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Generalized Rayleigh Wave Dispersion in a Covered Half-space 

Made of Viscoelastic Materials 

S.D. Akbarov1,2 and M. Negin3 

Abstract: Dispersion of the generalized Rayleigh waves propagating in a covered half-

space made of viscoelastic materials is investigated by utilizing the exact equations of 

the theory of linear viscoelasticity. The dispersion equation is obtained for an arbitrary 

type of hereditary operator of the materials of the constituents and a solution algorithm is 

developed for obtaining numerical results on the dispersion of the waves under 

consideration. Dispersion curves are presented for certain attenuation cases and the 

influence of the viscosity of the materials is studied through three rheological parameters 

of the viscoelastic materials which characterize the characteristic creep time, long-term 

values and the mechanical behaviour of the viscoelastic material around the initial state 

of the deformation. Numerical results are presented and discussed for the case where the 

viscoelasticity of the materials is described through fractional-exponential operators by 

Rabotnov. As the result of this discussion, in particular, how the rheological parameters 

influence the dispersion of the generalized Rayleigh waves propagating in the covered 

half-space under consideration is established. 

Keywords: Generalized Rayleigh wave, viscoelastic material, rheological parameters, 

dispersion, fractional-exponential operator. 

1  Introduction 

Surface waves propagating in viscoelastic layered media are of a particular importance 

for numerous scientific and engineering applications, from material science to biological 

science and from vibration reduction of different structural or mechanical elements to 

earthquake engineering and geophysical explorations. Several mathematical models have 

been used by many authors to study the dispersion and the attenuation behaviour of 

guided waves in such viscoelastic media. However, in most cases either they have 

described the viscoelasticity of the materials through some simple models such as the 

classical Kelvin-Voigt spring-dashpot models [Chiriţă, Ciarletta and Tibullo (2014); 

Quintanilla, Fan,Lowe et al. (2015); Mazzotti, Marzani, Bartoli et al. (2012); Manconi 
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and Sorokin (2013)] or they have used complex elasticity modulus instead of the real one 

in the stress-strain relations of the viscoelastic materials [Vishwakarma and Gupta 

(2012); Barshinger and Rose (2004); Addy and Chakraborty (2005); Garg (2007); 

Jiangong (2011)]. Consequently, in general, such a simple viscoelastic models and the 

numerical results obtained within these models cannot illustrate the real character of the 

influence of the rheological parameters of the viscoelastic materials on the corresponding 

wave dispersion and attenuation. Recent efforts to use more realistic models for the wave 

propagation and attenuation problems in viscoelastic media were made by Meral, 

Royston and Magin (2009, 2011) by utilizing fractional order Voigt model to investigate 

Lamb wave propagation. In this way, a new rheological parameter which is the order of 

the fractional derivatives is introduced into the model and through this parameter the 

results are agreed more accurately with experiments as compared with conventional 

models. 

Here we review in detail investigations related to the propagation of the Rayleigh waves 

in viscoelastic media which is close to the topic of the current paper and begin this 

review with the paper by Carcione (1992) in which the inelastic characteristics of the 

Rayleigh waves from the standpoint of balance energy is investigated. He calculated the 

quality factors as a function of the frequency and depth and showed that the viscoelastic 

properties calculated from energy considerations are consistent with those obtained from 

the Rayleigh secular equation. Based on the Cauchy residue theorem of complex analysis 

Lai and Rix (2002) presented a technique which permits simultaneous determination of 

the Rayleigh dispersion and attenuation curves for linear viscoelastic media with 

arbitrary values of material damping ratio. Fan (2004) obtained the analytical solution of 

the Rayleigh wave propagation phenomena considering the nonlinear damping 

mechanism of seismic waves by applying the perturbation method. Pasternak (2008) 

analysed the Rayleigh wave propagation problem in the elastic half-space and 

viscoelastic layer interface using in the Fourier-Laplace space using the Biot viscoelastic 

solid model. Sharma, Sharma and Sharma (2009) derived the complex secular equations 

for Rayleigh wave propagation in closed and isolated mathematical conditions and 

studied the thermos-elastic interaction in an infinite Kelvin-Voigt type viscoelastic, 

thermally conducting solid bordered with viscous liquid half-spaces/layers of varying 

temperature. Zhang, Luo and Xia et al. (2011) studied the dispersion of Rayleigh waves 

in viscoelastic media by applying pseudo spectral modelling method to obtain high 

accuracy for Rayleigh wave modelling in viscoelastic media. In pseudo spectral method 

the spatial derivatives in the vertical and horizontal directions are calculated using 

Chebyshev and Fourier difference operators, respectively. Chiriţă, Ciarletta and Tibullo 

(2014) studied the propagation of surface waves over an exponentially graded half-space 

of isotropic Kelvin-Voigt viscoelastic material by means of wave solutions with spatial 

and temporal finite energy. They showed that when there is just one wave solution it is 

found to be retrograde at the free surface, while when there is more than one viscoelastic 

surface wave, one is retrograde and the others are direct at the free surface. 

We also note investigations carried out in the papers by Sharma (2005), Sharma and 

Othman (2007), Kumar and Parter (2009), Sharma and Kumar (2009), Abd-Alla, Aftab 

Khan and Abo-Dahab (2017) and others listed therein in which the Rayleigh-Lamb 
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waves dispersion in the plate made of viscoelastic or thermo-viscoelastic materials are 

investigated. However, it should be noted that in these works the viscoelasticity of the 

plate material is described by the Voigt model. Moreover, it should be noted that the 

investigations carried out in these works are also have important significance in the 

methodological sense, i.e. in these works the functional iteration numerical technique is 

developed for determination of the complex roots of the secular equation. Detailed 

consideration of this method and its advantage and disadvantages are discussed in the 

paper by Sharma (2011). We will again turn below to this method in the text of the paper 

during the discussions the solution algorithm of the secular equation. 

