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Abstract: Currently, some photorealistic computer graphics are very similar to photographic 

images. Photorealistic computer generated graphics can be forged as photographic images, 

causing serious security problems. The aim of this work is to use a deep neural network to 

detect photographic images (PI) versus computer generated graphics (CG). In existing 

approaches, image feature classification is computationally intensive and fails to achieve real-

time analysis. This paper presents an effective approach to automatically identify PI and 

CG based on deep convolutional neural networks (DCNNs). Compared with some existing 

methods, the proposed method achieves real-time forensic tasks by deepening the network 

structure. Experimental results show that this approach can effectively identify PI and CG 

with average detection accuracy of 98%. 
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1 Introduction 

With the development of related algorithms and software, computer-generated images have 

become more and more realistic. In the background of cloud computing, it is difficult for 

the naked eye to distinguish between photographic images (PI) and photorealistic computer 

generated images (CG) [Fu, Shu, Wang et al. (2015)]. Fig. 1 shows example images of 

photographic images and computer generated graphics. The acquisition of a photographic 

image (PI) requires photoelectric conversion, interpolation, and post-processing of the 

sensor to add noise to the image. CG images, on the other hand, are produced by software 

and have a smoother texture than PI. Due to recent advances in the field of artificial 

intelligence, algorithms based on deep neural networks (DNN) are more suitable for 

classification tasks. At the same time, when compared with existing methods, CNN-based 

algorithms can achieve real-time detection more effectively.  

From a legal point of view, the distinction between PI and CG is also very important. For 

example, someone can convert a CG image into PI for profit, but current PI and CG 

forensics technology can discern the truth. DNNs can extract image features efficiently and 

automatically train the classification features. In the field of image forensics, methods 
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based on convolutional neural networks (CNNs) [Li, Luo and Huang (2015); Chen, Kang, 

Liu et al. (2015); Ye, Ni and Yi (2017)] are the most popular implementations of DNNs 

and the most effective for solving these types of image forensics problems.  

This paper is structured as follows: Section 2 describes related work in this field. In Section 

3, we introduce the proposed 50-layer CNN structure for real-time PI and CG forensics 

processing. Section 4 describes our experiments and provides an analysis of the results. 

2 Related works 

In the field of biometric image forensics, computer-generated face and natural facial 

forensics have been explored. Conotter et al. [Conotter, Bodnari, Boato et al. (2015); Dang-

Nguyen, Boato and De Natale (2012)] represent the development of forensics in this area. 

Mader et al. [Mader, Banks and Farid (2017)] pointed out that human beings can improve 

recognition accuracy by adding incentives in the feedback process. For example, in the 

field of near-duplicate image detection and retrieval, Zhou et al. [Zhou, Yang, Chen et al. 

(2016); Zhou, Wu, Huang et al. (2017); Zhou, Wang, Wu et al. (2017); Cao, Zhou, Sun et 

al. (2018); Zhou, Mu and Wu. (2018); Zhou, Wu, Yang et al. (2017)] proposed the use of 

the traditional features of the image to apply to coverless information hiding. Yuan et al. 

[Yuan, Li, Wu et al. (2017)] proposed a method based on CNNs for fingerprint liveness 

detection which raised average detection accuracy to 95.43%, proving the effectiveness of 

CNNs in the classification of complex and highly-similar textured images. Gurusamy et al. 

[Gurusamy and Subramaniam (2017)] used a machine learning approach for MRI Brain 

Tumor Classification. In the research of PI and CG forensics, Peng et al. [Peng and Zhou 

(2014)] used PRNU (Photo Response Non-Uniformity) to achieve average recognition 

accuracy of 94.29% when the feature dimension was set to 48 on 1,200 natural images and 

1,200 computer generated images selected from the Columbia University datasets [Ng, 

Chang, Hsu et al. (2005)]. Long et al. [Long, Peng and Zhu (2017)] used PI’s unique PRNU 

attribute to improve the average recognition accuracy to 99.83%. Wang et al. [Wang, Li, 

Shi et al. (2016)] proposed a novel set of features based on Quaternion Wavelet Transform 

(QWT) for digital image forensics. The corresponding results show that the proposed 

scheme achieves 18% improvements on the detection accuracy than Farid’s scheme and 

12% than Ozparlak’s scheme. 

This work aims to design and implement a method to efficiently identify PI and CG in real-

time. Considering that CNNs can describe image features with high performance, this 

paper will use CNNs to extract image features and train the recognition classification 

process. CNNs are mainly used to identify image displacement, scaling, and other issues. 

