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Abstract: This paper reports a multiscale analysis method to predict the thermo-

mechanical coupling performance of composite structures with quasi-periodic properties. 

In these material structures, the configurations are periodic, and the material coefficients 

are quasi-periodic, i.e., they depend not only on the microscale information but also on 

the macro location. Also, a mutual interaction between displacement and temperature 

fields is considered in the problem, which is our particular interest in this study. The 

multiscale asymptotic expansions of the temperature and displacement fields are 

constructed and associated error estimation in nearly pointwise sense is presented. Then, 

a finite element-difference algorithm based on the multiscale analysis method is brought 

forward in detail. Finally, some numerical examples are given. And the numerical results 

show that the multiscale method presented in this paper is effective and reliable to study 

the nonlinear thermo-mechanical coupling problem of composite structures with quasi-

periodic properties. 

Keywords: Thermo-mechanical coupling problem, quasi-periodic properties, multiscale 

asymptotic analysis, multiscale finite element-difference algorithm. 

1 Introduction 

Periodic composite material structures are widely used in the engineering practice due to 

their various advantageous physical and mechanical properties. Generally, both the 

material coefficients and geometric configurations of periodic composites are 

microscopically periodic. However, influenced by preparation technology, hot and humid 

environment, fatigue, damage and other factors, the coefficients reflecting properties of 

periodic composite material structures are no longer whole-periodic, but local-periodic, 

i.e., quasi-periodic. In other words, the material coefficients can depend not only on the 
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microscale information but also on the macro location. The functionally gradient material 

structure is a representative structure with quasi-periodic properties [Yin, Paulino, Buttlar, 

and Sun (2007); Shim, Yang, Liu, and Lee (2005); Zhang, Ni, Liu (2014)]. With the 

appearance of complex and extreme service environments, many composite structures 

work under transient thermo-mechanical circumstances. And the fully coupled analysis 

will lead to more accurate results. Therefore, it is necessary to study the transient thermo-

mechanical coupling responses of quasi-periodic composite structures. 

Up to now, some works have been performed on thermo-mechanical problems of composite 

structures. Feng et al. [Feng and Cui (2004)] proposed the multiscale asymptotic expansion 

for the problem under the conditions of coupled thermoelasticity for the structure of periodic 

composite materials. In [Zhang, Zhang, Bi, and Schrefler (2007); Yu and Tang (2007)], the 

authors investigated the thermo-mechanical problem of periodic composites by a multiscale 

asymptotic homogenization approach and a variational asymptotic micromechanics model, 

respectively. Terada et al. [Terada, Kurumatani, Ushida, and Kikuchi (2010)] considered the 

scale effect and derived the formal expansions for thermo-mechanical problem with 

periodically oscillatory coefficients. Goupee et al. [Goupee and Vel (2010)] presented 

multiscale thermoelastic analysis of random heterogeneous materials. Khan et al. [Khan, 

Barello, Muliana, and Lévesque (2011)] studied the coupled heat conduction and thermal 

stress analyses in particulate composites by introducing two micromechanical modeling 

approaches. Temizer et al. [Temizer and Wriggers (2011)] reported a survey of the known 

mathematical results of the homogenization method and the multiscale approach for the linear 

thermoelasticity. Guan et al. [Guan, Yu, and Tian (2016)] presented a thermo-mechanical 

model for strength prediction of concrete materials. However, these studies were devoted to 

one-way thermo-mechanical coupling problems, namely, the thermal effects affect the 

mechanical filed but not vice versa. As for the two-way coupling problems, Parnell [Parnell 

(2006)] has given the homogenized procedure for the transient thermo-mechanical problems 

with different periodic configurations. After that, Yang et al. [Yang, Cui, Wu, Wang, and 

Wan (2015)] investigated the transient thermo-mechanical coupling problems of periodic 

composites by second-order two-scale method. For quasi-periodic composites, Bensoussan et 

al. [Bensoussan, Lions, and Papanicolaou (1978)] presented the homogenization theory and 

Cao et al. [Cao and Cui (1999)] has given the first-order approximation and several basic 

estimations of the mechanical problems. After that, Su et al. [Su, Cui, Zhan, and Dong (2010)] 

present the multi-scale analysis of boundary value problems for second-order elliptic type 

equation for the quasi-periodic composites. Dong et al. [Dong, Nie, Cui (2017)] perform a 

second-order two-scale analysis and introduce a numerical algorithm for the damped wave 

equations of quasi-periodic composite materials. To our knowledge, we have not seen the 

study of the transient thermo-mechanical coupling problems of quasi-periodic composites in 

the existing literature. 