As follows from the foregoing discussion and works reviewed above, the investigations 

on the dispersion of the guided waves in the half-space or covering half-spaces made 

from viscoelastic materials mainly were carried out by employing simple Kelvin-Voigt 

classical models or by using frequency dependent complex modulus of viscoelastic 

materials which is obtain from the experiments. These simple methods were not actually 

connected with the more complicated and real behaviour of viscoelastic materials and 

they do not illustrate the influence of the rheological parameters of the viscoelastic 

materials on this dispersion. These considerations led the authors to study the 

generalized Rayleigh waves dispersion and attenuation for a system consisting of a 

viscoelastic covering layer and a viscoelastic half-space utilizing more realistic 

mathematical viscoelastic model using Rabotnov (1980) fractional exponential operator 

which are already used in the papers by Akbarov and Kepceler (2015), Akbarov, Kocal 

and Kepceler (2016a, 2016b) and Kocal and Akbarov (2017) under investigations of the 

axisymmetric torsional and longitudinal waves respectively in the layered hollow 

cylinders made of viscoelastic materials. Moreover, in the paper by Akbarov (2014) this 

model is employed to study of the axisymmetric time-harmonic Lamb’s problem for a 

system consisting of s viscoelastic covering layer and viscoelastic half-space. Note that 

these results in these papers are also detailed in the monograph by Akbarov (2015).  

Moreover, this study, actually extends the authors previous works Negin, Akbarov and 

Erguven (2014), Negin (2015) and Akbarov and Negin (2017) on propagation of the 

generalized Rayleigh waves in an initially stressed elastic covered half-space to 

viscoelastic cases, where the constitutive relations for the covering layer and the half-

space materials are described through the fractional exponential operator by Rabotnov 

(1980). The investigations are carried out within the framework of the piecewise 

homogeneous body model by utilizing exact equations of motion of the linear theory of 

viscoelasticity and it is assumed that perfect contact conditions take place on the 

interface surface between the layer and the half-space. The theoretical results obtained in 

this paper can be utilized in many relevant practical problems of wave propagation in 

viscoelastic layered media which play roles in areas like engineering, earthquake and 

geophysical sciences etc. Some numerical calculations, discussions and conclusions will 

be discussed in their proper places. 

2  Formulation of the problem 
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The system consists of a layer with thickness h  which covers a half-space as shown in 

Figure 1. The layer and the half-space occupy the regions  1 ,x     
20 x h  , 

3x     and  1 ,x     2 0x  , 3x    , respectively. We assume 

that the materials of the constituents are isotropic, homogeneous and hereditary-

viscoelastic. Positions of the points are determined in the Cartesian system of 

coordinates 1 2 3Ox x x  and a plane-strain state in 1 2Ox x  plane is considered. 

Below the values related to the layer and half-space are denoted by upper indices (1) and 

(2), respectively.   

The governing equations of motion and mechanical relations for the case under 

consideration are as follows: 

The equations of motion:  
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where, ( )*m , ( )*m  are the following type viscoelastic operators: 

( ) ( )( )*
0 1

0
( ) ( ) ( ) ( ) ,

t
m mm t t t d            
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0
( ) ( ) ( ) ( ) .

t
m mm t t t d                                                                                    (3)  

In Eq. (3) ( )
0

m , ( )
0

m  are the instantaneous values of Lame’s constants and ( )
1

m , ( )
1

m  

are the corresponding kernel functions for describing the hereditary properties of the 

materials of the constituents. 

We assume that the following boundary conditions on the free face plane and contact 

conditions on the interface of the covering layer and half-space satisfy: 

Boundary conditions: 

2 2

(1)
12 2
(1)

20, 0.
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                                                                                              (4)
 

Contact conditions: 
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2 2 2 2

(1) (2) (1) (2)
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We also assume that the following decay conditions are satisfied: 

2 2

(2) (2)0, 0.i j i
x x

u
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                                                                                     (6)
 

 

 

Figure 1: Geometry of the covered half-space. 

This completes the formulation of the problem under consideration the novelty of which 

is the mathematical modelling of the near-surface (or generalized Rayleigh) wave 

propagation in the system consisting of the covering layer and half-space made of 

viscoelastic materials with arbitrary hereditary properties.  

3  Method of Solution 

According to the problem nature we can represent the sought values in the following 

form: 
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                                           (7) 

where k  is the wavenumber and  is the circular frequency.  

Note that the representation (7) is similar formally with the corresponding one related to 

the purely elastic case. However, in the present case, as it will be detailed below in 

section 4, the wavenumber 1 2( )k k i k   is selected as a complex one, the imaginary part 

2 0k   of which characterizes the attenuation of the amplitudes of the stresses, strains 

and displacements in the constituents. Consequently, under investigations of the 

dispersion of the guided waves in the elements of constructions made of viscoelastic 

materials it is assumed that there is not any attenuation of the amplitudes with respect to 

time, and the attenuation of the amplitudes takes place only with respect to the 

coordinate 1x  on the coordinate axis which is directed along the wave propagation 

direction. This means that the magnitude of the amplitudes of the sought values at the 
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point 12x  is less than that at the point 11x , if 12 11x x . Note that the same approach is 

also used in the papers Mazzotti, Marzani, Bartoli and Viola (2012), Barshinger and 

Rose (2004), Jiangong (2011), Sharma (2005), Sharma and Othman (2007), Kumar and 

Parter (2009), Sharma and Kumar (2009) and in many other investigations related to the 

study of the wave propagation in the viscoelastic materials. It is evident that the 

presentation of the sought values with the multiplying factor 1exp( ( ))i kx t  has 

unrealistic meaning only in the case where 1x  (as Im 0k  ), nevertheless, all 

researchers have to put up with this contradiction. Consequently, the case where 1 0x   

has a meaning without any doubt. 

If free vibration of the elements of constructions made of viscoelastic materials is 

investigated, then all the sought quantities are presented with multiplying factor exp( )i t  

where the circular frequency   in this factor is assumed to be complex one (i.e. the 

natural frequencies are determined as complex frequencies). Under this free vibration the 

attenuation of the amplitudes of the sought values with respect to time takes place. 