Convolutional layers in the CNN structure utilize high-dimension vectors extracted from 

convolution kernels as image features. These high-dimension features are finally sent to 

the classification layer to complete the model training. 
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(a)                                                                    (b) 

Figure 1: Example images of PI and CG in columbia photographic images and photorealistic 

computer graphics dataset (Version 1). (a) PI. (b) CG 

3 Proposed approach 

As a kind of deep neural network method, CNNs are widely used in the field of image 

processing. The high-dimensional vectors extracted by CNNs are used as image features, 

and the network classification layer uses the extracted features to train a model for 

classification. The local perception strategy and parameter sharing strategy of CNNs can 

effectively reduce the number of parameters and improve training efficiency. Using the 

local network connection method separates out all but the closely-connected pixels in the 

image. By combining these local high-level features, the global features of the image can 

be obtained. A typical CNN includes a feature extraction layer and a feature mapping layer. 

The input of each neuron is connected to the local acceptance of the previous layer of the 

network to extract the local feature. Multiple feature maps in the network represent 

different planes. All the neurons in the plane share the weights. In this way, the number of 

network parameters is reduced and the training efficiency is improved. The input image is 

decomposed by the convolutional layer into feature maps reflecting local dependency [Liu 

and Yao (1996)]. With CNNs, pooling operations can reduce the association of feature 

maps to prevent over-fitting. Due to the fact that the high-level feature dimensions in the 

network can reach upwards of one thousand dimensions, the training data may have a large 

amount of redundant information which can easily lead to over-fitting. For example, as a 

common pooling operation, maximum pooling outputs the largest value of the selected area 

in the feature map, which allows for faster convergence [Scherer, Müller and Behnke 

(2010)]. The average pooling is added after the convolution layer in order to remove 

redundant information and prevent the network from getting over-fit due to the small size 

of the training data. Each convolution layer is activated by the relu function, which is 

expressed as: 

max(0, )relu x=                                                                                                              (1) 

In the process of training, we choose the way of learning rate policy as step . Suppose the 

basic learning rate is _base lr . The learning rate changes once after stepsize iterations. At 

the thiter  iteration, the learning rate is: 
( )_ floor iter stepsizelr base lr =                                                                                           (2) 
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At the end of the network, the softmax  connection will output the input samples to the 

probability output of each class. The network outputs the highest probability value as the 

prediction category. Assuming there are m samples, which are ( , )i iX Y , in a total of L  

networks. The output of the last layer is ( )if X . Then the loss function of the network is: 

2'

1 1

1
log ( ) ( )

m L

i i k

i k

loss Y f X sum W
m


= =

= −  +                                                                          (3) 

Where   is represents the penalty of weight 
kW , 

iY  
is the category of input

iX . 

Physical characteristics of the image, including CFA interpolation and pattern noise 

(mainly PRNU), have been shown to be effective for digital image forensics. PRNU is 

produced by the image sensor of photographic equipment. It is a kind of noise with uneven 

optical response and has been widely used in image source recognition [Peng and Zhou 

(2014)]. In our work, we leverage the known non-homogeneity of PI image noise when 

compared to CG. In this paper, we describe the use of deep neural networks to extract the 

features of PI and CG and train them to finish the classification of the two types of images. 

Similar to the existing PRNU forensic methods [Peng and Zhou (2014); Long, Peng and 

Zhu (2017); Peng, Zhou, Long et al. (2017)], the input images are first subjected to high-

pass filtering during the training process. Then the images are fed into the deep CNNs as 

the network input. Finally, the network output classification model is developed. The test 

step uses the model file generated in the previous step. The input image is also first filtered 

with a high-pass filter and then fed into the network to obtain the probability values 

belonging to both classes respectively, and the discrimination result is given by the 

probability value. 

 

Figure 2:  The proposed CNN structure for discriminating between PI and CG 

Fig. 2 shows the whole flowchart of PI and CG classification based on the CNN structure 

proposed in this paper. In this model, each input image is grayed out first and then subjected 

to high-pass filtering to add high-frequency components. In our classification approach, 

there are differences in the local correlation between PI and CG. Namely, the noise is 

amplified by high-pass filtering, and the subsequent convolution layers of the network 

structure can fully learn the features and use them to classify. CNNs can learn the texture 

features of both types of images and can use an optimization algorithm, such as gradient 
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descent, to lower the model loss value when categorizing. With the network and model 

efficiently identify the input information, we can classify the two images. 

