied separately, i.e. within each subdomain 1 2[ , ]k kR R  we have the following system 

of equations. 
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  


= +


,  

( ) )( )
( ) ( ) (0) 1

( ) cot
sin

k kk
k k r

k

u uu
t r

r r r

 
    

 

 
 = + + +
 
 

, 

( )( )
( ) ( ) (0)

( )

kk
k k r

kr r

uu
t r

r r


   



 
 = + −

 
 

, 

( )
( ) ( ) (0)( )

k
k k

rr kr r

u
t r

r


  


= +


,  

( )( )
( ) ( ) (0) 1

( )
sin

kk
k k r

kr r

uu
t r

r r


   

 

 
 = + −
 
 

, 

( )
( ) ( ) (0)

( )

k
k k

k

u
t r

r


   




= +


, 
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( ) ( )
( ) ( ) (0) 1

( ) cot
sin

k k
k k

k

u u
t r

r r

 
    

 

 
 = + −
 
 

.                                                              (9) 

Elasticity relations: 

( ) ( )( ) ( ) ( )( ) 2
k kk k k

rr rr rr      = + + +  , 
( ) ( ) ( ) ( )( )( ) 2
k k k kk

rr        = + + + , 

( ) ( ) ( ) ( )( )( ) 2
k k k kk

rr        = + + + , 
( ) ( )

2
k k

r r  = , 

( ) ( )
2

k k
  = ,    

( ) ( )
2

k k
r r  = .                                                                                (10) 

Strain-displacement relations: 

( )
( )

k
k r

rr
u

r



=


 , 

( )
( ) ( )1 1

k
k k

r

u
u

r r







= +


;  

( )
( ) ( )( )1 1 1

cot
sin

k
k kk

r

u
u u

r r r


  

 


= + +


; 

( ) ( )( )
( ) 1 1

2

k kk
k r

r

u uu

r r r

 




   = + −
  
 

;  

( ) ( )( )
( ) 1 1 1

cot
2 sin

k kk
k

u uu

r r r

 
 

  

   = + −
   
 

; 

( ) ( )( )
( ) 1 1

2 sin

k kk
k r

r

u uu

r r r

 


 

   = + −
   
 

.                                                                    (11) 

Thus, in this way the solution to the system of Eqs. (1)-(5) with the boundary conditions in 

(6) is reduced the solution to the system of Eqs. (8)-(11) with the boundary and contact 

conditions (7).  

3.2 Solution to the system of equations (8-11) 

For the solution to the system of Eqs. (8)-(11) for the k th−  sublayer, we use the following 

classical Lame decomposition [Eringen and Suhubi (1975)]. 
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( ) 2 ( )
( ) 2 ( )

2

( )k k
k k

r
r

u r
r r

 
= + − 

 

 
  , 

( ) ( ) 2 ( )
( ) 1 1 1 ( )

sin

k k k
k r

u
r r r

  
= + +

   

  

   
 

( ) ( ) 2 ( )
( ) 1 1 ( )

sin r sin

k k k
k r

u
r r

  
= − +

   


  

    
                                                    (12) 

Substituting the expressions in (12) into the Eqs. (8)-(11) and doing cumbersome 

mathematical manipulations we obtain the following equations for the functions 
( )k ,  

( )k  and 
( )k . 

( ) ( )
2 (0) 2

( ) ( )

1
( )

k k

rr k
k k

r r
r r r

            + +   
           

 
 

 
 

( )

( ) ( ) ( ) ( )2 2 2
(0)

2 2 2 2 2 2 2( ) ( ) ( )

cot 1 1
( )

sin

                   + + =       
                  



   
 

     
k

k k k k

k
k k k

r
r r r t

 

2 (k) (0) 2 (k)1
( )rr kr r

r r r

    
( +  ) + +  

   
      

2 2 2
(0) (k) (k) (k) (k)

2 2 2 2 2 2 2

cot 1 1
( )

sin
kr

r r r t



     

   

    
+ + = 

    

, (13) 

 where 

2 2

2

1
r

r rr

  
 = +  

  
  ,  =

2 2

2 2 2 2 2 2

cot 1 1

sinr r r



   