Thus, after the foregoing discussions we turn to consideration of the solution method and 

using the relation 

1 2 1 2
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                                                                                (8) 

in (2) and (3) and taking Eq. (7) and (8) into account we can write the following relation: 
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Employing the transformation t s   we can make the following manipulations of the 

integrals which enter into (9), 
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In a similar manner, we obtain  
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Taking the relations (10-13) into account we can write the following expressions for the 

stresses: 
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Thus, we obtain the complex modulus  ( )m  ,  ( )mM   instead of Lame constants in 

the relations (2) and (3), the real and imaginary parts of which are determined through 

the expressions (11), (13) and (15). This means that the complete system of field Eqs. (1), 

(2), (11), (12) and (15) for the viscoelastic system, can also be obtained from those 

written for the purely elastic system by replacing the elastic Lame constants ( )
0

m  and 

( )
0

m  with the complex constants  ( )m 

 

and  ( )mM  , respectively. In other words, 

the foregoing mathematical calculations confirm the dynamic correspondence principle 

(see Fung (1965)) for the problem under consideration and the solution method used here 

agrees with this principle. 

Thus, according to the foregoing procedures, the system of Eqs. (1-3) with boundary 

conditions (4) and (6), and contact condition (5), can be solved analytically by 

employing the so-called method of separation of variables. Also, it follows from the 

foregoing procedures that the presentation of the sought values through the variables 1x  

and t  is made through the known functions 1exp( )ikx  and exp( )i t , respectively. 

However, the presentation of the sought values through the variable 2x  is made through 

the unknown functions  
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(7) and (14) into the equation of motion (1) we obtain the following equations for these 

unknown functions:
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It can be written from the second equation in (16) the following expressions 
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and it can be written the following expression from the first equation in (16) 
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Thus, substituting the expressions in (171) into the expression (172) we obtain:  
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The general solution of the Eq. (18) for the m-th layer can be written as follows: 
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where 
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(20)

 
Finally, substituting the expressions in (20) into the Eq. (7) and (2) and employing well-

known usual procedure we obtain the following dispersion equation from the boundary 

(4) and contact (5) conditions (4-6): 

det 0, ; 1, 2, ... , 6.ij i j                                                                                               (21) 

The explicit expressions of the components of the matrix  ij  are given in Appendix A 

through the expressions (A1). 

Thus, in the present section the analytical expression for the dispersion equation related 

to the near-surface (or generalized Rayleigh) wave propagation in the system consisting 

of the covering layer and half-space made of viscoelastic materials with arbitrary 

hereditary properties are obtained. 

4  Numerical results and discussions 

As we consider the time harmonic wave propagation in a viscoelastic material, it is 

necessary to assume that the wave number k  is a complex one and can be presented as 

follows: 

1 2 1 2 1(1 ), ,k k ik k i k k       

                                                                               

(22) 

where 
2k (or parameter   in (22)), i.e. the imaginary part of the wave number k , defines 

the attenuation of the wave amplitude under consideration and   is called the coefficient 

of the attenuation. It should be noted that this attenuation takes place in the wave 

propagation direction (i.e. in the 1Ox  axis direction) and can be called as horizontal 

attenuation. 

We determine the phase velocity of the studied waves through the expression: 

1

,c
k


  

                                                                                                                           

(23) 

We assume that the viscoelasticity of the materials of the constituents is described 

through the fractional exponential operator by Rabotnov (1980), i.e. we assume that 
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where 
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In (25) ( )x  is the gamma function. Moreover, the constants ( )m , ( )
0

m  and ( )m  in (24) 

and (25) are the rheological parameters of the m-th material. The mechanical meanings 

of these rheological parameters are more explained in the papers by Akbarov (2014) and 

Akbarov and Kepceler (2015). 

Introducing the following dimensionless rheological parameters, 
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                                                             (26) 

the following expressions are obtained for the long-term values of the mechanical 

constants and for ( )m
c , ( )m

s , ( )m
c  and ( )m

s  which enter into the Eq. (15): 
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The dimensionless rheological parameter ( )md  in (26) characterizes the long-term values 

of the viscoelastic materials and the rheological parameter ( )mQ  characterizes the creep 

time of the viscoelastic materials, and finally the rheological parameter ( )m  

characterizes the form of the creep (or relaxation) function for the m-th material and the 

case where ( ) 0m   corresponds to the ‘standard viscoelastic body’ model (or the model 

by Kelvin).  

With respect to solution of the dispersion Eq. (21), as the values of the determinant 

obtained in (21) are complex, the dispersion equation can be reduced to the following 

one 

det 0,ij                                                                                                                    (31) 

where det ij  means the modulus of the complex number det ij . Consequently, for 

construction of the attenuation or dispersion curves it is necessary to solve numerically 

the Eq. (31) for the selected problem parameters. Therefore, we use the algorithm which 

is based on direct calculation of the values of the moduli of the dispersion determinant 

det ij  and determination of the sought roots from the criterion 9det 10ij  , and the 

values of the wave dispersion velocity are determined under fixed values of the problem 

parameters.  

According to the physico-mechanical consideration, in finding the velocity c  which is 

the root of the Eq. (31) for the selected 1k h  and   it is assumed that this velocity is 

greater (less) than that obtained in the corresponding purely elastic case with the elastic 

constants calculated at 0t   (at t  ). This ensures the existence of the roots of the Eq. 

(31). 

Thus, we consider the numerical results obtained from the solution of the dispersion Eq. 

(31) by employing the algorithm discussed above. First, we analyse the case where the 

attenuation of the materials is low and according to Ewing, Jazdetzky and Press (1957) 

and Kolsky (1963), we assume that 
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1 1
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 

 
                                                               (32) 

It should be noted that the attenuation determined by the relation (32) relates to the 

dispersive attenuation case. At the same time, the non-dispersive attenuation case under 

which the selected values for 2k h  (or  ) in (22) do not depend on the wave frequency 

,  also is considered in the present investigations. 