The two-way coupling problem is strongly coupled by the hyperbolic and parabolic 

equations with nonlinear coefficients, and it is impossible to find the analytical solutions. 

As for numerical solutions, due to the quasi-periodic properties and oscillating rapidly in 

microscopic cells of material coefficients, in order to effectively capture the local 

fluctuation behaviors of temperature and displacement fields and their derivatives, the 

mesh size must be very small while employing the traditional numerical methods, which 

will lead to a prohibitive amount of computation time. Therefore, it is necessary to 
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develop highly efficient numerical methods for predicting the nonlinear thermo-mechanical 

coupling performance of composite material structures with quasi-periodic properties. 

The homogenization method is developed to give the overall behavior of the composite 

by incorporating the fluctuations due to the heterogeneities of composites. However, 

numerous numerical results [Feng and Cui (2004); Bensoussan, Lions, and Papanicolaou 

(1978); Dong, Nie, Cui (2017)] have shown that the numerical accuracy of the standard 

homogenization method may not be satisfactory. And then, based on homogenization 

methods [Bensoussan, Lions, and Papanicolaou (1978); Marchenko and Khruslov (2008)], 

various multi-scale methods have been proposed [Efendiev and Hou (2009); Juanes 

(2005); E, Engquist, Li, Ren, and Vanden-Eijnden (2007)]. However, they only 

considered the first-order asymptotic expansions, which are not enough to describe the 

local fluctuation in many physical and mechanical problems. Hence, it is necessary to 

seek the more effective methods. This is the motivation for higher-order multiscale 

asymptotic methods and associated numerical algorithms. In recent years, Cui et al. [Cui 

and Yu (2006); Yang, Cui, Nie (2012); Zhang, Nie, Wu (2014)] introduced the second-

order multiscale analysis method to predict different physical and mechanical behaviors 

of composites. By the second-order correctors, the microscopic fluctuation behaviors 

inside the composite materials can be captured more accurately [Yang, Cui, Wu, Wang, 

and Wan (2015); Cao and Cui (1999); Su, Cui, Zhan, and Dong (2010); Dong, Nie, Cui 

(2017)]. However, the previous multiscale asymptotic expansions and algorithms cannot 

be directly employed to the thermo-mechanical problems due to the nonlinearity and two-

way coupling. The aim of this paper is to establish a novel high-order multiscale method 

with less effort and computational cost to give a better approximation of the temperature 

and displacement fields in the transient thermo-mechanical coupling problems. 

The remainder of this paper is outlined as follows. The formulation of the multiscale 

asymptotic expansions for the transient thermo-mechanical coupling problems of 

composite structures with quasi-periodic properties and associated error estimation in 

nearly pointwise sense are presented in section 2. In section 3, a finite element-difference 

algorithm based on the multiscale method is given in details. Some numerical results are 

shown to verify the validity of the multiscale algorithms in section 4. Finally, the 

conclusions are summarized in Section 5. 

For convenience, the vector or matrix functions are denoted by bold letters like u , v , 

w ..., and the Einstein summation convention on repeated indices is used in this paper. 

Besides, we do not give the definitions of the associated Sobolev spaces in this paper, and 

we refer the reader to the book [Leoni (2009)]. 

