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Lower Bound Limit Analysis of Anisotropic Soils 

Chunguang Li1, *, Cuihua Li1, 2, Cong Sun3 and Hong Zheng1 

Abstract: Previous approaches can only tackle anisotropic problems with cohesion 

varying with direction. A novel linearization of the Mohr-Coulomb yield criterion 

associated with plane strain problem has been achieved by simulating the Mohr’s circle 

with orientation lines in σ-τ space, which allows for lower bound solution of soils with 

cohesion and friction coefficient varying with direction. The finite element lower limit 

analysis formulation using the modified anisotropic yield criterion is then developed. 

Several examples are given to illustrate the capability and effectiveness of the proposed 

numerical procedure for computing rigorous lower bounds for anisotropic soils. 
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Nomenclature 

it    prescribed tractions 

ib    body forces 

    statically admissible collapse load factor 

L    collapse load factor 

ij
   stress tensor 

jn    normal vector 

)( ijf    yield criterion 

x , y , xy   stress componet 

e

xi ,
e

yi ,
e

xyi  stress componet of node i in element e 

iN    shape function of ith node 

e

eqb    body force for element e 
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e

eqA    coefficient matrix of equilibrium equation for element e 

l    node stress associated with edge l 

l

bdb    boundary force vector for edge l 

l

bdA      coefficient matrix of boundary conditions for edge l 

a

ni ,
a

ni      normal stress and shear stress of node i in element a on a plane with 

normal unit vector n 

n ,      normal stress and shear stress on a plane with normal unit vector n 

c   cohesion 

c’   Pseudo cohesion 

φ   angle of internal friction 

f   friction coefficient 

α   the angle between any plane and the x-axis 

f          shear strength 

Kandao le f   Pseudo shear strength 

hc    cohesion strengths in the horizontal direction 

vc    cohesion strengths in the vertical directions 

 

1 Introduction 

The question of slope stability is a well-known classical problem in soil mechanics, and it 

has been studied by numerous authors using Limit equilibrium methods [Cheng,  

Lansivaara and Wei (2007); Duncan (1996); Huang (2013); Lam and Fredlund (1993); 

Stolle and Guo (2008); Yu, Salgado, Sloan et al. (1998)], limit analysis [Bandini (2003); 

Chen, Yin, Li et al. (2003); Drescher and Christopoulos (1988); Han, Chen, Xia et al. 

(2014); Kim (1998); Li, Lyamin, Merifield et al. (2009); Tschuchnigg, Schweiger, Sloan 

et al. (2015); Yu, Salgado, Sloan et al. (1998)], finite element strength reduction method 

[Griffiths and Lane (1999); Griffiths and Marquez (2007); Tschuchnigg, Schweiger, 

Sloan et al. (2015); Zheng, Liu and Li (2005)], slip line method [Cheng (2003); Chenot, 

Felgeres, Lavarenne et al. (1978)] and variational method [Baker (2005); Baker and 

Garber (1977); Castillo and Luceno (1982)]. The first two methods are classical 

numerical methods and they are currently used widely in in practical engineering. 

However, almost all the references are focused on isotropic materials. 

It is well known that natural soils and sedimentary rocks are usually deposited and 

consolidated under one-dimensional conditions, and hence most naturally occurring clays 

are inherently anisotropic. In 1966 Bishop [Bishop (1966)] performed a lot soil tests and 

noticed that in-situ undrained strength of a soil is influenced by the anisotropy, and the 
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behavior of soils. The anisotropy of the soil structure, are likely to play a more significant 

part in the behavior of clays. By triaxial and plane strain tests of clayey soils, it is shown 

that the anisotropy of undrained shear strength of over-consolidated clay is primarily 

caused by the direction-dependent (anisotropic) shear strength [Kurukulasuriya, Oda and 

KAzAMA (1999)]. The anisotropy influence not only the strength of soils, but also on 

other properties of soils, such as CO2 emission [La Scala Jr, Panosso, Pereira et al. 

