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Prediction of Compressive Strength of Self-Compacting Concrete 

Using Intelligent Computational Modeling 

Susom Dutta1, A. Ramachandra Murthy2, Dookie Kim3 and Pijush Samui4 

Abstract： In the present scenario, computational modeling has gained much importance 

for the prediction of the properties of concrete. This paper depicts that how computational 

intelligence can be applied for the prediction of compressive strength of Self Compacting 

Concrete (SCC). Three models, namely, Extreme Learning Machine (ELM), Adaptive 

Neuro Fuzzy Inference System (ANFIS) and Multi Adaptive Regression Spline (MARS) 

have been employed in the present study for the prediction of compressive strength of 

self compacting concrete. The contents of cement (c), sand (s), coarse aggregate (a), fly 

ash (f), water/powder (w/p) ratio and superplasticizer (sp) dosage have been taken as 

inputs and 28 days compressive strength (fck) as output for ELM, ANFIS and MARS 

models. A relatively large set of data including 80 normalized data available in the 

literature has been taken for the study. A comparison is made between the results 

obtained from all the above-mentioned models and the model which provides best fit is 

established. The experimental results demonstrate that proposed models are robust for 

determination of compressive strength of self-compacting concrete. 

Keywords: Self Compacting Concrete (SCC), Compressive Strength, Extreme Learning 

Machine (ELM), Adaptive Neuro Fuzzy Inference System (ANFIS), Multi Adaptive 

Regression Spline (MARS). 

1 Introduction 

Concrete is composed mainly of cement (commonly Portland cement), fine aggregate, 

coarse aggregate and water. Concrete is a versatile material that can easily be mixed to 

meet a variety of special needs and formed to virtually any shape. Concrete solidifies and 

hardens after mixing with water and placement due to a chemical process known as 

hydration. The water reacts with the cement, which bonds the other components together, 

eventually creating a stone-like material. The uniaxial compressive strength of concrete is 

considered as the most crucial property in case of concrete mix design and quality control 
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which is determined by number of factors. Several factors affect the concrete mix design 

like to derive a concrete as High-Performance Concrete, it should possess, in addition to 

good strength, several other favorable properties. The water/cement (w/c) ratio in the 

concrete is lower than normal concrete which requires special additives in the concrete, 

along with a superplasticizer to obtain good workability.  

The nature of aggregate is important to incur high strength. The gradation of the 

aggregates influences the workability. The order in which the materials are mixed is also 

important for the workability of the concrete. From engineering point of view, strength is 

the most important property of structural concrete. The strength of the concrete is 

determined by the characteristics of the mortar, coarse aggregate, fine aggregate and the 

interface. Property of concrete is influenced by the properties of each constituent added in 

it. For example, for the same quality mortar, diverse types of coarse aggregate with 

different shape, texture, mineralogy, and strength may result in different concrete 

strengths. The tests for compressive strength are generally carried out at about 7 or 28 

days from the day when the concrete is casted. Generally, strength after 28-days is 

standard and therefore essential and if required strength for other ages can be carried out. 

Accidentally, if there is some experimental error in designing the mix, the test results will 

fall short of required strength, the entire process of concrete design must be repeated 

which may be a costly and time consuming. The same applies to all types of concrete, i.e. 

normal concrete, self-compacting concrete, ready mixed concrete, etc. It is well 

acknowledged that prediction of the compressive strength of concrete is most important 

in modern concrete designing and in taking engineering decisions. 

The property of a self-compacting concrete (SCC) [Schutter et al (2008)] is the fresh 

concrete should flow around reinforcement and consolidate within formwork under its 

own weight that exhibits no defects due to segregation or bleeding.  The guiding principle 

for this type of concrete is that the sedimentation velocity of a particle is inversely 

proportional to the viscosity of the floating medium in which the particle exists. The mix design 

principle is that the flowability and viscosity of the paste is adjusted by proportioning the 

cement and additives, water to powder ratio and then by adding superplasticizers and Viscosity 

Modifying Admixtures (VMA). It requires manipulation of several mixture variables to ensure 

satisfactory flowable behavior and proper mechanical properties. Also, absence of theoretical 

relationships between mixture proportioning and measured engineering properties of SCC 

makes it more complex. 