  
+ +

  
.           (14) 

Note that under obtaining the equations in (13) the equality 
(0)

( )kr =
(0)

( )kr  is taken 

into consideration. Moreover, note that in the case where 
(0)( )rr kr =

(0)
( )kr =

(0)
( ) 0kr = the equations in (13) coincide with the corresponding classical ones given, 

for instance, in the monograph [Eringen and Suhubi (1975)]. Consequently, the equations 

in (13) are new ones and as will be shown below, allow to obtain the analytical solutions 
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and to investigate a certain class dynamical problems for the sphere with initial stresses 

determined through the expressions in (1).  

3.3 Obtaining the analytical solutions for the equations for the functions which enter 

into the Lame decomposition for the natural vibration problem  

According to the well-known physico-mechanical considerations, first, the functions 

( ) ,k ( )k  and 
(k)  are represented as follows 

( )( ) ( , , , ) ( , ) (cos )cos
kk m i t

nr t F n r P m e 
    = , 

( ) ( )( , , , ) ( , ) (cos )sink k m i t
nr t F n r P m e 

    = , 

( ) ( )( , , , ) ( , ) (cos )cosk k m i t
nr t F n r P m e     = ,                                                          (15) 

where (cos )m
nP   in the expression (15) denotes the associated Legendre functions with 

thm− order and with thn− harmonic.  

Thus, substituting the expressions in (15) into the Eqs. (13) and (14), we obtain the 

following equations for the functions 
( )

( , )
k

F n r , 
( ) ( , )kF n r  and 

( ) ( , )kF n r  

( ) ( )2 ( ) ( )
( )( ) 2

2 2

( , ) ( , ) ( 1)2
( ) ( , ) 0

k k k k
kk n n

d F n r dF n r
F n r

r drdr r

   
 

 


 


 +
+ + − = 

 
 

,    

( ) ( )2 ( ) ( )
( )( ) 2

2 2

( , ) ( , ) ( 1)2
( ) ( , ) 0

k k k k
kk n nd F n r dF n r

F n r
r drdr r

 


 


 +
+ + − = 

 
 

,              (16) 

where 

( ) 2 2 (0)( ) / ( ( ))k
rr kr= +    ,   

( ) ( )1 1
( 1)

2 4

k k
n n n = − + + + , 

( ) 2 2 (0)( ) / ( 2 ( ))k
rr kr    = + + ,

( ) ( )1 1
( 1)

2 4

k k
n n n = − + + + , 

(0)
( )

(0)

( ( ))

( ( ))

kk

rr k

r

r

+
=

+

 


 
, 

(0)
( )

(0)

( 2 ( ))

( 2 ( ))

kk

rr k

r

r

  


  

+ +
=

+ +
.                                                 (17) 

Thus, the solutions to the Eq. (16) are presented through the spherical Bessel functions as 

follows. 

( ) ( )
( ) ( ) ( ) ( ) ( )( , ) ( ) ( )k k

n n

k k k k kF n r C j r D y r  
 = + , 
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( ) ( )
( ) ( ) ( ) ( ) ( )( , ) ( ) ( )k k

n n

k k k k kF n r E j r G y r  
 = + , 

( ) ( )
( ) ( ) ( ) ( ) ( )( , ) ( ) ( )k k

n n

k k k k kF n r A j r B y r  
 = + ,                                                      (18) 

where  

1

2
1 2( ) ( )

2
j cr J cr

cr
 


+

 
=  
 

, 

1

2
1 2( ) ( )

2
y cr Y cr

cr
 


+

 
=  
 

.                                    (19) 

In (19) the functions 1 2( )J cr+  and 1 2( )Y cr+  are the Bessel functions of the first and 

the second kind with non-integer order, respectively. 

Note that in the case where 
(0)( )rr kr =

(0)
( )kr =

(0)
( ) 0kr = , according to which, 

( )k =
( ) 1k = the expressions in (18) coincide with the corresponding ones obtained in 

the classical case given for instance in Akbarov et al. [Akbarov, Guliyev and Yahnioglu 

(2016, 2017); Eringen and Suhubi (1975)] and other related references.    