Note that the solution technique of the secular equation described above has also been 

used in the paper by Barshinger and Rose (2004). In general, as noted in the paper by 

Sharma (2011), there is no general method for finding the complex roots of the 

transcendental secular equations. Theoretically, it is known that the functional iteration 

http://tureng.com/en/turkish-english/with%20respect%20to
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method detailed by Sharma (2011) can be applied for determination of the complex roots 

of an analytical function. In this method the analytical function is represented in the 

finite power series form and the obtained algebraic equation is solved through the 

iteration method. Namely this method is developed for solving the secular equations with 

complex roots and employed in the papers Sharma (2005), Sharma and Othman (2007), 

Kumar and Parter (2009), Sharma and Kumar (2009) and others listed therein. For 

instance, in the paper Sharma (2005) the Rayleigh-Lamb wave’s dispersion in the 

viscoelastic plate is studied and the corresponding secular equation is solved by the use 

of the aforementioned functional iteration method. The key step in the application of this 

method is the successful selection of the initial guess. However, we have not found in the 

papers Sharma (2005) and Sharma and Othman (2007) what initial guess is taken under 

employing the iteration procedure. Nevertheless, it can be predicted that the sought 

complex root must be near to the certain complex root of the secular equation obtained in 

a special limit cases in which it is possible to obtain an analytical expression for the 

complex root. Note that such limit cases and determination of the exact complex roots in 

these cases take place in the investigations carried out in Sharma (2005), Sharma and 

Othman (2007), Kumar and Parter (2009) and Sharma and Kumar (2009). We think that 

namely this and similar type complex roots can be taken as initial guess for employing 

the functional iteration method.   

In the cases where there is no the aforementioned situation, the selection of the initial 

guess for the complex root is difficult and there is no any rule for selection the 

mentioned initial guesses. This statement is the disadvantage of the functional iteration 

method. At the same time, this method allows to find the real and imaginary parts of the 

complex roots simultaneously. This is the advantage of the functional iteration method. 

However, the solution method described above and applied in the present and earlier 

works Akbarov and Kepceler (2015), Akbarov, Kocal and Kepceler (2016) the values of 

the attenuation coefficient are given a priori for finding the wave propagation velocity, or 

as in the paper Barshinger and Rose (2004) the values of the wave propagation velocity 

are selected a priori for finding the attenuation coefficient. Of course, this is 

disadvantages of the used method. However, this method does not require the selection 

of any initial guesses which is advantage of method.   

Note that, as noted above, in the case under consideration we prefer to use the solution 

algorithm described above and used also in the papers [Barshinger and Rose (2004), 

Akbarov and Kepceler (2015) and Akbarov, Kocal and Kepceler (2016), Kocal and 

Akbarov (2017)]. This is because, employing the functional iteration method for the 

solution of the secular equation obtained in the present paper requires special 

consideration and development of this method which has not been done up to now.    

Thus, we turn to the analysis of numerical results which are obtained for such cases 

where the conditions (2)
1Re{ } 0R k   and (2)

2Re{ } 0R k   are satisfied simultaneously 

where the 
 2

1R  and 
 2

2R  are determined through the expression in (20) and k  is a 

complex wavenumber presented as in (22). Namely, satisfaction of these conditions 

provides the existence of the near-surface (or generalized Rayleigh) waves in the bi-

material viscoelastic system under consideration. According to the mentioned conditions, 
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numerical investigations are made within the scope of the assumptions 
(1) (2)

0 0 0.3   , 

(1) (2)   and (2) (1) (2) (1)

2 2 0 0/ /c c    in the cases where 
(2) (1)

0 0/ 2    and 
(2) (1)

0 0/ 9    

for which it can be provided the satisfaction of the conditions (2)
1Re{ } 0R k   and 

(2)
2Re{ } 0R k   throughout all the calculation procedures.  

First, we analyse the results obtained in the case where the viscoelasticity properties of 

the covering layer are the half-space are the same, i.e. the case where 
(1) (2) ( )Q Q Q  , 

(1) (2) ( )d d d  , 
(1) (2) ( )    ; and denote it as the V.V. case. Moreover, unless 

otherwise specified, the results discussed below are obtained within the scope of the 

attenuation relation (32).  

Consider the graphs given in Figure 2 and 3 which are constructed in the cases where 
(2) (1)

0 0/ 2    and 
(2) (1)

0 0/ 9   , respectively under 0.5  . The graphs in Figure 2(a) and 

3(a) illustrate the influence of the parameter Q  on the dispersion curves under a fixed 

value of the parameter d  (i.e. under 10d  ) and the graphs in Figure 2(b) and 3(b) 

illustrate the influence of the parameter d on the dispersion curves under a fixed value of 

the parameter Q  (i.e. under 50Q  ). According to the discussions made in the paper by 

Akbarov, Kocal and Kepceler (2016), it can be predicted that the wave propagation 

velocity obtained for the all selected values of the parameter Q  under a fixed value of 

the parameter d  must have the same limit velocity as 1 0k h  and this limit velocity 

coincides with that obtained for the corresponding purely elastic case with long-term 

values of the elastic constants determined with expressions in (27). Consequently, 

according to the expressions in (27), it can be concluded that these limit values of the 

wave propagation velocity must depend on the rheological parameter d and must not 

depend on the rheological parameters Q  and  . Note that this conclusion is confirmed 

with the results illustrated in Figure 2 and 3 and with corresponding ones which will be 

discussed below. Moreover, these results show that the dispersion curves obtained under 

fixed values of the parameter d  are limited with the corresponding dispersion curves 

obtained for the purely elastic cases under instantaneous values of the elastic constants 

(upper limits), i.e. under 0t  , and under long-term values of the elastic constants (lower 

limits), i.e. under t  . 

Now we note the following statement. According to the definition of the phase velocity 

1/c k  of the wave propagation, the finite limit value of this velocity as 1k h  can 

be obtained only in the cases where  . Moreover, according to the expressions 

(28), (29) and (30), it is obtained that  ( ) ( ) ( ) ( ); ; ; 0m m m m

c s c s      as .  This means 

that the limit values of the phase velocity of the wave propagation as 1k h  for fixed 

finite value of the layer thickness h  must approach to the corresponding ones obtained in 

the purely elastic case with the instantaneous values of elastic constants at 0t  . This is 

because, the magnitude of the influence of the material viscosity on its vibration 

decreases with the vibration frequency   and this influence disappears completely as 
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 . This is well-known physico-mechanical statement which is confirmed again 

with the results given in Figure 2 and 3 and other corresponding ones given below. 