This study adopts Extreme Learning Machine (ELM), Adaptive Neuro Fuzzy Inference 

System (ANFIS), Multivariate Adaptive Regression Spline (MARS) for prediction of 28 

days compressive strength of Self Compacting Concrete (SCC). ELM proposed by Huang 

et al. (2004), is an easy-to use and effective learning algorithm of single-hidden layer 

feed-forward neural networks (SLFNs). The classical learning algorithm in neural 

network, e. g. backpropagation, requires setting several user-defined parameters and may 

get into local minimum. ELM is used in various fields like Renewable Energy [Wang et 

al. (2015)], Neurocomputing [Fu A-M. et al. (2014)], Mechanical Engineering [Gao et al. 

(2013)], Bioinformatics [Priya et al. (2012)]. ANFIS [Takagi and Sugeno (1985)] can be 

trained to provide input/output data mappings and one can get the relationship between 

model inputs and corresponding outputs. ANFIS is a kind of artificial neural network that 
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is based on Takagi-Sugeno fuzzy inference system. It enables the knowledge that has 

been learnt in the network training to be translated into a set of fuzzy rules that describe 

the model input/output relationship in a more transparent fashion. It is employed in many 

fields such as Powder Technology [Pourtousi et al. (2015)], Applied Energy [Yang and 

Entchev (2014)], Hydrology [Chang and Wang (2013)], Communications [Lee et al. 

(2012)]. MARS is a flexible, more accurate, and faster simulation method for both 

regression and classification problems [Friedman (1991); Salford Systems (2001)]. It is 

capable of fitting complex, nonlinear relationships between output and input variables. 

Some examples of its usage are Biological conversations [Kandel et al. (2015)], 

Ecological Modeling [Pickens and King (2014)], Transportation [Sun et al. (2013)]. 

The data used in both these techniques is taken from Siddique et al.  (2011). 

2 Dataset employed 

The data used (Table 1) in both the techniques are normalized against their maximum 

values [Siddique et al. (2011)]. In carrying out the formulation, the data has been divided 

into two sub-sets:  

(a) Training dataset: This is required to construct the model. In this study, 64 (80% of 

total data) out of the 80 values are considered as training dataset. 

(b) A testing dataset: This is required to estimate the model performance. In this study, 

the remaining 16 (20% of total data) values are considered as testing dataset. 

Table 1: Details of the data for prediction of compressive strength of SCC 

Sr. 

No. 
Cement Fly ash Water/powder 

SP 

dosage 
Sand 

Coarse 

Agg 

Comp. 

Strength 

 (kg/m3) (kg/m3)  (%) (kg/m3) (kg/m3) (MPa) 

1 290 100 0.45 0.8 913 837 42.7 

2 250 261 0.55 0.5 478 837 17 

3 210 100 0.65 0.8 910 837 19.1 

4 250 160 0.55 0.5 742 837 24.1 

5 210 220 0.45 0.8 768 837 26.7 

6 290 100 0.65 0.2 709 837 26.6 

7 290 220 0.45 0.2 625 837 32.9 

8 250 160 0.55 0.5 742 837 26 

9 250 160 0.55 0.5 742 837 28.5 

10 250 160 0.55 0.5 742 837 26.4 

11 250 160 0.55 0 739 837 27.3 

12 317 160 0.55 0.5 594 837 29.1 

13 210 220 0.65 0.2 562 837 10.2 

14 250 160 0.55 0.5 742 837 25.3 

15 250 160 0.38 0.5 919 837 36.3 
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16 250 160 0.55 1 746 837 26.7 