2 Multiscale asymptotic expansion 

Suppose that a structure made of the composite materials with small periodic configuration is 

denoted by iY  , as shown in Fig. 1, where iY 

 is a basic microscopic cell, and all of 

iY   are of the same configuration with size  . Consider the transient thermo-mechanical 

coupling problem with mixed initial-boundary conditions for the composite structures   

with quasi-periodic properties as follows 
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where , , , 1,2, ,i j k l n ; 0( , ) ( , )x t x t T    denotes the increment of temperature, 

( , )x t  the absolute temperature and 0T  the reference temperature;  T  denotes the upper 

bound of time; ( , )x t
u  denotes the displacement vector; ( , )ija x x  , ( , )ij x x  , 

( , )x x   and ( , )ijklC x x   are the thermal conductivity, thermal modulus, mass density 

and elastic tensor, ( ,( , ) ) ( , )x x x c xb xx      and ( , )c x x   is the specific heat; 

( , )h x t and 1( , ) ( ( , ), ( , )) ', nx t f x t f x tf are the internal heat source and the body force, 

where ' denotes the matrix transposition; 0

0( ), ( )x x u and 1( )xu are the initial increment 

of temperature, displacement and velocity respectively, which are chosen as 0 ( ) 0x   

and 0 ( ) 0x u in this paper. Let y x  be the local coordinates of unit cell [0,1]nY  , 

which contains the microscopic information, and then 

( , ) ( , ), ( , ) ( , ), ( , ) ( , ),

( , ) ( , ), ( , ) ( , )

ij ij ij ij

ijkl ijkl

b x x b x y a x x a x y x x x y

x x x y C x x C x y

    
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Obviously, they are 1-periodic functions in y , respectively. 

At first, we make following assumptions 

(S1) ( , )x y , ( , )b x y , ( , )ija x y , ( , )ijklC x y and ( , )ij x y are bounded measurable functions 

and smooth with respect to x , and 

1 0 20 ( , ), , ( , ), ( , ), ( , ), ( , )ij ijkl ijx y T a x y C x y x y b x y       

where are 1 and 2 are two positive constant independent of  . 

(S2) ( , )ija x y , ( , )ijklC x y  and ( , )ij x y are symmetric, and there exist two positive constant 

1  and 1  independent of   such that 
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where  ij is an arbitrary symmetric matrix and  i is an arbitrary vector with real 

elements; 

 

 

Figure 1: Macroscopic structure and microscopic unit cell 

Now we derive the multiscale computation formulas for the transient thermo-mechanical 

coupling problem of quasi-periodic composite material structures. For convenience, we 
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in which □ denotes the functions. 

Enlightened by the work in [Yang, Cui, Wu, Wang, and Wan (2015)], ( , )x t and 

( , )x t
u  can be expanded into following forms 
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From above expansions (11), we can write   as follows 
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and we will study these equations successively and define the homogenized problems, 

homogenized coefficients and corresponding cell functions. 
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According to the theory of partial differential equations, we can acquire that 0  and 0
u  

are independent of the microscale y , namely            
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0 0 ( , ), ( , )x t x t   u u                                                                                                  (23) 

Taking (24) into (20) and considering (18), (14), (15), (12) and (9), it can be obtained 
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 1  and 1
u  can be defined as follows  
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where 
1
( , )x yN  are matrix-valued functions and ( , )x yM  are vector-valued functions 
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Taking (27) and (28) into (25) and (26), it can be obtained that
1
( , )H x y , 
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( , )x yN  and 
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Existence and uniqueness of the cell problems (31) - (33) can be established based on 
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suppositions (S1) and (S2), Lax-Milgram lemma and Korn's Inequalities [Bensoussan, 

Lions, and Papanicolaou (1978)]. 

As for (21), using (18), (14), (15), (16) and (12), we get 
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Introducing (27) and (28) into (34) and (35), integrating over both sides of equations (34), 

(35) in Y  and respecting (31) - (33), following equations are obtained   
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where 0 ( )ija x , 0 ( )ijklC x , 0 ( )ij x , 0 ( )ijd x , 0 ( )b x , 0 ( )x  are homogenized coefficients and they 

can be defined as follows  
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 0 (( ,) )
1
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yx                                                                                                   (39)

According to (32) - (33) and definitions (40) - (41), it is easy to prove that 0 ( )ijd x  is 

equivalent to 0 ( )ij x . And according to supposition (S2) and [Bensoussan, Lions, and 

Papanicolaou (1978)], it follows that 0 ( )ija x , 0 ( )ijklC x , 0 ( )ij x and 0 ( )ijd x  are symmetrical 

and positive definite. Thus, the homogenized problem associated with the original 

problem (1) can be defined as follows    
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Further, we resolve to obtain the expressions of the second-order terms 2  and 2
u . 