  

(a) (b) 

Figure 2: Dispersion curves in V.V. case (2) (1)
0 0/ 2    obtained for (a) various values 

of the parameter  (1) (2)Q Q Q   under a fixed value of the parameter 10d   (b) for 

various values of the parameter  (1) (2)d d d  under a fixed value of the parameter

50Q  . 

Note that the foregoing conformations of the obtained numerical with the related 

predictions and agreement of those with the known physico-mechanical considerations 

can be taken as validation and trustiness of the used calculation algorithm and PC 

programs which are composed by the authors and are realized in MATLAB. 

Unfortunately, we have not found any related numerical results in literature in order to 

compare these results with those. 

We turn again to the consideration of the limit values of the wave propagation velocity 

as 1k h . Thus, in general, according to the foregoing discussions, and conclusions 

we can write the following relation 

(1)
min( ; )SRc c c  as 1k h ,                                                                                        (33) 

where (1)
Rc  is the Rayleigh wave propagation velocity in the covering layer material in 

the corresponding purely elastic case and Sc  is the Stoneley wave propagation velocity 

for the selected pairs of materials for covering layer and half-space also in the purely 

elastic case. As in the cases under considerations, the Stoneley wave does not exist; 

therefore, the relation (33) can be replaced with the relation  
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(a) (b) 

Figure 3: Dispersion curves in V.V. case (2) (1)
0 0/ 9    obtained for (a) various values 

of the parameter  (1) (2)Q Q Q  under a fixed value of the parameter 10d   (b) for 

various values of the parameter  (1) (2)d d d  under a fixed value of the parameter 

50Q  . 

(1)
Rc c  as 1 .k h                                                                                                       (34) 

Now we analyse in detail the results given in Figure 2 and 3 from which, first of all, it 

follows that the viscoelasticity of the materials of the constituents causes a decrease in 

the wave propagation velocity. Moreover, these results show that the dispersion curves 

obtained for the viscoelastic case approach to the corresponding one obtained for the 

purely elastic case with instantaneous (long-term) values of the elastic constants at 0t   

(at t   ) with increasing (decreasing) of the rheological parameters d  and Q . It should 

be noted that the mentioned increase (decrease) has monotonic character and 

considerable effect in this increasing (decreasing) are observed in the cases where 

1 2.0k h  . According to the character of the dispersion curves obtained for the 

viscoelastic case and given in Figure 2, 3 and in other ones which will be illustrated 

below, it can be concluded that for each value of the rheological parameter Q  and for 

each value of the rheological parameter d  there exist the case where  

(2)
2

1

( / )
0

( )

d c c

d k h
 .                                                                                                                 (35)   

The wave propagation velocity and dimensionless wavenumber related to this case we 

denote by crc  and 1( )crk h , respectively. Note that for the dispersion curves related to the 

purely elastic waves there is not the case where the relation (35) takes place. 

Consequently, the appearing of the cases where the relation (35) takes place is caused 
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namely with the viscoelasticity of the materials of the constituents of the system under 

consideration.  

We analyse the physico-mechanical meaning of the relation (35). In the wave 

propagation sense, the relation (35) means that in the case where this relation satisfies 

the phase velocity of the wave propagation becomes equal to the corresponding group 

velocity. According to this statement, in the cases where 1 10 ( )crk h k h   (in the cases 

where ( )1 1k h k hcr    ) the dispersion of the waves for viscoelastic case is anomalous 

(normal) dispersion. At the same time, the relation (35) means that the velocity crc c  is 

root of the second order of the dispersion Eq. (21) (or (31)). According to the numerous 

investigations on the dynamics of the moving load acting on the ‘covering layer + half-

space’ systems, for instance in the monograph by Akbarov (2015) and many others listed 

therein, the velocity which is second order root of the dispersion equation, i.e. under 

which the relation (35) takes place, is the critical velocity of the corresponding moving 

load. We recall that under this velocity of the moving load the resonance type accidents 

appear. 

Table 1: The values of the 
(1)
2/c c  obtained in the case 

indicated in Figure 2a under 

1 0.5k h    

 
Table 2: The values of the (1)

2/c c

obtained in the case indicated in 

Figure 2b under 1 0.5k h     

 
Q   

(1)
2/c c  

 

d 
(1)
2/c c  

( 0)Q t    1.2600 ( 0)d t   1.2600 

Q = 2000 1.2588  d = 100 1.2590 

Q = 1000 1.2584  d = 50 1.2582 

Q = 500 1.2576  d = 25 1.2574 

Q = 100 1.2550  d = 15 1.2558 

Q = 50 1.2527  d = 10 1.2534 

Q = 10 1.2444  d = 5 1.2456 
0( )Q t   1.2116  d = 1 1.1960 

Thus, it follows from the foregoing discussions that, the viscoelasticity of the materials 

of the constituents influences on the dispersion curves of the generalized Rayleigh waves 

not only in the quantitative sense but also in the qualitative sense. Moreover, it follows 

from the foregoing results that under investigations of the dynamics of the moving load 

acting on the systems which can be modelled as the ‘covering layer+half-space’ the 

appearing of the critical velocities as a result of viscoelasticity of materials of the 

constituents must be taken into consideration.  

For a clear illustration of the amount of the influence of the materials' viscosity on the 

wave propagation velocity in the cases considered in Figure 2 and 3, the values of these 

velocity are presented in Tables 1, 2, 3 and 4 in the cases where 1 0.5k h   (Tables 1 and 
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2) and 1 0.1k h  (Tables 3 and 4). It follows from these data that in the quantitative sense 

the influence of the rheological parameter d  on the wave propagation velocity is more 

significant than that of the rheological parameter Q . 