17 250 160 0.72 0.5 566 837 11 

18 183 160 0.55 0.5 891 837 22.1 

19 220 180 0.39 0.35 916 900 49 

20 220 180 0.39 0.35 916 900 49 

21 160 240 0.39 0.35 886 900 44 

22 193 158 0.39 0.35 1024 900 44 

23 220 180 0.45 0.35 850 900 38 

24 198 232 0.34 0.2 874 900 46 

25 248 203 0.39 0.35 808 900 50 

26 237 133 0.36 0.2 1034 900 49 

27 220 180 0.39 0.35 916 900 49 

28 237 133 0.43 0.5 960 900 46 

29 275 155 0.43 0.5 827 900 48 

30 280 120 0.39 0.35 946 900 45 

31 170 200 0.43 0.2 930 900 31 

32 220 180 0.39 0.6 916 900 43 

33 220 180 0.39 0.35 916 900 47 

34 220 180 0.39 0.1 916 900 44 

35 198 232 0.36 0.5 872 900 52 

36 220 180 0.39 0.35 916 900 45 

37 220 180 0.33 0.35 982 900 51 

38 170 200 0.43 0.5 928 900 33 

39 275 155 0.43 0.2 830 900 36 

40 247 165 0.45 0.12 845 846 34.6 

41 238 159 0.4 0.29 844 844 37.8 

42 232 155 0.35 0.38 846 847 48.3 

43 207 207 0.45 0.4 845 843 33.2 

44 200 200 0.4 0.17 842 843 34.9 

45 197 197 0.35 0.28 856 856 38.9 

46 169 254 0.45 0 853 853 30.2 

47 163 245 0.4 0.2 851 851 26.2 

48 161 241 0.35 0.3 866 864 35.8 

49 350 162 0.59 0.09 768 840 51.7 

50 349 162 0.57 0.14 779 852 59.9 

51 350 133 0.52 0.16 815 883 55.3 

52 350 111 0.51 0.15 831 900 61 
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53 250 257 0.77 0.11 787 853 51.5 

54 427 115 0.45 0.12 779 844 59.4 

55 348 224 0.5 0.43 783 848 58.6 

56 350 90 0.48 0.14 852 923 46.5 

57 327 173 0.53 0.2 902 803 61.6 

58 380 145 0.48 0.1 788 854 73.5 

59 350 186 0.51 0.11 786 851 70.4 

60 380 145 0.48 0.13 988 659 65.5 

61 380 192 0.53 0.1 931 621 67.8 

62 275 250 0.67 0.09 775 840 54.5 

63 325 60 0.65 0.43 899 850 30.8 

64 325 60 0.65 0.43 899 850 32.6 

65 325 120 0.75 0.43 755 850 32.2 

66 249 60 0.68 0.43 1079 850 24 

67 325 60 0.85 0.43 722 850 13.3 

68 370 96 0.57 0.25 833 850 39.5 

69 400 60 0.63 0.43 718 850 30.4 

70 325 60 0.65 0.43 899 850 35.3 

71 370 24 0.69 0.62 770 850 18.7 

72 325 0 0.55 0.43 1042 850 41.2 

73 280 96 0.87 0.25 820 850 19.6 

74 325 60 0.65 0.75 896 850 27.7 

75 325 60 0.65 0.43 898 850 35 

76 325 60 0.65 0.12 900 850 31.4 

77 370 96 0.57 0.62 830 850 38.8 

78 325 60 0.65 0.43 898 850 34.3 

79 280 96 0.87 0.62 817 850 15.9 

80 370 24 0.69 0.25 772 850 26.4 

3 Extreme learning machine (ELM) model 

The ELM algorithm was originally proposed by Huang et al. in 2004 and it makes use of 

the SLFN. The main concept behind the ELM lies in the random initialization of the 

SLFN weights and biases. Then, using Theorem 1 and under the conditions of the 

theorem, the input weights and biases do not need to be adjusted and it is possible to 

calculate implicitly the hidden-layer output matrix and hence the output weights. The 

network is obtained with very few steps and very low computational cost. 

The defects of gradient-based learning in a single hidden-layer feedforward neural 

network (SLFN) are avoided by using ELM. It determines optimal weights analytically.  
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Let us consider the following two datasets. 

 N

iiitraining yxD
111 ,


                                 (1) 

 N

iiitesting yxD
122 ,


                             (2) 

Where x is the input, y is the output and N is number of datasets.  

In this paper, 

 sppwfascNormalizedx ,/,,,,
 

 ckfNormalizedy  . 

In a single hidden layer feed forward networks (SLFN), the relation between input and 

output is given below: 
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where wi is the input weight vector between the ith neuron in the hidden layer and the 

input layer, bi means the input bias of the ith neuron in the hidden layer, xj is the jth input 

data vector, f() is an activation function of the hidden neuron, βi is the output weight 

vector between the ith hidden neuron and the output layer, N  is number of hidden nodes, 

N is number of training samples  and yj means the target vector of the jth input data. 