Introducing the expressions (27), (28) of 1 , 1
u  and the homogenized equations (44) into 

(34) and (35), following equations are obtained  
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Then 2  and 2
u  can be defined as follows      
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Y
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C x y Y
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dyS x y
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       




  (53) 

Existence and uniqueness of the cell problems (49)-(57) can be established based on 

suppositions (S1) and (S2), Lax-Milgram lemma and Korn's Inequalities [Bensoussan, 

Lions, and Papanicolaou (1978)].    

In summary, the multiscale approximate solutions of problem (1) are defined as follows 

1,

0 1( , ) ( , ( , , ))x t x t x y t                                                                                             (54)
1, 0 1( , ) ( , ) ( , , )x t x t x y t  u u u                                                                                         (55)
2, 2

0 1 2( , ) ( ( , , ) ( , , ), ) x y t x y tx t x t                                                                        (56)
12, 0 2 2( , ) ( , ) ( , , ) ( , , )x t x t x y t x y t    u u u u                                                                  (57)

where 0 ( , )x t , 0 ( , )x tu  are solutions of homogenized problem (44); 1( , , )x y t , 
1( , , )x y tu and 2 ( , , )x y t , 2 ( , , )x y tu  are defined by (27), (28) and (47), (48), respectively. 
1, ( , , )x y t and 1, ( , , )x y t

u  denote first-order multiscale approximate solutions, 
2, ( , , )x y t and 2, ( , , )x y t

u  second-order multiscale approximate solutions. Set 

,

0

( , ) ( ),) k 1 2( ,
k

ik

i

i

x,tx t x,y,t  


  Z U U                  (58) 

where ( , , ), ( , , ) , ( ,, , ) ( )( )i i

ti i x y t x y t x y,tx y t    u uU . To compare , ( , )k x t  and , ( , )k x t
u  

( 1,2)s  with the original solutions ( , )x t  and ( , )x t
u , taking 1, ( , )x t

Z  into (3) and 

according to (8), (17), (19)-(21), we have 

1,ε ε

0 1

0 1 0 1 0 1

ε ε -2 -1

0 1 2

ε -2 -1

0 0 1 1 2 2

ε

1 1 0 12 2

Z U -( P P P U + U

P U - (P U +P U )-(P U +P U )- P U

=

P =P ε _ +ε _ + _ )( ε )

=F -ε _ ε _ _ _ _ ε _

F -P U -P U -εP_ _ U_

  (59) 

Then taking 2, ( , )x t
Z  into (3) and according to (8), (17), (19) - (21), we have 
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2

2,ε ε

0 1 2

0 1 0 2 1 0

11 2 2

1 2

2

2 22 1

Z U -( P P P U + U + U

P U - (P U +P U )-(P U

P =P ε _ +ε _ + _ )( ε ε )

=F -ε _ ε _ _ _ _ _

ε( _ _ )-ε _

ε

+P U +P U )

- P U +P U P U

=- P U +P U P_ _ -ε _ U( )

  (60) 

Remark 2.1 According to above detailed mathematical, it can be noted from (63) that the 

residual between the first-order multiscale approximate solutions and the solutions of 

original problem (1) is of order (1)O  that does not equal to 0. In the practical engineering 

computation, it cannot be omitted for a constant , so engineers conclude that the first-

order multiscale approximate solutions cannot be acceptted and the microscale 

fluctuation of the temperature and displacement are far from being captured. This is the 

reason why it is necessary to seek the higher order expansions. It can be concluded from 

(64) that the second-order multiscale solutions are equivalent to the solutions of original 

problem (1) with order ( )O   in nearly pointwise sense. Moreover, the numerical results 

presented in Section 4 clearly show that it is important to include the second-order 

corrector terms. 

