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Abstract: In this paper we are looking forward to finding the approximate analytical 

solutions for fractional integro-differential equations by using Sumudu transform method 

and Hermite spectral collocation method. The fractional derivatives are described in the 

Caputo sense. The applications related to Sumudu transform method and Hermite 

spectral collocation method have been developed for differential equations to the extent 

of access to approximate analytical solutions of fractional integro-differential equations. 
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1 Introduction 

A lot of problems can be modeled by fractional integro-differential equations from various 

sciences and engineering applications. In addition to the fact that many problems cannot 

be found analytical solutions to them and therefore, once you get a solution is a result of a 

good result solutions, using numerical methods, will be very helpful. Recently, several 

numerical methods to solve fractional integro-differential equations (FIDEs) [Zedan, 

Tantawy, Sayed et al. (2017); Oyedepo, Taiwo, Abubakar et al. (2016); Wang and Zhu 

(2017)] have been given. Since the example collocation method for solving the nonlinear 

fractional Langevin equation [Bhrawy and Alghamdi (2012); Yang, Chen and Huang 

(2014)]. A Chebyshev polynomials method is introduced in Bhrawy et al. [Bhrawy and 

Alofi (2013)], Doha et al. [Doha, Bhrawy and Ezz-Eldien (2011)], Irandoust-pakchin et al. 

[Irandoust-pakchin, Kheiri and Abdi-mazraeh (2013)] for solving multiterm fractional 

orders differential equations and nonlinear Volterra and Fredholm Integro-differential 

equations of fractional order. The authors in Rathore et al. [Rathore, Kumar, Singh et al. 

(2012)] applied variational iteration method for solving fractional Integro-differential 

equations with the nonlocal boundary conditions and more methods in Wang et al. [Wang, 

Han and Xie (2012)], Lin et al. [Lin, Gu and Young (2010)]. 

In this paper Sumudu transform method [Wang, Han and Xie (2012); Lin, Gu and Young 

(2010); Singh and Kumar (2011); Ganji (2006); Hashim, Chowdhurly and Mawa (2008); 
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He (1999); Liao (2005); Amer, Mahdy and Youssef (2017)] and Hermite spectral 

collocation method [Andrews (1985); Solouma and Khader (2016); Bagherpoorfard and 

Ghassabzade (2013)]; Bojdi, Ahmadi-Asl and Aminataei (2013); Brill (2002); Bialecki 

(1993); Dyksen and Lynch (2000); He (1999)] is applied to solving fractional integro-

differential equations. 

In this paper, we are concerned with the numerical solution of the following linear 

fractional integro-differential equation [Bhrawy and Alofi (2013); Doha, Bhrawy and Ezz-

Eldien (2011); Irandoust-pakchin, Kheiri and Abdi-mazraeh (2013); Mohammed (2014)]: 

        1,,0,,=
1

0
  txdttUtxKxfxUD

(1) 

with initial conditions: 

   NnnnU i

i  ,,<1,=0       (2) 

where  xUD
indicates the th Caputo fractional derivative of  tU ;  ,xf   txK ,

are given functions, x  and t  are real variables varying in the interval [0, 1], and  xU

is the unknown function to be determined. 

The paper is structured in six sections. In section 2, we begin with an introduction to some 

necessary definitions of fractional calculus theory. In section 3 we describe the homotopy 

perturbation sumudu transform method., In section 4 we describe the  Hermite spectral 

collocation method. In section 5, we present two examples to show the efficiency of using 

HPSTM and Hermite spectral collocation method to solve FDE s and also to compare our 

results with those obtained by other existing methods. Finally, relevant conclusions are 

drawn in section 6. 

2 Basic definitions of fractional calculus 

In this section, we present the basic definitions and properties of the fractional calculus 

theory, which are used further in this paper 

Definition 1: A real function ),(tf 0,>t  is said to be in the space ,C ,R  if there 

exists a real number >p such that )(=)( 1 tfttf p
where  ,0,)(1 Ctf  and it is said 

to be in the space 
mC  if ,Cf m  .Nm  

Definition 2: The Caputo fractional derivative operator
D of order   is defined in the 

following form [El-Sayed and Salman (2013); El-Sayed and Salman (2013); Elsadany and 

Matouk (2015)]: 
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(3) 

Similar to integer-order differentiation, The Caputo fractional derivative operator is linear 

        ,= 2121 tqDctpDctqctpcD  
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where 
1c  and 

2c  are constants. For the Caputo’s derivative we have ccD 0,=
is a 

constant [Andrews (1985); Funaro (1992)]. 
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(4) 

Definition 3: The Sumudu transform is defined over the set of functions [Singh and Kumar 

(2011); Ganji (2006)] 

  ,0,1)(,<)(0,>,,)(= 21
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by the following formula: 

    ),(,)(=)(= 210  uwheredteutftfSuf t
(5) 

where 

Some special properties of the sumudu transform are as follows [Belgacem and Karaballi 