Equation (3) can be written in the following way.  
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where H is the hidden layer output matrix of the network (Huang and Babri, 1998; Huang, 

2003).  

In ELM, the values of wi and bi are not tuned during training. Random values are 

assigned for wi and bi according to any continuous sampling distribution (Huang et al., 

2004; Huang and Siew, 2004, 2005). The value of β is determined from the following 

equation.  

TH 1                                                                                                                            (6) 

Where H-1 is the Moore-Penrose generalized inverse [Serre (2002)] of the hidden layer 

output matrix H. 

ELM has been developed by using MATLAB (MathWork Inc R2012a). 
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4 Adaptive neuro fuzzy inference system (ANFIS) model 

Fuzzy logic is a form of many-valued logic and it deals with reasoning that is 

approximate rather than fixed and exact. The nature of uncertainty in a slope design is 

very important that should be considered. Fuzzy set theory was developed specially to 

deal with uncertainties that are nonrandom in nature. 

There are several FISs that have been employed in various applications. The most 

commonly used include: 

• Mamdani Fuzzy Model; 

• Takagi-Sugeno-Kang fuzzy (TSK) model; 

• Tsukamoto fuzzy model; 

• Singleton fuzzy model. 

In fuzzy system, all sets are not crisp, but some are fuzzy. These fuzzy sets can be 

modeled in linguistic human terms such as large, small and medium [Takagi and Sugeno 

(1985)]. This is very valuable to model human behavior. A fuzzy set is a set containing 

elements that have varying degree of membership. The degree of membership gives 

fuzzy sets flexibility in modeling [Bezdek (1981)]. The membership can be discrete or 

continuous type. The most commonly used membership functions are triangular, 

trapezoidal, gaussian and bell function. ANFIS makes inference by fuzzy logic and 

shapes fuzzy membership function using neural network [Altrock (1995); Brown and 

Harris (1995)]. In the literature, there are several inference techniques developed for 

fuzzy rule-based systems, such as Mamdani and Sugeno [Brown and Harris (1995)]. In 

this study, Sugeno-type systems have been used. In Sugeno, output of the fuzzy rule is 

differentiated by a crisp function. Typical representation of a fuzzy rule in Sugeno system 

is given by: if x1 is A1 and x2 is A2…and xN is AN then y=f(x), where A1, A2… and AN are 

fuzzy sets and y is crisp function. In this system, outcome of each rule is crisp value and 

weighted average has been used to calculate the result of all the rules. The definition of 

the nonlinear mapping of Sugeno-type system (fFS) can be given as follows: 
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In which m is the number of rules, n is the number of data points and µA is the 

membership function of fuzzy set A. membership function has been determined 

iteratively to produce correct outputs by ANFIS. There are different types of membership 

functions such as triangular, trapezoidal, gaussian and bell function. In this analysis, 

Gaussian membership function has been used. The form of the gaussian function used is 

as follows: 
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where, c and is the mean and standard deviation of the data respectively. Learning 

process in ANFIS methodology is commonly performed by two techniques, i.e. back 

propagation and hybrid learning algorithms.  

ANFIS has been developed by using MATLAB (MathWork Inc R2012a). 

5 Multi adaptive regression spline (MARS) model 

MARS is widely accepted by researchers and practitioners for the following reasons.  

• MARS is capable of modeling complex non-linear relationship among variables 

without strong model assumptions.  

• MARS can capture the relative importance of independent variables to the dependent 

variable when many potential independent variables are considered.  

• MARS does not need long training process and hence can save lots of model building 

time, especially when the dataset is huge.  

Finally, one strong advantage of MARS over other classification techniques is the 

resulting model can be easily interpreted. It not only points out which variables are 

important in classifying objects/observations, but also indicates an object/observation 

belongs to a specific class when the built rules are satisfied. The final fact has important 

managerial and interpretative implications and can help to make appropriate decisions. 

The MARS model splits the data into several splines on an equivalent interval basis 

(Friedman 1991). In every spline, MARS splits the data further into many subgroups 

(Yang et al., 2003). Several knots are created by MARS.  These knots can be located 

between different input variables or different intervals in the same input variable, to 

separate the subgroups. The data of each subgroup are represented by a basis function 

(BF). The general form of a MARS predictor is as follows: 

          
 
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B

b

jbjjbbjjjb xHMaxHxMaxxf
1 1

0 ,0,0                   (9) 

where x=input, f(x) =output, P= predictor variables and B=basis function. Max (0, x-H) 

and Max (0, H-x) are BF and do not have to each be present if their  coefficients are 0. 