(2009)], Hydraulic Conductivity [Soracco, Lozano, Sarli et al. (2010)], etc. Recently, 

using the Small-Strain Hollow Cylinder Apparatus, Yang had studied the drained 

anisotropic behavior of sand under generalized stress conditions, and the inherently 

anisotropic behavior of sands is clearly illustrated in his studies. 

It has been suggested that the variation of soil cohesion with direction due to inherent 

anisotropy is much more significant than the anisotropy of material friction angle [Arthur 

and Menzies (1972)].  

During the past several decades, the variation of shear strength with direction has been 

taken into account in stability analysis by a number of researchers using different 

methods. The methods include the limit equilibrium method, finite element method, finite 

difference method, and the limit analysis method. Aghajani et al. [Aghajani, Salehzadeh 

and Shahnazari (2015)] investigated the effect of anisotropy of shear strength parameter 

on the stability of a sandy slope by the limit equilibrium method. Al-Karniand 

Al-Shamrani using the method of slices, also investigated the influence of cohesion 

anisotropy on the stability of slopes in homogeneous soils. Since anisotropy can be 

considered in most limit equilibrium software, such as SLOPE/W [Krahn (2004)], the 

slope stability problem with anisotropic materials can be easily solved by commercial 

software. Based on Ubiquitous Joint Rock Mass (UJRM) model in FLAC3D (Itasca 

Consulting Group, 2012), various slope stability problems have been analyzed [Li, Dai, 

Li et al. (2011); Sainsbury and Sainsbury (2013); Sainsbury, Sainsbury and Sweeney 

(2016); Soren, Bodi and Sen (2014)]. Similarly, friction anisotropy also is taken into 

account by a lot of finite element software, such as ABAQUS, PLAXIS, etc. The stability 

of slope with fiber-reinforced soils was analyzed with limit analysis by Michalowski, he 

employed a fiber distribution function to characterize the fiber orientation anisotropy, and 

demonstrated the application of the kinematic approach of limit analysis to the 

anisotropic frictional materials [Michalowski (2008)]. Also using upper bound technique 

of limit analysis, Chen et al. [Chen, Snitbhan and Fang (1975)] established an expression 

under the condition of variation of cohesion with direction in undrained materials; Using 

an modified anisotropic yield criterion, Yu and Sloan [Yu and Sloan (1994)] generalized 

the conventional isotropic Mohr-Coulomb yield criterion to include the effect of variation 

of cohesion with direction in cohesive-frictional materials. Considering the failure 

mechanism as a series of rigid blocks, Yang et al. [Yang and Du (2016)] analyzed 

influence of anisotropy on the bearing capacity of surface strip footings. 

It has been found that neglecting the anisotropy feature may lead to the overestimation of 

the safety factor for geotechnical earthworks and slope stability and thus lead to an unsafe 

design [Chen, Snitbhan and Fang (1975); Yu and Sloan (1994)]. Because the shear 

strength varies with direction, it is more realistic to use values of strength appropriate to 

each direction. However, very little work has been done on the effects of simultaneous 
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variation of cohesion and internal friction angle. 

The lower bound theorem is attractive because it gives a conservative result, and this 

paper aims to develop a general numerical method which can be used to calculate 

rigorous lower bound solutions for soils whose cohesion and internal friction varies with 

direction. The modified anisotropic yield surface is then developed to formulate the 

numerical lower bound limit analysis. The computational results obtained from the 

formulations were compared with those available in literature. 

2 Lower bound theorems of limit analysis 

The lower bound theorem provides a safe estimate of the collapse loads for a rigid plastic 

solid.  

Consider a rigid plastic solid, subjected to some distribution of tractions it and body 

forces ib . Collapse occurs under the loading iLt , iLb , where the factor L is in fact

the safety factor. 