Thus, using the relations (18), (15). (12), (11) and (10) we obtain expressions for the 

displacements and for the components of the stress tensor. For simplification of writing the 

obtained expressions, we introduce two sets of complete orthogonal functions in [0, ]  

determined as follows:   

( ) (cos )m
nm nX P =  , 1( ) cot (cos ) (cos )

sin

m m
nm n n

n m
Y n P P   


−

+
= − .                 (20) 

Using the notation in (20) we can write the following expressions for the sought values: 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
11 12 31 32

1
( )cos

k k k kk k k k k i t
r nmu A u B u E u G u X m e

r

 = + + + , 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
11 12 31 32

1
( )

k k k k kk k k k
nmu A v B v E v G v Y

r  = + + + +
 

 

( ) ( )( ) ( )
21 22( ) ( ) cos

sin

k kk k i t
nm

m
C v D v X m e  




+ 


, 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
11 12 31 32

1
( )

sin

k k k kk k k k k
nm

m
u A v B v E v G v X

r
 



− = + + + +
 

 

( ) ( )( ) ( )
21 22( ) ( ) sin
k kk k i t

nmC v D v Y m e  − − , 

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

111 112 131 1322

2
( )cos

k
k k k kk k k k k i t

rr nmA T B T E T G T X m e
r


   = + + +

 
, 
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
( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
411 412 431 4322

2
( )

k
k k k k kk k k k

nmr A T B T E T G T Y
r




  = + + + +

 
 

( ) ( )( ) ( )
421 422 ( ) cos

sin

k kk k i t
nm

m
C T D T X m e  



 − −   
, 

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
411 412 431 4322

2
( )

sin

k
k k k kk k k k k

r nm
m

A T B T E T G T X
r




 


 = + + + + 
 

( ) ( )( ) ( )
421 422 ( ) cos

k kk k i t
nmC T D T Y m e   − −

 
,                                                               (21) 

where 

( ) ( )
( ) ( ) ( ) ( )( )
11 1

( ) ( )k k
n n

k k k kk
nu j r rj r

 
   

+
= − ,  

( ) ( )
( ) ( ) ( ) ( ) ( )
12 1

( ) ( )k k
n n

k k k k k
nu y r ry r

 
   

+
= − , 

( )
( ) ( ) ( ) ( )
31 ( 1) ( )k

n

k k k k
n nu j r


  = + , ( )

( ) ( ) ( ) ( )
32 ( 1) y ( )k

n

k k k k
n nu r


  = + ,  

( )
( ) ( )
11 ( )k

n

k kv j r


= , 
( ) ( )
12 ( )

k k
nv y r= , ( )

( ) ( )
21 ( )k

n

k kv j r


= , ( )
( ) ( )
22 ( )k

n

k kv y r


= ,  

( ) ( )
( ) ( ) ( ) ( ) ( )
31 1

( 1) ( ) ( )k k
n n

k k k k k
nv j r rj r

 
   

+
= + − ,  

( ) ( )
( ) ( ) ( ) ( ) ( )
32 1

( 1) ( ) ( )k k
n n

k k k k k
nv y r ry r

 
   

+
= + − , 

( ) ( )
( ) ( ) 2 ( ) ( ) 2 2 ( ) ( ) ( )

111 1

1
(( ) ( ) ) ( ) 2 ( )

2
k k

n n

k k k k k k k
n nT r j r rj r

 
     

+
= − − + , 

( ) ( )
( ) ( ) 2 ( ) ( ) 2 2 ( ) ( ) ( )

112 1

1
(( ) ( ) ) ( ) 2 ( )

2
k k

n n

k k k k k k k
n nT r y r ry r

 
     

+
= − − +  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

131 1
( 1) ( 1) ( ) ( )k

n

k k k k k k k
n n n nT j r rj r


     

+

 = + − −
  

, 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

132 1
( 1) ( 1) ( ) ( )k k

n n

k k k k k k k
n n nT y r ry r

 
     

+

 = + − −
  

 