Table 3: The values of the 
(1)
2/c c  obtained in the case 

indicated in Figure 3a under 

1 0.1k h   

 
Table 4: The values of the (1)

2/c c  

obtained in the case indicated in 

Figure 3b under 1 0.1k h   

 
Q  

(1)
2/c c  

 

d 
(1)
2/c c  

( 0)Q t   2.7299 ( 0)d t   2.7299 

Q = 2000 2.7272  d = 100 2.7271 

Q = 1000 2.7254  d = 50 2.7245 

Q = 500 2.7226  d = 25 2.7195 

Q = 100 2.7131  d = 15 2.7144 

Q = 50 2.7058  d = 10 2.7069 

Q = 10 2.6821  d = 5 2.6817 
0( )Q t   2.6197  d = 1 2.5319 

We recall that the all foregoing results on the dispersion curves and the results which 

will be discussed below are obtained within the scope of the attenuation determined by 

expression (32) and in the case where 
(1) (2) ( )Q Q Q  , 

(1) (2) ( )d d d  , 
(1) (2) ( )     

this expression can presented as  

(1) (2)
1 1

(1) (1) (2) (2)
0 1 0 1

( ) ( )1 1

2 2( ) ( )

s s

c c

   


     
 

 
.                                                                            (36) 

Consider graphs of the dependence of the attenuation coefficient   and dimensionless 

frequency (1)
2/h c   which are given in Figure 4 for various values of the rheological 

parameter d under a fixed  50Q   (Figure 4a) and for various values of the rheological 

parameter Q  under a fixed  10d   (Figure 4b) when 0.5  . Using these results and 

the results obtained for the dispersion curves, for instance, for the dispersion curves 

given in Figure 2 and 3, one can easily determine the value of the attenuation coefficient 

for each selected value of the wave propagation velocity. Note that this statement 

remains valid also for all the results which will be considered below. 
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(a) 

 

     (b) 

Figure 4: (a) The influence of parameter  (1) (2)d d d  on   under 

 (1) (2) 50Q Q Q    and (b) the influence of parameter  (1) (2)Q Q Q  on   under

 (1) (2) 10d d d   . 

Now we attempt to answer a question what contribution is made the viscoelasticity of 

each constituent of the system under consideration on the dispersion curves and for this 

purpose we consider the graphs given in Figure 5-8 which are obtained in the case where 
(1) (2) 0.5   . Note that in these figures the graphs grouped by letter a (letter b) relate 

to the case where the rheological parameters related to the half-space (to the covering 

layer) material are changed and the rheological parameters related to the covering layer 

(to the half-space) are fixed. Moreover, note that the results given in Figure 5 and 7 

(Figure 6 and 8) relate to the case where (2) (1)
0 0/ 2    (to the case where (2) (1)

0 0/ 9   ). 

The results given in Figure 5 and 6 (in Figure 7 and 8) illustrate the influence of the 

rheological parameters (2)Q  and (1)Q  (rheological parameters 
(2)d  and 

(1)d ) on the 

dispersion curves. Thus, it follows from the graphs given in Figure 5-8 that the main 

contribution on the dispersion curves is made by the viscoelasticity of the half-space 

material. 
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(a)                                                                (b) 

Figure 5: Dispersion curves in V.V. case (2) (1)
0 0/ 2    (a) for different values of 

parameter 
(2)Q when

(1) 50Q   and  (1) (2) 10d d d    (b) for different values of 

parameter 
(1)Q  when 

(2) 50Q   and  (1) (2) 10d d d   . 

                

(a)                                                                            (b) 

Figure 6: Dispersion curves in V.V. case (2) (1)
0 0/ 9    (a) for different values of 

parameter 
(2)Q  when 

(1) 50Q   and  (1) (2) 10d d d    (b) for different values of 

parameter 
(1)Q  when 

(2) 50Q   and  (1) (2) 10d d d   . 
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(a)                                                                 (b) 

Figure 7: Dispersion curves in V.V. case (2) (1)
0 0/ 2    (a) for different values of 

parameter 
(2)d  when 

(1) 10d   and  (1) (2) 50Q Q Q    (b) for different values of 

parameter 
(1)d  when 

(2) 10d   and  (1) (2) 50Q Q Q   . 

                

(a)                                                                         (b) 

Figure 8: Dispersion curves in V.V. case (2) (1)
0 0/ 9    (a) for different values of 

parameter 
(2)d  when 

(1) 10d   and  (1) (2) 50Q Q Q    (b) for different values of 

parameter 
(1)d  when 

(2) 10d   and  (1) (2) 50Q Q Q   . 

We recall that the foregoing results are obtained in the cases where both the materials of 

the covering layer and the half-space are viscoelastic, i.e. the V.V. case. Now we 

consider the results obtained in the case where the material of the covering layer is 

purely elastic, but the material of the half-space is viscoelastic and denote this case as the 
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E.V. case. Note that the all foregoing results for this case are obtained within the scope 

of the attenuation determined by second expression in (32). Figure 9 shows the graphs 

obtained for the case E.V. when (2) (1)
0 0/ 2    for different values of parameter (2)Q  

(Figure 9a) under fixed values of parameter  (2) 10d   and for different values of 

parameter (2)d  (Figure 9b) under fixed values of parameter  (2) 50Q  . 

Comparison of the graphs given in Figure 9a with the corresponding V.V. ones given in 

Figure 5a shows that the influence of the rheological parameters of the half-space (2)Q  

on the dispersion curves obtained in the E.V. case under (2) (1)
0 0/ 2    is almost the 

same as in the V.V. case. However, comparison of the graphs given Figure 9b with the 

corresponding V.V. ones given in Figure 7a shows that the influence of the rheological 

parameters of the half-space (2)d  on the dispersion curves obtained in the E.V. case is 

more significant than that obtained in the V.V. case. We do not consider here the 

numerical results obtained for (2) (1)
0 0/ 9    in the E.V. case because these results in the 

qualitative sense are the same. 

Now we consider the results related to the effect of rheological parameters 
(1) (2)     

on the wave dispersion curves in the case where (1) (2)d d d   and 
(1) (2)Q Q Q  . Note 

that the influence of this rheological parameter on the wave dispersion is considered for 

the first time in the present paper and this effect has not been examined in the papers by 

Akbarov and Kepceler (2015) and in the paper by Akbarov, Kocal and Kepceler (2016). 

Thus, we consider graphs given in Figure 10-13 which illustrate the mentioned influence. 