Summing up, one obtains following results  

Theorem 2.1 The temperature and displacement fields for the transient thermo-

mechanical coupling problem (1) of quasi-periodic composite materials have the 

multiscale asymptotic expansions as follows      
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  (61) 
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  (62) 

where 0 ( , )x t  and 0 ( , )x tu  are the solutions of the homogenized problem (44), 
1
( )H x,y , 

1
( , )x yN  and ( ),x yM  are first-order auxiliary functions defined by (31)-(33), 
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1 2
( , )yH x  , 

1
( , )F x y , 

1 2
( , )yG x  , ( , )R x y ,  

1 2
( , )x y N , 

1
( , )x yP , ( ),x yS , ( , )x yQ  and 

1
),( yxM  are second-order auxiliary functions defined by (49)-(57), respectively, 

1( , )Z x,y,t and 2 ( , )x,y,tZ  are the asymptotic expansion functions depending on the 

two-scale variables x  and y . 

And then the temperature gradient, strains and stresses can be evaluated based on the 

chain rule (10) and the multiscale asymptotic expansions of temperature and 

displacement fields (65) and (66).                                  

3 Numerical implementation of multiscale method 

In this section, the multiscale algorithms based on the finite difference method in time 

direction and finite element method in spatial region for predicting the transient thermo-

mechanical coupling behaviors of quasi-periodic composite materials is presented. 

Note that all the cell problems (31) - (33) and (49) - (57) are associated with macroscopic 

coordinates x , which brings lots of complexities in numerical computation since we have 

to solve these cell problems at every point x . In practical applications, such as the 

damage analysis of composite materials, engineers often take the single cell as a unit to 

evaluate the damage degree of composite materials, which leads to a scale separation of 

material coefficients. The specific meaning of scale separation is written as follows 

ij ija (x,y)=ω(x)a (y)                                                                                                         (63) 

Thus, according to (31), the cell function 
1
( )H x,y  becomes 

1 1α αH (x,y)=H (y)                                                                                                            (64) 

and it is a solution of following problem 

1 1

1

( )
( ) in

( ) 0

i

ij

i j

Y

i

d

H y a
a y Y

y y

y

y

H y

 



   
        




                                                                          (65) 

Besides, the homogenized coefficient can be rewritten as 

0 0( ) ( )ij ija x x a                                                                                                                  (66) 

where 

0
( )1

( ) ( )
j

i ij ik
Y

k

j

H y
a ya a y dy

Y y

 



   

                                                                               (67) 

Other cell functions and the multiscale solutions also become simpler. Therefore, based 

on variable separations, all the cell functions are independent of x , which reduces the 
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complexity of computations effectively. And then we can give following multiscale 

algorithm based on the finite element and finite difference method. 

3.1 Multiscale numerical formulations 

3.1.1 Finite element computation of cell functions and homogenized parameters 

It is easy to see that cell problems (31) - (33) and (49) - (57) are all elliptic equations and 

the finite element solutions of cell functions 1

1

hH  can be obtained by solving the 

following FE virtual work equation on unit cell Y  

1

1 1

1

1

0, ( ) ( )

h

h

ij i
Y Y

j i i

H
a dy a dy V Y H Y

y y y





 


  
    

      (68) 

And the finite element approximation of homogenized parameter 0

ija  can be calculated as 

follows 

1

110 1
ij ik

Y

h

k

h

ij a y
H

a a d
Y y


 

 
  

                                                                                           (69) 

where 1h  is the mesh size and 1 ( )
h

V Y  denotes the finite element space, similarly to (72) 

and (73), (32) - (33), (39) - (43) and (49) - (57) can be solved, successively. 

3.1.2 Finite element-difference computation of homogenized equation 

The homogenized equations (44) are dynamic problem coupled by hyperbolic and 

parabolic equations. Thus, the spatial region   is divided by using the finite element 

mesh first, and then the temporal domain  0,T  is divided by using the finite difference. 

The semi-discrete scheme for solving homogenized equations is given as follows 

2 2 2 2

1 2 1 2 1

2 2 2

2
0 0 00 0 0

0

, ( )

h h h h
h h h h hi

ij ij

j j i

h h h

u
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 
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  (70) 
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 

 υ V

  (71) 

where 2 ( )
h

V  and 2 ( )
h
V  denotes the finite element spaces with mesh size 2h  on  . 