( ) ( )
( ) ( ) ( ) ( ) ( )
411 1

( 1) ( ) ( )k k
n n

k k k k k
nT j r rj r

 
   

+
= − − ,  

( ) ( )
( ) ( ) ( ) ( ) ( )
412 1

( 1) ( ) ( )k k
n n

k k k k k
nT y r ry r

 
   

+
= − − , 



 

 

 

 

 

372   Copyright © 2018 Tech Science Press             CMC, vol.55, no.2, pp.359-380, 2018 

 

 

( ) ( )
( ) ( ) ( ) ( ) ( )
421 1

1
( 1) ( ) ( )

2
k k

n n

k k k k k
nT r j r rj r

 
   

+

 = − −
  

,  

( ) ( )
( ) ( ) ( ) ( ) ( )
422 1

1
( 1) ( ) ( )

2
k k

n n

k k k k k
nT r y r ry r

 
   

+

 = − −
  

, 

( ) ( )
( ) ( ) 2 ( ) 2 2 ( ) ( ) ( )
431 1

1
(( ) 1 ( ) ) ( ) ( )

2
k k

n n

k k k k k k
nT r j r rj r

 
    

+
= − − + , 

( ) ( )
( ) ( ) 2 ( ) 2 2 ( ) ( ) ( )
432 1

1
(( ) 1 ( ) ) ( ) ( )

2
k k

n n

k k k k k k
nT r y r ry r

 
    

+
= − − + ,                          (22) 

where 1,2,...,k N= .   

As noted above, here N is the number of subintervals into which the solution region is 

divided with respect to the radial coordinate r  and this number is determined according to 

the convergence of the numerical results.  

Thus, substituting the expressions (21) and (22) into the boundary and contact conditions 

in (7) we obtain two uncoupled system of the homogeneous algebraic equations. The first 

(second) system contains the unknowns 
( ) ,kA ( )kB , ( )kE and 

( )kG  (
( )kC and ( )kD ). 

Equating to zero the determinant of the coefficient matrix of the first and second group of 

the equations separately, the following equations for determination of the frequency of the 

natural vibration are obtained. 

( )1 2
det 0q q =

1 2; 1,2,...,4q q N=  (for the spheroidal vibration)                                     (23) 

and 

( )1 2
det 0p p = , 1 2; 1,2,...,2p p N=  (for the torsional vibration).                                  (24) 

Note that the expressions of the components of the matrixes 
1 2

( )q q  and 
1 2

( )p p can be 

easily determined from the expressions given in (21) and (22) and therefore these 

expressions are not given here. 

4 Numerical examples 

Numerical results are obtained through the solution of the Eqs. (23) (for the spheroidal 

mode) and (24) (for the torsional mode) and this solution is made numerically with 

employing the well-known bi-section method. The authors in MATLAB compose the 

algorithm and corresponding PC programs. Akbarov et al. [Akbarov, Guliyev and 

Yahnioglu (2016, 2017)] already complete the testing of this algorithm and programs in 

the works and therefore we here do not consider again this question.  

Note that the results which will be discussed below relate to the dimensionless natural 

frequencies denoted as /a /   =  obtained for various values of the ratios /b a , 

/p   and /q  . Note that the latter two ratios characterize the initial stresses in the 
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hollow sphere. Moreover, numerical results will be distinguished with respect to the 

vibration harmonics and with respect to the sequences of the roots in each harmonics. 

First, we examine how the convergence of the numerical results with respect to the number

N , i.e. with respect to the number of sublayers into which the hollow sphere is divided. 

The results illustrating this convergence are given in Tab. 1 and are obtained for the case 

where / 0.2,b a = / 0.1p  =  and / 0q  = . It follows from the table that the mentioned 

convergence significantly depends on the vibration modes and harmonics, as well as on the 

sequences of the roots. For instance, in the spheroidal vibration mode for the 3-rd root in 

the 0n= harmonic, for the 2-nd and 3-rd roots in the 2n=  and 3 harmonics it is necessary 

to take 21N =  in order to obtain the converged numerical results with the high accuracy. 