          

(a)                                          (b)                                (c)                          (d) 

Figure 3: Examples of high-pass filtering operations with PI and CG. (a), (c), respectively, 

the original PI, CG images. (b), (d), respectively, PI, CG after the high-pass filter operation 

Following this pre-processing we execute CNN processing which consists of 50 layers of 

CNNs and a global average pooling layer. The CNNs are responsible for learning the 

optimization function and converting each pre-processed input image into a 2048-

dimensional vector for classification. All of the convolution layers are followed by the 

Bach-Normalization (BN) layer and the Rectified Linear Unit (ReLU) layer as the 

activation functions for each layer. Inspired by Szegedy et al. [Szegedy, Liu, Jia et al. 

(2015); He, Zhang, Ren et al. (2016)], a short-cut connection was added in the 50-layer 

convolution structure to prevent gradient vanishing during the training process. Only the 

residuals were learned by the convolutional structure of the middle layers [He, Zhang, Ren 

et al. (2016)]. The short-cut connection in this work is shown in detail in Fig. 5. These 

operations make the depth of the network inconsistent.  A network can represent a variety 

of depth, which makes the network more efficient. The final structure of the network is a 

fully connected layer and a softmax layer, which converts the feature vector into a 

posteriori probability for each class. Finally, we make the final prediction by selecting the 

maximum posteriori probability value for each category label. This article has modified the 

CNNs network structure with a depth of 9 and 50 for experiments to prove that the deeper 

CNNs more suitable for this problem. In order to illustrate the effectiveness of the short-

cut for this problem, in 4.1, the accuracy of the network model and the loss of training are 

compared in detail in the case of short-cut. 

This paper proves the validity of short-cut connection by modifying CaffeNet and 

comparing the original structure. CaffeNet was slightly modified in AlexNet [Krizhevsky, 

Sutskever and Hinton. (2012)], who won the 2012 ImageNet [Deng, Dong, Socher et al. 

(2009)] Large-Scale Visual Identity Challenge (ILSVRC). The CaffeNet architecture used 

in this paper is shown on the left in Fig. 4. The network consists of 5 convolutional layers 

and 3 fully connected layers. The output from the last layer in the experiment was changed 

from 1000 for the original task to 2, indicating that the goal of this task is to classify PI and 

CG into two categories. The right side of Fig. 4 shows the network structure of the original 

CaffeNet after adding the short-cut connection. The solid curve represents the direct short-

cut connection and the dashed curve represents the deformed short-cut connection. 
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Figure 4: The left part is CaffeNet structure. The right part is CaffeNet with short-cut 

connection 
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(a)                                                             (b) 

Figure 5: Part (a) is a 50-layer convolutional network with a short-cut connection. The 

solid curve represents the direct short-cut and the dashed curve represents the deformed 
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short-cut. The white circles represent the connection symbol of the whole network. Part (b) 

is an expanded view of the convolutions of the first seven layers on the left, where the solid 

convolutions between the convolutions of layers 2 and 4 represent the transitions with the 

transition short-cut (the connection represented by the dashed curve on the left). The solid 

curve between the 7-layer convolutional structures indicates that there is a direct short-cut 

connection (the connection represented by the solid curve on the left). The plus sign 

indicates the element addition operation 

4 Experiments 

The PI and CG selected in this paper come from Columbia Photographic Images and 

Photorealistic Computer Graphics Dataset (Version 1) [Ng, Chang, Hsu et al. (2005)]. This 

work uses the deep learning framework Caffe [Jia, Shelhamer, Donahue et al. (2014)] to 

train the network and generate the model. The data set is divided into a training set 

consisting of 1400 images and a test set consisting of 200 images. In order to achieve the 

purpose of random input data, all experiments read into images randomly. 

4.1 Training process 

The training process uses Caffe’s GPU mode. The GPU device used in the experiment is 

NVIDIA GTX1080Ti. The programming language and framework used in the experiment 

include Python, Matlab, Shell, Cuda and so on. 

4.1.1 The training process on CaffeNet 

 

Figure 6:  Test accuracy and loss of training process on CaffeNet. The red line represents 

the correct rate of the testing process network model. The blue line represents the loss value 

of the training network model 

When training CaffeNet, we choose a fine-tune training strategy to achieve rapid network 

convergence. Fine-tune training requires pre-trained model files. The CaffeNet model 

selected by this experiment is provided by Caffe, which is trained on 1,000,000 images on 
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ImageNet. The weight of each layer in the model is used as the initial parameter to continue 

training the network. 

In this experiment, the basic learning rate was set as 0.0001, and the learning rate decreased 

to 0.00001 after 10,000 training sessions. The purpose of this operation is to keep the 

trained model in a slow speed of adjustment on the new dataset. momentum is set to 0.9, 

and _weight decay is set to 0.0005. The test accuracy of the training process is shown in 

Fig. 6. The curve rises rapidly and tends to stabilize. After 20,000 epochs of training, the 

best accuracy is 85%, and the final average accuracy is 83%. 