To estimate
L , we will denote the guess for the stress distribution in the solid by ij . The 

stress distribution must 

1. Satisfy the stress boundary conditions

ijij tn   , (1) 

in which it  is the prescribed traction. 

2. Satisfy the equations of equilibrium

0,  ijij b (2) 

within the solid, where ib  is the body force per unit volume. 

3. Must not violate the yield criterion anywhere within the solid,

0)( ijf  . (3) 

The lower bound theorem states that a statically admissible collapse load factor is always 

less than or equal to the exact collapse load factor 

L  . (4) 

With these three sets of constraints, equilibrium equations, boundary conditions and yield 

criteria inequalities, the lower bound load optimization problem can be written as 

  0

0  tosubject

maximize

,







ij

ijij

ijij

f

Tn

b









 (5) 
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3 Brief review of lower limit analysis 

To obtain a rigorous lower bound collapse load for a discretized continuum, three-node 

triangles are usually used to construct a piecewise continuous stress field in which 

statically admissible discontinuities are permitted across element boundaries. This 

approach was first applied to plane strain problems by Lysmer [Lysmer (1970)], 

following this early work, Sloan [Sloan (1988)] introduced finite element and 

mathematical programming formulation that permit large two-dimensional problems to 

be solved efficiently on a standard personal computer. 

Fig. 1 shows the three-noded triangular elements for the lower bound formulation. Each 

node is associated with three unknown stresses  
xyyx  as the nodal variables. 

Thus, the stresses vary linearly throughout an element according to: 





3

1i

e

xii

e

x N  , 



3

1i

e

yii

e

y N  , 



3

1i

e

xyii

e

xy N   (6) 

Where Ni, are linear shape functions. 

Figure 1: Three-node linear stress triangle for lower bound limit analysis 

3.1 Element equilibrium 

Combination of Eqs. (2) and (6) leads to the following matrix form of element 

equilibrium equations 

    　　 e

eq

ee

eq bA     (7) 

Thus, the equilibrium condition for each triangular element generates two equality 

constraints on the nodal stresses. 

3.2 Boundary conditions 

Substituting Eq. (6) into (1) gives 

y 

x 

1 

2 

3 

o 

(nx, ny) 

 e

xy

e

y

e

x 333 
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    　　 l

bd

ll

bd bA         (8) 

Thus each boundary edge generates four equality constraints on the nodal stresses. 

3.3 Stress compatibility conditions 

In order to permit statically admissible discontinuities, it is necessary to enforce the 

normal and shear stresses must be continuous across an admissible stress discontinuity at 

the edges of adjacent triangles. As shown in Fig. 2, element a and b share the side defined 

by nodal pairs (1, 2) and (3, 4), the stress compatibility condition requires 





















b

n

a

n

b

n

a

n

b

n

a

n

b

n

a

n

44

43

21

21









(9) 

Substituting Eq. (6) into Eq. (9) leads to 

   0dd

eqA      (10) 

Figure 2: Stress discontinuity between adjacent triangles 

3.4 Yield conditions 

The Mohr-Coulomb yield criterion in the plain strain condition is stated as: 

      0cos2sin2
22

  cF yxxyyx    (11) 

in which tensile stresses are taken as positive. 

This yield function can be linearized by an inscribed polygon of p sides, as shown in Fig. 

3, which guarantee rigorous lower bound solutions. The new linearized yield function can 

x 

y 

n 

Element b 

Node 2 

Node 1 

Node 3 

Node 4 Element a 
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be written as: 

 pkDCBA xykkkkk ...2,1      (12) 

Figure 3: Linearization of Mohr–Coulomb yield function 

3.5 Assembly of complete optimization problem 

After the assembly of all the constraints equations and objective function, the complete 

problem formulation can then be written as: 

    

    22

11  tosubject

maximize

bA

bA





　

　







    (13) 

Where    is a vector of all nodal stresses,  1A ,  2A  and  1b ,  2b  are all known 

from the assembly process. 