Note that these graphs are constructed in the cases where (2) (1)
0 0/ 2    (Figure 11 and 

12) and (2) (1)
0 0/ 9    (Figure 12 and 13). Moreover, note that the graphs given in Figure 

10 and 12 (Figure 11 and 13) show the effect of the rheological parameter   on the 

dispersion curves under various values of the rheological parameter Q  (of the 

rheological parameter d ) for a fixed value of the rheological parameter  10d   (for a 

fixed value of the rheological parameter  10Q  ). The graphs given in Figure 10 and 12 

(in Figure 11 and 13) and grouped by letters a, b, c and d correspond the cases where 

10Q  , 50, 100 and 500 (the case where 5d  , 10, 25 and 50) respectively.  
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(a)                                                                         (b) 

Figure 9: Dispersion curves in E.V. case (2) (1)
0 0/ 2    (a) for different values of 

parameter 
(2)Q  when 

(2) 10d   (b) for different values of parameter 
(2)d  when 

(2) 50Q  . 

Thus, it follows from the results given in Figure 10-13 that in the all considered cases 

there exists such value of the dimensionless wavenumber 1k h  (denote it by 1( )*k h  at 

which the change in the values of the rheological parameter   does not influence on the 

values of the wave propagation velocity. However, in the cases where 1 1( )*k h k h  (in the 

cases where 1 1( )*k h k h ) an increase in the values of the parameter   causes a decrease 

(an increase) in the wave propagation velocities. According to the aforementioned 

numerical results, it can be concluded that the 1( )*k h  depends on the values of the 

rheological parameters Q  and d  and an increase in the values of these parameters 

causes to decrease of the 1( )*k h . Moreover, it can be concluded the values of the 1( )*k h  

depends also on the ratio (2) (1)
0 0/   and an increase of this ratio causes a decrease in the 

values of the 1( )*.k h   
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(a)                                                                         (b) 

Figure 10: Dispersion curves in V.V. case for different values of parameter   and Q  

when  (1) (2) 10d d d    and (2) (1)
0 0/ 2   . 
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(a)                                                                         (b) 

 

       

(c)                                                                        (d) 

Figure 11: Dispersion curves in V.V. case for different values of parameter   and d  

when  (1) (2) 10Q Q Q   and (2) (1)
0 0/ 2   . 
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(a)                                                                         (b) 

     

(c)                                                                        (d) 

Figure 12: Dispersion curves in V.V. case for different values of parameter   and Q  

when  (1) (2) 10d d d    and (2) (1)
0 0/ 9   . 
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(a)                                                                         (b) 

     

(a)                                                                         (b) 

Figure 13: Dispersion curves in V.V. case for different values of parameter   and d    

when  (1) (2) 10Q Q Q    and (2) (1)
0 0/ 9   . 

Note that besides of all these it can be concluded that the change in the values of the 

rheological parameter   does not influence on the limit values of the wave propagation 

velocity as 1 0k h . However, in the near vicinity of this limit case, if to say more 

precisely in the region 1 10 ( )*k h k h   the influence of the rheological parameter   on 

the dispersion curves is significant not only in the quantitative sense but also in the 

qualitative sense. So that under small values of the  , for instance under 0  , 0.1, the 

dispersion curves have well-defined minimum in the region 1 10 ( )*k h k h   and at this 

minimum the relation (35) takes place. Moreover, in the near vicinity of this minimum 
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the wave propagation velocity obtained for the viscoelastic cases become less than that 

obtained for the purely elastic case with long-term values of elastic constants at t  .  

Consequently, in the region 1 10 ( )*k h k h   a decrease in the values of the   causes to 

change the character of the dispersion curves. However, with increasing of   the 

aforementioned minimum disappears in the dispersion curves and wave propagation 

velocities are limited with the wave propagation velocities obtained for the purely elastic 

cases with instantaneous values of elastic constants at 0t   (upper limit) and with long-

term values of elastic constants at t   (lower limit).  

Thus, the all foregoing results and discussions allow us to conclude that in investigations 

of the wave propagation in elements of constructions made of viscoelastic material the 

viscoelastic relations of which are described through the fractional exponential operators 

it is necessary to take into consideration the influence of the rheological parameter   on 

this propagation.    

We recall that all the foregoing results are obtained for the dispersion attenuation case 

with the attenuation coefficient   determined through the expression (32), according to 

which 0   as 1 0k h . This statement can be proven as follows: 

According to the expressions in (30) we can see that   and ( )m    as 1 0k h . 

This is because ( )( 1) 0n    in the first expression in (30). Taking this limit value of the 

parameter ( )m  into account we obtain from the expressions given in (29) that 

( )

( )
1

m

m

c
R


  and 
( )

( )
0

m

m

s
R


  as 1 0k h . According to these limit values, it follows from 

the expressions in (28) that 
( )

0
m

s   and also, it follows from the expressions in (32) 

(or from the expressions in (36)) that 0  as 1 0k h . 

Thus, for estimation of the influence of this character of the dispersion attenuation on the 

wave dispersion curves we also consider a few results obtained for a non-dispersive 

attenuation case. Note that under this non-dispersive attenuation the value of the 2k  (or 

2k h  ) in (22) given a priori as a constant and then the dispersion curves are determined 

from the dispersion Eq. (31). Let us call the 2k h  as an ‘attenuation order’.  

Thus, analyse the graphs given in Figure 14 which illustrate the dispersion curves 

obtained for the non-dispersive attenuation case under 2 0.005k h  , 
(1) (2)d d d   and 

(1) (2)Q Q Q   for the case where (2) (1)
0 0/ 2   . Note that these graphs are constructed 

for the various values of the parameter Q  under fixed value of the  10d   (Figure 14a) 

and for the various values of the parameter d  under fixed  50Q   (Figure 14b). It 

follows from these results that as a result of the non-dispersity of the attenuation of the 

waves propagated in the viscoelastic materials the ‘cut off’ values of the wavenumber 

1k h  appear. We denote this ‘cut off’ value through 1 . .( )c fk h  and note that if we multiply 
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1 . .( )c fk h  with the corresponding wave propagation velocity c  then we obtain the 

corresponding ‘cut off’ frequency  . . 1 . .( )c f c fc k h  .  