Then for any fixed  0,t T  the discrete variational equalities (74) and (75) are 

equivalent to the following coupled ordinary differential equation systems 
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where ( )tT  and ( )tU  are the vector of nodal temperature increment field and 

displacement field; 0
U , 1

U  and T are the initial displacement velocity and temperature 

increment field, respectively; and 

,C C , ,

, , ,

e e e e

e e e e

e e e e
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  (73) 

They are expressed as the following forms 
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  (74) 

where TN  and UN  are the shape function matrix; TB and UB  are the matrix of 

symmetric gradient of TN  and UN , respectively; 10h
a  is the element thermal conductivity 

matrix; 10h
β is the element thermal modulus matrix; 10h

C is the element stiffness matrix. 

And then, the first equation of (76) is integrated in time using the backward difference 

scheme [Leoni (2009)], and the second one is solved using the Newmark difference 

scheme [Leoni (2009)]. Then the above coupled system (76) can be rewritten as follows 
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  (75) 

where t  is the time step for one iteration and the temporal domain is divided by; 

1 2( 1) ,( 1,2, , ),0n lt n t n l t t t T           (76) 

Set 

 1 1n n n n   U U U U                                                                                                (77) 
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and   is a correction coefficient. Then the coupled system is decomposed into the 

following two sub-systems 

   1 1 1

(0)

n n n n nM tK M C tH         
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  (79) 

Finally, we can obtain the temperature and displacement fields at any time step through 

(82) and (83). It is well known that the Newmark scheme is unconditionally stable when 

 
2

0.5, 0.25 0.5      and we choose 0.5, 0.25    in this paper. 

3.1.3 Multiscale numerical solutions 

According to (58) - (61), the multiscale approximation solutions based on global structure 

  can be evaluated by 
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3.2 Algorithm procedures for the multiscale method 

The algorithm procedure for the multiscale method to predict the transient thermo-

mechanical coupling performance is stated as follows 
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1) Determine the geometrical constructions of the macroscopic structure   and cell 

domainY , and verify the material parameters of various constituents. 

2) Solve the cell problems (31) - (33) to get the finite element solutions of
1
( )H x,y , 

1
( , )x yN and ( ),x yM , respectively. Furthermore, the homogenized parameters

0 ( )ija x , 

0 ( )ijklC x , 
0 ( )ij x , 

0 ( )ijd x , 
0 ( )b x  and 

0 ( )x  are evaluated by formulas (38)-(43). 

3) With the homogenized parameters obtained in previous step, compute the 

homogenized solutions 0 ( , )x t  and 0 ( , )x tu  by solving the homogenized problem (44). 

4) Solve problems (49)-(57) by using the same FE meshes as in step 2 to get the FE 

solutions of
1 2

( , )yH x  , 
1
( , )F x y , 

1 2
( , )yG x  , ( , )R x y ,  

1 2
( , )x y N , 

1
( , )x yP , ( ),x yS , 

( , )x yQ  and
1

),( yxM , respectively. 

5) Solve the derivatives of the homogenized solutions 0 ( , )x t  and 0 ( , )x tu  with respect 

to spatial and temporal variables. The derivatives with respect to spatial variable are 

evaluated by the average technique on relative elements [Thomas (2013)] and the 

derivatives with respect to temporal variable are evaluated using the difference schemes 

in step 3. 

6) Compute the temperature and displacement fields using formulas (65) and (66), 

respectively. 

4 Numerical examples 

To illustrate to the effectiveness of the multiscale method for studying the transient 

thermo-mechanical coupling problem of quasi-periodic composite materials, some 

numerical results are given here. The macrostructure   and unit cell 2[0,1]Y   are 

shown in the Fig. 2. We consider that 1 8  . The cell is composed of two kinds of 

materials 1Y  and 2Y , each of which is homogeneous and isotropic. And the material 

properties are listed in Table 1. Besides, in problem (1), let 0 500T  , 0.1T  , 

( , ) 10000h x t  , ( , ) (0, 10)x t  f , 0 ( ) 0x   , 0 ( ) 0x u and 1( ) 0x u .The macrostructure  

  is clamped on its boundaries and the time step is chosen as 0.001t  . 