Taking this statement into account, all the results which will be discussed below are 

obtained in the case where 21N = . 

Table 1: The influence of the number of the sublayers N  on the values of the natural 

frequencies 
(1) (1)/a   =  obtained for homogeneous hollow sphere in the case 

where / 0.2b a = , / 0q  =   and / 0.1p  =  

n  N  

Torsional vibration Spheroidal vibration 

Sequences of the roots 

1 2 3 1 2 3 

0 

3 3.5965 6.4255 9.2395 3.5825 3.5965 6.4255 

5 3.5925 6.4175 9.2265 3.5825 3.5925 6.4175 

7 4.3015 6.9105 9.5785 3.5835 3.5905 6.4125 

11 3.5875 6.4075 9.2115 3.5845 3.5875 6.4075 

15 3.5865 6.4045 9.2065 3.5845 3.5865 6.4045 

21 3.5845 6.4015 9.2025 3.5845 3.5855 6.4015 

1 

3 4.3035 6.9155 9.5875 2.6495 5.6475 5.9935 

5 4.3015 6.9125 9.5815 2.6485 5.6455 5.9915 

7 3.5905 6.4125 9.2195 2.6485 5.6445 5.9905 

11 4.3005 6.9095 9.5755 2.6485 5.6435 5.9895 

15 4.3005 6.9085 9.5735 2.6485 5.6435 5.9895 

21 4.3005 6.9085 9.5715 2.6485 5.6435 5.9895 

2 

3 1.8505 5.2735 7.7725 2.0865 2.4305 3.5285 

5 1.8505 5.2725 7.7705 2.0175 3.0265 3.3995 

7 1.8505 5.2715 7.7685 2.0025 5.8135 7.6755 

11 1.8505 5.2705 7.7675 1.9925 5.7715 7.6755 

15 1.8505 5.2705 7.7675 1.9885 5.7415 7.6745 

21 1.8505 5.2705 7.7665 1.9855 5.7085 7.6745 
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3 

3 2.8605 6.2485 8.7785 2.9165 6.6545 9.0025 

5 2.8595 6.2475 8.7755 2.9135 4.9765 8.9635 

7 2.8595 6.2465 8.7735 2.9125 4.9415 8.9295 

11 2.8595 6.2465 8.7725 2.9115 4.9245 8.8735 

15 2.8595 6.2455 8.7715 2.9115 4.9185 8.8295 

21 2.8595 6.2455 8.7715 2.9115 4.9145 8.7785 

4 

3 3.7705 7.1895 9.7785 3.7205 6.1015 9.9565 

5 3.7695 7.1875 9.7765 3.7205 6.0915 9.4585 

7 3.7695 7.1875 9.7755 3.7205 6.0885 8.7385 

11 3.7695 7.1865 9.7745 3.7205 6.0865 8.5255 

15 3.7695 7.1865 9.7735 3.7205 6.0865 8.4775 

21 3.7685 7.1865 9.7735 3.7205 6.0855 8.4485 

Consider some fragments from these results obtained in the case where / 0.2b a = some of 

which are given in Tab. 2.  Note that these results are obtained for various /p   in the 

case where / 0q  =  under which, according to the expressions in (1), the initial stresses 

(0)
  and (0)

  become compressional ones. According to the well-known mechanical 

considerations, as usual, the initial compression of the elements of constructions causes a 

decrease in the values of their natural frequencies. This trend is also observed in the 

considered case under comparison of the numerical result given in Tab. 2 and obtained for 

various /p  . This statement proves again the validity and trustiness of the developed 

method and algorithm used for obtaining numerical results. 

We also consider numerical results given in Tab. 3 which are obtained for various values 

of /q   in the case where / 0p  = .  According to the expressions given in (1) for the 

initial stresses, in the case where / 0p  =  the stresses (0)
  and 

(0)
 become tensional 

ones. It is known that, as usual, the initial stretching of the element of constructions causes 

an increase in the values of their natural frequencies. Note that this trend is also observed 

in the numerical results given in Tab. 3.  