4 Linearization of the mohr-coulomb yield criterion in τσ  space

The Mohr-Coulomb yield criterion may be written as 

nfc   ,  (14) 

Where τ and σn are the shear stress and the normal stress on a plane with normal unit 

vector n, c is cohesion and f=tanφ is friction coefficient and φ is angle of internal friction. 

As stated by the Mohr-Coulomb yield criterion, failure from shear will occur when the 

shear stress on a plane reaches a value given by Eq. (14). 

1 

2 3 

P-1 P 

… 

xy2
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Let









yxy

xyx

στ

τσ be the stress tensor at point P in a continuum. For a plane passing through 

P with normal unit vector n = [cosα, sinα], where α is the angle between the plane and 

the x-axis (positive angles are measured counter clockwise), the normal stress on the 

plane is 

 

 




































xy

y

x

yxy

xyx


















sin2sincos

sin

cos
sincosσ

22

n

,     (15) 

and one corresponding shear stress is 

 













































xy

y

x

yxy

xyx


















cos2sin2
2

1
sin2

2

1

sin

cos
cossin

.     (16) 

Assume that Eq. (14) holds true for any direction at point P, then shear failure will not 

take place at this point because on any plane passing through point P, the available shear 

strength is greater than the maximum shearing stress. 

The Mohr's circle is approximated by an interior polygon with p vertices starting from (σx, 

τxy), as shown in Fig. 4. The normal unit vector to the plane corresponding to the kth 

vertices is given by Mohr's circle is approximated by 
























)sin(

)cos(

pk

pk

n

n
p

y

p

xp




n

 , k=1,…,p (17) 

where the plane corresponding to the kth vertices makes an angle of kπ/p 

counterclockwise to the plane perpendicular to x axis. 

Adding more vertices, we can get the polygon closer to the Mohr-Coulomb circle and 

make the lower bound better. Generally speaking, it can be found that choosing p greater 

than 24 gives a sufficiently accurate approximation to the Mohr-Coulomb yield function. 

Substituting Eqs. (15-17) into (14) gives the linearized yield function as 

cA

xy

y

x

k 























; k=1,2,…,p  (18) 

where 
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





















)
2

sin()(sin)(cos

)
2

cos()
2

sin(
2

1
)

2
sin(

2

1

22

p

k

p

k

p

k
A

p

k

p

k

p

k
A

fAAA

k

k

kkk











    (19) 

It is worth noting that because Mohr’s circle and Coulomb failure line is symmetric about 
 axis, only the positive part of   are considered for Eq. (14). 

And we can see that Eq. (18) is a linear equation of x , y and xy . 

Figure 4: Discretization of Mohr’s circle in τ-σ space 

5 Method to ensure the lower bound 

Since the number of vertices used to approximate the Mohr circle is finite, not all of the 

stress states can be ensured to satisfy the Coulomb yield criterion, as is shown in Fig. 5, if 

we let the vertices on the Mohr circle satisfy Eq. (5), in the worst case, there are stresses 

on some slip directions (the bolded line on the Mohr circle) will violate the 

Mohr-Coulomb yield criterion. 

(σx,τxy) 

(σy,τxy) 

1 

2 

… 

p-1 

p 

k 
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Figure 5: The region lies outside the yield surface 

Figure 6: Pseudo cohesion c' 

To make the solution be a rigorous lower bound, considering circle and the dashed line 

which is parallel to the Mohr-Coulomb failure line and passes through two adjacent 

discretized points, as is shown in Fig. 6, when the Mohr's circle of stress touches the 

Coulomb failure line, the radius of the Mohr's circle is 




 sin
2

cot 






 


yx
cR  (20) 

and the distance from the center of Mohr's circle to the dashed line is 

p
RR


cos'  . (21) 

The dashed line that intersects the shear stress axis, gives a cohesion intercept, c'. 