 

Figure 2: (a) Unit cell 2[0,1]Y  ; (b) domain   
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Since it is difficult to find the exact solutions of above problem, we have to take ( , )x t  

and ( , )x t
u  to be their finite element (FE) solutions ( , )FE x t  and ( , )FE x t

u  in the very 

fine mesh for comparison with different order approximate solutions. The triangulation 

partition is implemented, and the information of the FE meshes is listed in Table 2. Set 

0 0 1 1, 2 2,

0 0 1 1, 2 2,

( , ) ( , ), ( , ) ( , ), ( , ) ( , )

( , ) ( , ), ( , ) ( , ), ( , ) ( , )

FE FE FE FE FE FE

FE FE FE FE FE FE

e x t x t e x t x t e x t x t

x t x t x t x t x t x t

  

 

 

  

 

          

     u u uz u uzu uzu u
 

where 0 ( , )FE x t  and 0 ( , )FE x tu  denote the FE numerical solutions of the homogenized 

problem (44); 1, ( , )FE x t and 1, ( , )FE x t
u  denote the first-order multiscale numerical solutions, 

and 2, ( , )FE x t  and 2, ( , )FE x t
u  denote the second-order multiscale numerical solutions based 

on (84). And the norm 
 20, ; ( )L T L 

  is denoted by 2( )L L  for simplicity. 

Table 1: Material properties 

 Material 1 ( 1Y ) Material 2 ( 2Y ) 

ija  1 ij  0.01 ij  

ijklC  5

6

6.25

1.2

10

10 (5 )

ij kl

ik jl il jk

 

   



 
 

5

5

7.14

5.3

10

10 (6 )

ij kl

ik jl il jk

 

   



 
 

ij  500 ij  10 ij  

b  10 0.1 

  10 1 

For convenience, we introduce the following notation 

  1

1 2
2

( )H
v v dx

 
   

And we consider two cases 

Case 1: 1 2( ) 5 sin(4 ) sin(4 )xx x      

Case 2: 1 1 2 2(( ) 1 1 ) (1 )0 xx x xx      

According to the previous multiscale algorithms, the corresponding homogenized 

coefficients can be computed as 0 0.68ij ija  , 0 393.94ij ij  , 0 15.22b  , 0 8.38   and 

0 5 66.77 1.0 1710 0 ( )ijkl ij kl ik jl il jkC          . 

The relative numerical errors of the homogenization, first-order multiscale, and second-

order multiscale methods in 2( )L L - and 1( )L H -norm for two cases are listed in Tables 

3-6. Fig. 3 and Fig. 4 illustrate the numerical results for the temperature increment 
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gradient and strain distribution of Case 1 at time 0.1t  , including the homogenization, 

first-order multiscale, second-order multiscale solutions and the FE solutions in very fine 

mesh. Fig. 5 and Fig. 6 display previous four numerical results for the temperature, 

displacement, temperature gradient and strain along the line of 1 2x x  for Case 1 at 

time 0.05t  , respectively. Fig. 7 clearly shows the evolution of the relative errors of 

different approximate solutions with time t  for Case 1. 

Table 2: Comparison of computational cost 

 Multiscale FE computation Classical FE computation 
with refined meshes  Unit cell Homogenized equation 

Elements number 5566 20000 291456 

Nodes number 2884 10201 146449 

Running time 16.2s 432.8s 1928.7s 

Table 3: Comparison of computing results for temperature increment in 2L -norm  

 
2

2

0

( )

( )

L L

FE L L

e











 
2

2

1

( )

( )

L L

FE L L

e











 
2

2

2

( )

( )

L L

FE L L

e











 

Case 1 0.726833 0.727374 0.009774 

Case 2 0.720257 0.720645 0.014425 

Table 4: Comparison of computing results for temperature increment in 1H -norm  

 
1

1

0

( )

( )

L H

FE L H

e











 
1

1

1

( )

( )

L H

FE L H

e











 
1

1

2

( )

( )

L H

FE L H

e











 

Case 1 0.997141 0.994945 0.125979 

Case 2 0.997349 0.995377 0.180538 

Table 5: Comparison of computing results for displacement in 2L -norm  

 
2

2

0

( )

( )

L L

FE L L







u

u

z
 

2

2

1

( )

( )

L L

FE L L







u

u

z
 

2

2

2

( )

( )

L L

FE L L







u

u

z
 

Case 1 0.143016 0.039820 0.036475 

Case 2 0.160566 0.042948 0.037055 
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Table 6: Comparison of computing results for displacement in 1H -norm  