It follows from the analyses of the results given in Tab. 2 and Tab. 3 that the influence of 

the initial stresses caused by the external force /p   is more significant than that caused 

by the external force /q  . 
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Table 2: The influence of /p   on the values of the natural frequencies 

(1) (1)/a   = obtained in the case where / 0.2b a = , / 0q  =  

/p   

 
n  

Torsional vibration Spheroidal vibration 

Sequences of the roots 

1 2 3 1 2 3 

0 

0 4.8375 8.6425 12.4285 4.8145 4.8375 8.6425 

1 5.7995 9.3105 12.9015 3.5825 7.6065 8.0775 

2 2.5005 7.1175 10.4795 2.5575 4.8895 8.0385 

3 3.8645 8.4385 11.8435 3.9175 6.5655 9.4575 

4 5.0945 9.7115 13.1975 5.0435 8.2045 11.0795 

5 6.2655 10.9505 14.5075 6.0835 9.7745 12.5425 

0.001 

0 4.8245 8.6195 12.3965 4.8025 4.8245 8.6195 

1 5.7845 9.2865 12.8685 3.5735 7.5865 8.0565 

2 2.4935 7.0995 10.4525 0.5405 2.5475 4.8755 

3 3.8545 8.4165 11.8125 1.0195 3.9065 6.5485 

4 5.0815 9.6855 13.1625 1.5085 5.0295 8.1825 

5 6.2495 10.9215 14.4695 2.0015 6.0675 9.7495 

0.005 

0 4.7745 8.5305 12.2675 4.7525 4.7745 8.5305 

1 5.7245 9.1905 12.7355 3.5365 7.5085 7.9735 

2 2.4675 7.0255 10.3435 1.1395 2.5055 4.8205 

3 3.8145 8.3285 11.6895 2.1275 3.8585 6.4755 

4 5.0285 9.5845 13.0265 3.1315 4.9755 8.0955 

5 6.1845 10.8075 14.3195 4.1415 6.0025 9.6475 

0.01 

0 4.7115 8.4185 12.1055 4.6915 4.7115 8.4185 

1 5.6495 9.0705 12.5685 3.4895 7.4105 7.8685 

2 2.4355 6.9325 10.2085 1.5785 2.4405 4.7505 

3 3.7645 8.2185 11.5355 2.9205 3.7895 6.3845 

4 4.9625 9.4585 12.8545 4.2775 4.9025 7.9875 

5 6.1025 10.6655 14.1305 5.6435 5.9205 9.5205 

0.03 

0 4.4615 7.9705 11.4605 4.4395 4.4585 7.9655 

1 5.3495 8.5895 11.9025 3.3025 7.0115 7.4465 

2 2.3055 6.5635 9.6655 1.4575 2.3135 4.4965 

3 3.5625 7.7805 10.9215 2.6985 3.5885 6.0425 

4 4.6965 8.9535 12.1705 3.9555 4.6415 7.5585 



 

 

 

 

 

376   Copyright © 2018 Tech Science Press             CMC, vol.55, no.2, pp.359-380, 2018 

 

 