       

(a)                                                                         (b) 

Figure 14: Dispersion curves obtained in the non-dispersive attenuation case under 

2  0.005k h   in the V.V. case (a) for various values of the parameter Q  under a fixed 

value of the parameter 0( )1d   and (b) for various values of the parameter d  under a 

fixed value of the parameter 0( )5Q   in the V.V. case under (2) (1)
0 0/ 2   . 

 

Figure 15: The influence of the ‘attenuation order’ 2k h  on the cut off values of 1k h , i.e. 

on the values of 1 . .( )c fk h  in the case considered in Figure 14. 
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It follows from Figure 14 that the change in the rheological parameter Q  does not 

influence on the values of the 1 . .( )c fk h , however an increase in the values of the 

rheological parameter d  causes to increase the values of the 1 . .( )c fk h . Figure 15 shows 

the dispersion curves constructed for various values of the “attenuation order” 2k h  in the 

case where 50Q   and 10d   from which follows that the values of the 1 . .( )c fk h increase 

monotonically with the 2k h .  

Thus, the results given in Figure 14 and 15 allow us to conclude that as a result of the 

dispersity of the attenuation of the waves under consideration the ‘cut off’ wavenumbers 

or frequencies disappear.  

The experimental evaluation application of the numerical results obtained in the present 

paper can be made in the following manner. First, it is necessary to model the 

viscoelasticity of the materials of the constituents of the system through the fractional 

exponential operators by Rabotnov and to determine the values of the corresponding 

rheological parameters which enter to these operators. After it can be used the traditional 

methods on the measurement of the near surface wave propagation velocities for 

determination of the influence of the rheological parameters of the materials to this 

velocity. The obtained numerical results allow to use those not only in the 

aforementioned for measurements procedures in the concrete selected cases but also 

these results allows to have theoretical knowledge on the character of this influence in 

the principal sense.    

This completes the discussions of the numerical results.  

5  Conclusions 

Thus, in the present paper dispersion of the generalized Rayleigh waves in the ‘covering 

layer+half-space’ system made of viscoelastic materials is investigated. The investigations 

carried out within the scope of the piecewise homogeneous body model by utilizing the 

exact equations of motion of the theory of linear viscoelasticity in the plane strain state.   

The main processing flow of investigations carried out in the present paper is as follows:  

1) the analytical expressions of the sought values are determined for arbitrary kernel 

functions in the operators described the viscoelasticity of the materials by employing the 

method of separation of variables;  

2) the corresponding dispersion equation is also obtained for arbitrary hereditary type 

viscoelastic operators;  

3) for numerical investigations the viscoelasticity operators (the kernel functions in these 

operators) of the materials are specialized through the fractional exponential operators by 

Rabotnov (1980), according to which, dimensionless rheological parameters characterizing 

the characteristic creep time (denoted by ),Q  the long-term values of the elastic constants 

(denoted by d ) and the form of the creep (or relaxation) function of the materials in the 

beginning region of deformations (denoted by  ) are introduced and through these 
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parameters the viscoelasticity of the materials of the covered layer and the half-space on 

the dispersion curves is studied;  

4) numerical investigations are made for the cases where the wave attenuation 

coefficients are determined through the expressions in (32); 

5) These results are obtained for the cases under which the generalized Rayleigh waves 

exists, i.e. under which the conditions (2)
1Re{ } 0R k   and (2)

2Re{ } 0R k   satisfy 

simultaneously, where the 
 2

1R  and 
 2

2R  are determined through the expression in (20) 

and k  is a complex wavenumber determined as in (22);  

and finally 

6) The numerical results are presented and discussed mainly for the attenuation 

dispersion case and at the same time a few numerical examples are also presented and 

discussed for the non-dispersive attenuation case. 

Moreover, these results are obtained for the case where the viscoelasticity properties of 

the covering layer and the half-space materials are the same (denoted as V.V. case) and 

for the case where the material of the covering layer is purely elastic, but the material of 

the half-space is viscoelastic (denoted as E.V. case). According to these numerical 

results, the following main conclusions can be drawn: 

• In both V.V. and E.V. cases in the considered attenuation dispersion case the 

viscoelasticity of the materials causes the generalized Rayleigh wave propagation 

velocity to decrease. The magnitude of this decrease increases with a decrease in the 

aforementioned dimensionless rheological parameters d  and Q ;  

• The character of the influence of the parameter   on the wave velocities and on the 

dispersion corves depends on the values of the dimensionless wave number 1k h  and 

on the values of the rheological parameters d  and Q . There exist such value of the 

1k h  after (before) which an increase in the values of the   causes to decrease (to 

increase) the wave propagation velocity; 

• The lower wavenumber limit values of the wave propagation velocity depends only 

on the rheological parameter d  and coincide with that obtained for the 

corresponding purely elastic case with long-term values of elastic constants at t    

and as a result of this statement the viscoelasticity of the materials of the constituents 

causes to change the character of the dispersion of the waves under consideration 

and to appear the cases where the relation (35) satisfies; 

• The satisfaction of the relation (35) conforms the appearing of the critical velocities 

of the moving load acting on the system under consideration as a result of the 

viscoelasticity of the materials of the constituents of the system;   

• In general, the dispersion curves obtained to viscoelastic cases are limited by the 

dispersion curves corresponding to the purely elastic case with instantaneous values 

of the elastic constants (upper limit) and by those obtained for the purely elastic case 

with long-term values of the elastic constants (lower limit), however this rule is 

violated in the relatively small values of the rheological parameter   under which 

the wave propagation velocity can become less than the mentioned lower limit; 
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• A significant effect of the viscoelasticity of the materials on the wave propagation 

velocity appears in the case where 1 2k h  ; 

• For all the considered cases, the high wavenumber limit values of the wave 

propagation velocity does not depend on the rheological parameters of the materials; 

• The main influence on the dispersion curves is caused by the viscoelasticity of the 

half-space material and the influence of the viscoelasticity of the covering layer 

material on these curves is insignificant; 

• In the nondispersive attenuation case, the cut off values of the 1k h  arise and these 

values increase with the non-dispersive ‘attenuation order’ 2 .k h   
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The expressions of the components αij in Eq. (21): 
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