 
1

1

0

( )

( )

L H

FE L H







u

u

z
 

1

1

1

( )

( )

L H

FE L H







u

u

z
 

1

1

2

( )

( )

L H

FE L H







u

u

z
 

Case 1 0.788751 0.206704 0.200866 

Case 2 0.804421 0.209827 0.202001 

 

From Table 2, we can see that the mesh partition numbers of second-order multiscale 

approximate solutions are much less than that of refined FE solutions. Both the second-

order multiscale method and the direct FE numerical computations are performed on the 

same computer. And the approximate running times for the multiscale algorithm and 

classical FE computation with refined mesh are 471.2 seconds and 1928.7 seconds, 

respectively. We cannot easily solve the problem (1) directly by the classical numerical 

methods because it would require very fine meshes and the convergence of the FE 

method based on fine meshes for the nonlinear coupled problem is not very easy. 

Moreover, the proposed second-order multiscale method is suitable for the composite 

materials with a great number of cells, which can greatly save computer memory and 

CPU time without losing precision. And it is very important in engineering computations. 

From Fig.3-Fig.6 and Tables 3-6, it can be found that the newly second-order multiscale 

approximate solutions are in good agreement with the FE solutions in a refined mesh. But 

the homogenized solutions and first-order multiscale solutions have less effect 

approaching the refined-mesh FE solutions. The homogenized solutions give the original 

problem an asymptotic behavior, which is not enough for   that is not so small. So, the 

correctors are necessary, and the results show that the second-order correctors give much 

better approximation of the displacement, strain, temperature increment and its gradient. 

Furthermore, numerical results also show that only second-order multiscale solutions can 

accurately capture the microscale oscillating information of the multiscale problem. 

Besides, the relative errors between different approximate solutions and FE solutions 

obtained on refined mesh are also exhibited in Figure 7. It is worth to note that the 

relative errors are not growing significantly as time increases. This indicates that the 

multiscale method is a very good method for treating a long-time problem in some cases. 

Consequently, all the results demonstrate that the multiscale method is effective and 

efficient to predict the transient thermo-mechanical coupling behaviors of quasi-periodic 

composite materials. 
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Figure 3: Temperature increment gradient at 0.1t   for Case 1: (a) 
1

FE

x




; (b) 

0

1

FE

x




; (c) 

1,

1

FE

x




; (d) 

2,

1

FE

x




 

 

Figure 4: Strain at 0.1t   for Case 1: (a) 
,

1

1 FE

x

u


; (b) 

0

1

1,FE

x

u


; (c) 

1,

1,

1

FEu

x




; (d) 

2,

1,

1

FEu

x




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(a) 

 

(b) 

Figure 5: Comparison of different solutions on the line 1 2x x  at 0.05t   for Case 1: (a) 

temperature increment; (b) displacement 
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(a) 

 

(b) 

Figure 6: Comparison of different solutions on the line 1 2x x  at  0.05t   for Case 1: (a) 

temperature increment gradient; (b) strain 
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(a) 

 

(b) 

Figure 7: The evolution of relative errors with t  of Case 1 for (a) temperature increment 

gradient and (b) strain 
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5 Conclusion 

In this paper, the multiscale analysis method and related numerical algorithms are 

presented to predict the transient thermo-mechanical coupling behaviors of quasi-periodic 

composite structures. The multiscale formulations for the nonlinear and coupling problem 

are obtained, including the local cell problems, effective thermal and mechanical 

parameters, homogenized equations and second-order multiscale asymptotic expansions 

of temperature and displacement fields. The error analysis is given to indicate that the 

second-order multiscale approximate solutions have a much better approximation to the 

solutions of the original problem. Numerical results demonstrate that the local steep 

variations of the temperature, displacement and their gradient can be captured more 

precisely by adding the second-order correctors. And it can be also concluded that the 

multiscale method is not only feasible, but also accurate and efficient to predict the 

transient thermo-mechanical coupling behaviors of quasi-periodic composite structures. 

The high quality of the results encourage the application of proposed multiscale model and 

related numerical technique to deal with thermo-mechanical analysis of heterogeneous medias 

with much more complicated multiscale structures. And it is very helpful to the design and 

optimization of the composite structures. 
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