5 5.7765 10.0955 13.3775 5.2195 5.6035 9.0095 

0.05 

0 4.2105 7.5215 10.8145 4.1905 4.2065 7.5145 

1 5.0505 8.1095 11.2365 3.1145 6.6155 7.0255 

2 2.1755 6.1935 9.1235 1.9065 2.0505 4.2335 

3 3.3615 7.3415 10.3075 5.6905 8.1585 10.6265 

4 4.4315 8.4485 11.4855 4.3955 4.8405 7.1265 

 5 5.4505 9.5265 12.6245 5.2875 6.4045 8.4975 

Table 3: The influence of /q   on the values of the natural frequencies 

(1) (1)/a   =  obtained in the case where / 0.2b a = , / 0p  =  

/q   n  

Torsional vibration Spheroidal vibration 

Sequences of the roots 

1 2 3 1 2 3 

0 

0 4.8375 8.6425 12.4285 4.8145 4.8375 8.6425 

1 5.7995 9.3105 12.9015 3.5825 7.6065 8.0775 

2 2.5005 7.1175 10.4795 2.5575 4.8895 8.0385 

3 3.8645 8.4385 11.8435 3.9175 6.5655 9.4575 

4 5.0945 9.7115 13.1975 5.0435 8.2045 11.0795 

5 6.2655 10.9505 14.5075 6.0835 9.7745 12.5425 

0.01 

0 4.8375 8.6435 12.4305 4.8145 4.8375 8.6435 

1 5.8005 9.3115 12.9035 3.5835 7.6075 8.0785 

2 2.5005 7.1185 10.4815 2.5635 4.8925 8.0435 

3 3.8655 8.4395 11.8445 3.9205 6.5685 9.4665 

4 5.0955 9.7125 13.1995 5.0445 8.2065 11.0855 

5 6.2665 10.9525 14.5095 6.0845 9.7765 12.5455 

0.02 

0 4.8385 8.6455 12.4325 4.8135 4.8385 8.6445 

1 5.8015 9.3125 12.9055 3.5835 7.6075 8.0785 

2 2.5005 7.1195 10.4825 2.5725 4.8965 8.0485 

3 3.8655 8.4405 11.8465 3.9235 6.5715 9.4805 

4 5.0965 9.7145 13.2015 5.0455 8.2075 11.0945 

5 6.2675 10.9545 14.5125 6.0855 9.7765 12.5485 

0.03 

0 4.8395 8.6465 12.4345 4.8135 4.8385 8.6445 

1 5.8025 9.3145 12.9075 3.5845 7.6075 8.0785 

2 2.5015 7.1205 10.4845 2.5785 4.8995 8.0535 

3 3.8665 8.4425 11.8485 3.9255 6.5745 9.4915 
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4 5.0975 9.7155 13.2035 5.0465 8.2085 11.1005 

5 6.2695 10.9555 14.5145 6.0865 9.7775 12.5515 

0.05 

0 4.8375 8.6435 12.4305 4.8135 4.8375 8.6435 

1 5.8015 9.3115 12.9035 3.5845 7.6075 8.0795 

2 2.5015 7.1205 10.4825 2.5815 4.9015 8.0565 

3 3.8665 8.4415 11.8475 3.9275 6.5765 9.4975 

4 5.0975 9.7155 13.2025 5.0485 8.2095 11.1055 

5 6.2685 10.9555 14.5135 6.0895 9.7795 12.5545 

With this, we restrict ourselves the consideration the numerical results and their analysis. 

Note that more detail analysis of these and other related numerical results would be 

considered in the other papers by the authors.  

5 Conclusions 

Thus, in the present paper the discrete-analytical method is developed and employed for 

solution of the dynamical problems related to the hollow sphere with non-homogeneous 

initial stresses. The case where the initial stresses are symmetric with respect to the sphere's 

center and depend only on the spherical radial coordinate is considered. The essence of the 

developed method is to divide the spherical layer into a certain number of corresponding 

spherical sublayers each of which the initial stresses are homogeneous and try to find an 

analytical solution for the field equations within each sublayers separately. It is assumed 

that on the interface surfaces between the sublayers the conditions on the continuity of the 

force and displacement vectors are satisfied and from which the unknown constants 

contained in the mentioned analytical solutions are determined.  

The proposed method is examined for the solution of the natural frequencies of the hollow 

sphere with the aforementioned type initial stresses. Numerical results illustrating the 

convergence of these results with respect to the sublayers’ number, as well as illustrating 

the influence of the initial stresses on the values of the natural frequencies are presented 

and discussed briefly. According to these results, it is established that, in general, the initial 

compression of the hollow sphere with the uniformly distributed normal forces acting on 

its external (inner) surface causes a decrease (an increase) in the values of the natural 

frequencies of the sphere.  

Moreover, it is established that the character of the influence of the initial stresses on the 

values of the natural frequencies depends on the vibration harmonic and sequences of the 

roots determined from the frequency equations.  

More detailed analysis of these and other related numerical results will be considered in 

the future works by the authors.  

The method developed in the present paper can be employed also to solution of the 

corresponding dynamical problems for layered solid and hollow spheres with 

inhomogeneous initial stresses similar with that considered in the present paper. 
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