If we denote the intercept of the dashed line on the shear axis by c', and call it pseudo 

cohesion, we have 
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


 sin
2

cot 








 


yx
cR . (22) 

Using Eqs. (21) and (22), pseudo cohesion c' can be expressed as 

2
1coscos'

yx

p
fc

p
c

 








 , (23) 

We can see that cc
p




lim . 

Replacing the cohesion c in Eq. (18) with pseudo cohesion c' yields 

cB

xy

y

x

k 























; k=1,2,…,p (24) 

where 

 
p

fA
p

B kk 011sec1
2

1
sec 











 (25) 

Eq. (24) ensures that the solution obtained is a rigorous lower bound on the true collapse 

load. 

6 Lower limit analysis for anisotropic materials 

For a given anisotropic Mohr-Coulomb material, the cohesion strength c and the internal 

friction coefficient f can be given by 

)(

)(





ff

cc




(26) 

where θ represents the angle between the direction of a plane where the cohesion c or is 

internal coefficient f measured and the horizontal direction. 

Figure 7: Variation of strength with directions in vertical-horizontal plane 

For example, based on the earlier studies [Casagrande and Carillo (1944); Lo (1966)], the 
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c(θ) 
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h 
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v 
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cohesion, c, with the major principal stress inclined at an angle θ with the horizontal may 

be written in the form: 































2

22

sin11

sincos

h

v
h

vh

c

c
c

ccc

　
 (27) 

in which ch and cv, are the cohesion strengths in the horizontal and vertical directions, 

respectively. 

A simple approach to computing rigorous bounds for anisotropic materials is to just 

replace the cohesion strength c and the internal friction coefficient f in Eq. (26) with 

)(

)(

p

k
ff

p

k
cc









,k=1,2,…,p.     (28) 

The advantage of this method is that it is suitable for any type of anisotropic 

Mohr-Coulomb material, not just for Eq. (27). 

7 Numerical examples 

7.1 The ACADS test example EX1(c) 

The first example, named as Ex1(c), is a study from ACADS (Association for Computer 

Aided Design, Australia) of a non-homogeneous slope with three significantly different 

isotropic material parameters, whose geometry is shown in Fig. 8. The property 

parameters of the problem are shown in Tab. 1. 

The slope is meshed uniformly with global element size specified as 1.0 m，as is shown in 

Fig. 9. Tab. 2 and Fig. 10 shows the comparison of safety factor obtained using c and c' 

for the nonhomogeneous slope. From Tab. 2 we see that the safety factors using pseudo 

cohesion c' have relatively good agreement with Sloan’s method [Sloan (1988)], and both 

the methods using c and c' will converge to a fixed value when p goes to infinity, their 

only difference between the two methods is that the curve of safety factor-p using c' is 

bounded from above (has an upper bound), however, the curve using c is bounded from 

below (has an lower bound).  

Compared with the recommended result Fs=1.390, the relative error is 3.96%, a better 

result will be achieved if the geometry is meshed with more elements. 
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Figure 8: Slope example EX1(c) from ACADS. (unit: m) 

Figure 9: Mesh of example EX1(c) 

Table 1: The material property of example EX1(c) 

No. of soil c (kPa) φ(◦) γ(kN/m3) 

I 0 38.0 19.5 

II 5.3 23.0 19.5 

II 7.2 20.0 19.5 

Table 2: Strength reduction factor using inequality (13) and (18) for example EX1(c) 

p Solution using c Solution using c' Sloan’s method (1988) 

6 1.433 1.216 1.201 

12 1.359 1.306 1.308 

18 1.349 1.326 1.327 

24 1.346 1.333 1.333 

30 1.343 1.335 1.335 

(30,25) 

(50,35) (70,35) 

(70,20) (20,20) 

(20,25) (40,27) 

(50,29) 
(54,31) (70,31) 

(52,24) (70,24) 

I 

II 

III 
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Figure 10: A comparison of strength reduction factor using c and c' for example EX1(c) 

7.2 A smooth trapdoor in anisotropic clay 

The geometry of the problem is shown in Fig. 11, the stability factor for the trapdoor can 

be shown to be N=(γH+σs－σt)/ch, where γ is the unit weight of the soil [Sloan, Assadi 

and Purushothaman (1990)]. 