(2006)]: 
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5. If         dtgftgf
t

 0= then       .= uGuuFtgfS 

Definition 4: The Sumudu transform of Caputo fractional derivative is defined as follows 

[Amer, Mahdy and Youssef (2017); Belgacem and Karaballi (2006)]: 

    .<1(0),)(=)( )(1

0= mmfutfSutfDS kkm

kt   
 (6) 

Theorem: [Singh and Kumar (2011); Amer, Mahdy and Youssef (2017)] 

        10=
1

0=









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
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nn
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At very special case for 1=n  

       .0
1

= FuF
u

tFS ' 

This theorem is very important to calculate approximate solution of the problems and for 
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more details in Singh et al. [Singh and Kumar (2011)], Amer et al. [Amer, Mahdy and 

Youssef (2017)] 

Definition 5: The Hermite polynomials are given by Andrews [Andrews (1985)], Solouma 

et al. [Solouma and Khader (2016)], Bagherpoorfard et al. [Bagherpoorfard and 

Ghassabzade (2013)], Bojdi et al. [Bojdi, Ahmadi-Asl and Aminataei (2013)], Brill [Brill 

(2002)], Bialecki [Bialecki (1993)], Dyksen et al. [Dyksen and Lynch (2000)], He [He 

(1999)]: 

   
22

1= y

n

n
yn

n e
dz

d
eyH  (8) 

A lot of the properties of these polynomials are: 

The Hermite polynomials evaluated at zero argument  0nH and are have called Hermite 

number as follows: [Andrews (1985); Solouma and Khader (2016)] 

 
   





 evenisnifn

oddisnif
H nnn

!121
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(9) 

Where  !1n  is the double factorial. The polynomials  yHn are orthogonal with 

respect to the weight function  
2

= yey  with the following condition: [Andrews (1985)] 

      .!2= nm

n

mn ndyyyHyH 



 (10) 

3 The homotopy perturbation sumudu transform method 

In order to elucidate the solution procedure of this method, we consider a general fractional 

nonlinear differential equation of the form [Singh and Kumar (2011); Ganji (2006); 

Hashim, Chowdhurly and Mawa (2008); He (1999); Liao (2005); Amer, Mahdy and 

Youssef (2017)]: 

),(=)()()( tqtytytyD NL 


 (11) 

with ,<1 mm    and subject to the initial condition 

1,,0,1,=,=(0) mjcy j

j    (12)

where )(tyD


 is the Caputo fractional derivative, )(tq is the source term, L is the linear 

operator and N is the general nonlinear operator. 

Applying the Sumudu transform (denoted throughout this paper by S ) on both sides of Eq. 

(11), we have 

     .)(=)()()( tqStytyStyDS NL 



Using the property of the Sumudu transform and the initial conditions in Eq. (12), we have 

     ,)()()((0)=)( 1

0= tytySutqSuyutyS kkm

k NL  
(13) 

Operating with the Sumudu inverse on both sides of Eq. (13) we get 
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  .)()()(=)( 1 tytySuStGty NL   
(14) 

Where )(tG represents the term arising from the source term and the prescribed initial 

conditions. Now, playing the classical perturbation technique. And assuming that the 

solution of Eq. (14) is in the form 

),(=)( 0= typty m

m

m


 (15) 

where  0,1p  is the homotopy parameter. The nonlinear term of Eq. (14) can be

decomposed as 

),(=)( 0= tApty m

m

m


N (16) 

for some Adomian’s polynomials mA , which can be calculated with the formula [Ghorbani 

(2009); Jafari and Daftardar-Gejji (2006)] 

   0,1,2,=,)(
!

1
=

0=0= ntyp
m

A
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i

imdp

md
m


N (17) 

Substituting Eq. (15) and (17) in Eq. (14), we get 

   .)()(=)( 0=0=

1

0= m

m

mm

m

mm

m

m AptypSupStGtyp   L


(18) 

Equating the terms with identical powers of p , we can obtain a series of equations as the 

follows: 
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

Finally, we approximate the analytical solution )(ty by truncated series as 

)(lim=)(
0=

typty m

mM

mM 
 (20) 

4 Basic idea of hermite collocation method 

In this section the Hermite collocation method is applied to study the numerical solution 

of the fractional Integro-differential (1). 

This method is based on approximating the unknown function  xu  as

   xHaxu nn

m

n

n 
0=

=
(21) 
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Where  xHn is the Hermite polynomials and na  are constant 

At first by Substituting (21) into (1) we obtain 

        dtxHatxKxfxHaD nn
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Hence the residual equation is defined as: 
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Second let 
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0
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(24) 

where  x  is the positive weight function defined on the interval [0, 1]. In this work

we take  x  = 1 for simplicity.Thus
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So, finding the values of mnan ,0,1,=,  , which minimize S  is equivalent to finding

the best approximation for the solution of the fractional Integro-differential Eq. (1). 