4.1.2 The training process on the modified CaffeNet 

 

Figure 7: Test accuracy and loss of training process on the increase short-cut connections 

over CaffeNet. The red line represents the correctness of the network model during testing 

and the blue line represents the loss value of the training network model 

In the same way as mentioned above, after modifying the CaffeNet network and adding 

the short-cut connection, achieving the 2 classification task, the output of the third fully 

connected layers is modified to 2. The basic learning rate was set as 0.01. We select the 

learning rate adjustment method of poly and set power to 0.5. The gradient update weight

momentum is set to 0.9, and the error function penalty _weight decay is set to 0.0002. Fig. 7 

shows the test accuracy curve during training on CaffeNet with the addition of short-cut 

connections. The accuracy of the front part shows an oscillating trend and the rear part 

tends to be steady. After 10,000 trainings, the final average accuracy was 87%. 

4.1.3 The training process on the 50-layer CNN with short-cut connection 

When training the 50-layer CNN network, we implemented the training part of Fig. 8. After 

data input, MATLAB’s 2rgb gray  function is used to convert the input image to a grayscale 

image, then the high-pass filter operation is applied to it and fed into the network to train. 

The basic learning rate _base lr is set to 0.05, learning rate adjustment is selected to
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multistep . We set gamma to 0.1 and momentum to 0.9. As shown in Fig. 9, after 200,000 

trainings, the final average accuracy was 98%. Training time is about 44,813.81 seconds. 

 

Figure 8: Test accuracy and loss of training process on the 50-layer convolutional network 

with a short-cut connection. The red line represents the correct rate of the testing process 

network model. The blue line represents the loss value of the training network model. 

Green represents the loss value of the test process network model 

4.2 Comparison and analysis 

This section compares the network model with or without a short-cut connection, proving 

that the short-cut connection is helpful to improve the accuracy of the detection. In the 

experiment, we prove that the network depth can be improved by comparing the depth of 

the network to improve the detection accuracy. 

4.2.1 Comparison of network with or without short-cut connection 

Comparing Fig. 6 and Fig. 7, we can find that after increasing the short-cut connection, the 

detection accuracy of the network is improved from 83% to 87%, and the loss function 

during the training process drops more quickly, indicating that the short-cut connection can 

solve the gradient vanishing problem. At the same time, the network model will pay more 

attention to the classification features of input images. 

4.2.2 Comparison of the depth of the network 

Comparing Fig. 7 with Fig. 8 we can find that after increasing the depth of the network, 

the detection accuracy can be increased to 98%, which indicates that deepening the network 

layers can effectively improve the detection accuracy. 
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4.3 Robustness and real-time analysis 

As input to the image at the input layer of the network, parameters are set to turn the image 

to increase the sample size. It can be proven that the proposed depth CNN method can 

effectively resist image rotation attack. 

This section proves the real-time capabilities of the proposed method by using a trained 

network model. According to the experimental results, the average test time of single 

images in the training set of 1,400 images is 1.02 seconds. Tab. 1 shows the comparison 

with other existing methods. Compared with other existing methods, the model of the 

proposed method is adaptable. Since the method of feature extraction and classification is 

an integrated process, it does not need to be segmented. The sum of feature extraction time 

and classification time is 1.02 seconds, which lags behind that of Fan’s method [Fan, Wang, 

Zhang et al. (2012)]. However, the accuracy of the proposed method is 4.49% higher than 

their method. 

Table 1: Real-time comparison between the proposed method and the existing methods 

Methods Feature Extraction Time (s) 

Long’s method 20.11 

Peng’s method 9.48 

Peng’s method 60.82 

Peng’s method 9.34 

Fan’s method 0.88 

Proposed method 1.02 

4 Conclusion and future work 

This paper solves the classification of PI and CG using a method based on a 50-layer CNN 

structure with a short-cut connection. The method proposed in this paper is a training 

method based on deep CNNs, and the image features are automatically learned by the 

network. In other words, feature extraction and classification training process together. The 

average test accuracy of 50-layer CNNs on the Columbia Photographic Images and 

Photorealistic Computer Graphics Dataset (Version 1) dataset was 98%. Through the 

research of this paper, we find that convolution neural network architecture can effectively 

solve the classification problem of PI and CG, and the network structure will have broader 

application to other areas of image forensics. For future work, we will continue to use 

deeper network structure for research on this issue. 
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