The lower bound mesh used to model a trapdoor with H/B=5 [Yu and Sloan (1994)]. Due 

to symmetry, only one half of the problem needs to be considered and the mesh is as 

shown in Fig. 12. To compute the stability number for a fixed H/B value, the surcharge 

and soil unit weight are set to zero [Yu and Sloan (1994)]. 

A summary of the stability lower bounds for various ratios of cv/ch, using an 18-sided 

approximation of the yield criterion, is shown in Tab. 3 and Fig. 13. It can be seen that 

the lower bounds agree well with that obtained by Yu’s method. 
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Figure 11: Trapdoor problem 

Figure 12: Mesh used for analysis of the trapdoor problem 

Table 3: Safety factor for trapdoor problem 

cv/ch safety factor 

0.0 1.805 

0.5 4.483 

1.0 5.241 

1.5 5.785 

2.0 6.230 

H 

Plane strain 

B

B

Surcharge
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Figure 13: Stability factor against the value of cv/ch 

7.3 Anisotropic slope 

The anisotropic slope shown in Fig. 14 has the following soil properties: 





20tan

05.0

f

Hc 
(29) 

The slope is inclined at an angle of 26.57° (2:1) to the horizontal and the boundary 

conditions are given as vertical rollers on the left boundary and full fixity at the base 

[Griffiths and Lane (1999)]. 

With the uniform element size specified as 0.06 H, the mesh of the slope is shown in Fig. 

15. The lower bound of safety factor is 1.364, which closely agrees with the safety factor

1.380 given for the same problem by the charts of Bishop and Morgenstern [Bishop and 

Morgenstern (1960)]. 

Suppose that ch and fh satisfy Eq. (35), let’s consider the following three cases: 

(a) Varying cv/ch and fv/fh =1. 

(b) Varying fv/fh and cv/ch =1. 

(c) Varying cv/ch = fv/fh. 

Fig. 16 shows the stability factors of the anisotropic slope for the three cases, and the 

stability factor solutions are listed in Tab. 4. For case (a), not surprisingly, the stability 

factor increases with increasing cv/ch when fv/fh =1. Similar behavior to the above can also 

be seen for case (b) and (c). From the figure it can be seen that the effect on the stability 

factor of fv/fh is here more pronounced than that of cv/ch. 
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Figure 14: Geometry and boundary conditions of anisotropic slope 

Figure 15: Mesh for anisotropic slope 

Table 4: Safety factor for anisotropic slope 

ratio 
safety factor 

cv/ch fv/fh cv/ch= fv/fh 

0.2 1.055 0.848 0.537 

0.4 1.150 0.988 0.784 

0.6 1.230 1.119 0.988 

0.8 1.300 1.244 1.180 

1.0 1.364 1.364 1.364 

1.2 1.415 1.481 1.532 

H 

1.2H 2H 

fixed 

ro
lle

r 



38  Copyright © 2018 Tech Science Press    CMC, vol.53, no.1, pp.21-41, 2018 

Figure 16: Stability factor against the value of cv/ch, fv/fh 

8 Conclusions 

This paper presents a general finite element formulation of the lower bound theorems for 

soil whose cohesion and friction coefficient varies with direction. To develop the 

numerical formulations for anisotropic soil, the Mohr’s circle is discretized in    

space and pseudo cohesion is defined to ensure rigorous lower bound solutions. Several 

numerical examples given in the paper illustrate that the proposed numerical procedure 

can be used to compute rigorous bound solutions of anisotropic soils. 
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