The minimum value of S is obtained by setting 

mn
a

s

n

,0,1,=0,= 



(26) 

By applying  26  in  25  we have :
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By evaluating the above equation for mn ,0,1,=   we can obtain a system of (n+1)

linear equations with (n+1) unknown coefficients na , after calculate the coefficient na

we substitute in Eq. (21) then we get the solution of  .xU

5 Applications 

In this section, to illustrate the method and to show the ability of the method two examples 

are presented. 

Example (1): Cosider the fractional integro-differential equations as 
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subject to 

  1=0y (29) 

 i  First by using Sumudu transform method

By taking the Sumudu transform on both sides of Eq. (28), thus we get 
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Using the property of the Sumudu transform and the initial condition in Eq. (30), we have 

     tySuuuxyS 23

7

3

4

2

4

1

40

7
21=  (31) 

Operating with the Sumudu inverse on both sides of Eq. (31) we get 
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By assuming that 
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By substituting Eq. (33) in Eq. (32) we have 
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Where nn BA , are Adomian polynomials that represent nonlinear term. So Adomian 

polynomials are given as follows: 

   ,= 2 tyxAn

The few components of the Adomian polynomials are given as follows: 
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Figure 1: The behavior of y(x) by HPSTM 

 ii  By sing Hermite spectral collocation method

First By assuming the approximate of the solution of  xy  with m=2 as:

       tHatyxHaxy nn

n

nn

n


2

0=

2

0=

=,= (36) 

Where  xHn is the Hermite polynomials and na  are constant 

Second by Substituting (36) into (28) we obtain 
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Hence the residual equation is defined as: 
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(38) 

By substitutinn  ,xHn  tHn and Eq. (4) in Eq. (38) we get 
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Second let 
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where  x  is the positive weight function defined on the interval [0, 1]. In this work we

take  x =1 for simplicity.Thus
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The minimum value of S is obtained by setting 
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By applying (42) in (41) we have: 
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From the initial condhtion y(0)=1 and from Eq. (7) we get 

1=2 20 aa   

By solving the Eq. (43)-(45) we get the values of 210 ,, aaa  and substituting in Eq. 

(36) we get the solution as series: 

  21= xxy  (46) 

(45) 
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Figure 2: The behavior of y(x) by Hermite collocation method 

It is no doubt that the efficiency of this approach is greatly enhanced by the calculation 

further terms of y  x  by using by using Sumudu transform method and Hermite spectral

collocation method.As shown in Fig. 1 and Fig. 2. 

Example (2): Consider the systems of fractional integro-differential type as : 
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subject to 

    0,=0,1=0 vu       (49) 

By using the properities of Gamma function of the two Eq. (47), (48) become 
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 i  First by using Sumudu transform method
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By taking the Sumudu transform on both sides of Eq. (50), thus we get 
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Using the property of the Sumudu transform and the initial condition in Eq. (49), we have 
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Operating with the Sumudu inverse on both sides of Eq. (52) we get 
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By assuming that 
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By substituting Eq. (54) in Eq. (53) we have 
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Then we have 
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Figure 3: The behavior of u(x) by HPSTM 
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Figure 4: The behavior of v(x) by HPSTM 

 ii By sing Hermite spectral collocation method

First By assuming the approximate of the solution of  xy  with m=2 as:
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Where  xHn  is the Hermite polynomials and na  are constant 

Second by Substituting (57) into (50) we obtain 
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Hence the residual equation is defined as: 
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By substitutinn  ,xHn  tHn and Eq. (4) in Eq. (59) we get 
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Second let 
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where  x  is the positive weight function defined on the interval [0, 1]. In this work we

take  x =1 for simplicity.Thus
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The minimum value of S is obtained by setting 
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From the initial condhtion     0=01,=0 vu   and from Eq. (7) we get

0=21,=2 2020 aacc   (64) 

By solving the equations produced from (63) with (64) we get the solution as series 

    2=1,= xxvxxu 
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Figure 5: The behavior of u(x) by Hermite collocation method 

    Figure 6: The behavior of v(x) by Hermite collocation method 

It is no doubt that the efficiency of this approach is greatly enhanced by the calculation 

further terms of u    xvx ,  by using by using Sumudu transform method and Hermite

spectral collocation method. As In Fig. 3 and Fig. 4 show the The behavior of u    xvx ,

by using Sumudu transform method and in Fig. 5 and Fig. 6. show the The behavior of u

   xvx ,  by using the Hermite collocation method.

6 Conclusions 

The main aim of this paper is to know that the sumud transform method and Hermite 
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spectral collocation method are of the most important and simplest methods used in solving 

linear and nonlinear differential equations. This method have been successfully applied to 

systems of fractional integro-differential equations.in this method we do not need to do the 

difficult computation for finding the Adomian polynomials. Generally speaking, the 

proposed method is promising and applicable to a broad class of linear and nonlinear 

problems in the theory of fractional calculus. 
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