The H values are called knots. The spline function consists of two segments, i.e. 

truncated functions of the left-hand side of Equation (10) and right-hand side Equation 

(11) separated from each other by a so-called knot location [Veaux et al., 1993], as 

follows:  
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otherwise  

 if x > t 

 if x > t 

otherwise  
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where: t is the knot location and  txbq 
 &  txbq 

 are the spline functions. The 

MARS algorithm consists of (i) a forward stepwise algorithm to select certain spline 

basis functions, (ii) a backward stepwise algorithm to delete BFs until the “best” set is 

found, and (iii) a smoothing method which gives the final MARS approximation a certain 

degree of continuity. BFs are deleted in the order of least contributions using the 

generalized cross-validation (GCV) criterion (Craven & Wahba 1979). The GCV 

criterion is defined in the following way 

                                                                                        (12) 

where N is the number of data and C(B) is a complexity penalty that increases with the 

number of BF in the model and which is defined as: 

    BBBC  1                                                                                                    (13) 

where  is a penalty for each BF included into the model, it can be also regarded as a 

smoothing parameter. [Friedman 1991] provided more details about the selection of the 

MARS has been developed by using MATLAB (MathWork Inc R2012a). 

6 Result and discussions 

Error and Correlation Calculations 

The validity of each model can be verified using these following formulas: 

The mean absolute error (MAE) is a quantity used to measure how close predictions are 

to the actual value. 

                                                                                               (14)                             

Root-mean-square error (RMSE) is used to measure the differences between predicted 

value by the models and the actual values.  

                                                                                        (15)                                  

Coefficient of correlation(R) has been used as main criterion to examine the performance 

of the developed models. The value of R has been determined by using the following 

equation: 



 

 

 

166   Copyright © 2017 Tech Science Press             CMC, vol.53, no.2, pp.157-174, 2017 

  

   












n

i

ppi

n

i

aai

n

i

ppiaai

wwww

wwww

R

11

1

  

                                                                      (16)                                                                                                           

ρ is known as the Performance Index is used to check the accuracy of the predicted 

values. 

                                                                                                        (17)                               

where wai and wpi are the actual and predicted W values, respectively, aw  and pw  are 

mean of actual and predicted W values corresponding to n patterns. For a predictive 

model of high accuracy, the value of R should be close to one. 

For developing ELM, the numbers of hidden nodes have consequences on training 

performance. The best performance is obtained at 15 hidden nodes. Therefore, the 

number of hidden nodes is set to 15. The initial training datasets is assigned as 64. The 

Block Range is provided as 25. Radial basis function has been adopted as activation 

function. Graphs are plotted between Actual Normalized Strength and Predicted 

Normalized Strength. Figure 1 shows the performance of training and testing dataset 

respectively.  After the compilation of the model, following results are obtained. 

Training and testing performance are illustrated in the table 4. 

As shown in figure 1, the value of R is nearly close to one for training as well as testing 

datasets. Therefore, the developed ELM proves that it is quite capable of predicting of 28 

days compressive strength of SCC. 

The value of error and correlation functions for ELM is shown in table 4.  

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

P
re

d
ic

te
d

 N
o

rm
a

li
ze

d
 S

tr
en

g
th

Actual Normalized Strength

Training

Testing

Actual=Prediction

R (Training)= 0.9419

R (Testing)= 0.8949

 

Figure 1: Performance of training and testing dataset (ELM) 
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In ANFIS model, Gaussian membership function has been used in this analysis. The 

hypothesized initial numbers of membership functions for each input are 55. A suitable 

pattern has to be chosen for the best performance of the network. Figure 2 shows the 

architecture of ANFIS model for this study.  

 

Figure 2: Architecture of ANFIS model 

After the training (with 50 epochs) was complete, the final configuration for the Fuzzy 

Inference System (FIS) is: 

Number of output membership functions 55 

Number of fuzzy rules 55 

Neuro-fuzzy adaptive network for Strength: 

Number of input 6 (c, s, a, f, w/p and sp) 

Number of membership function for each input 55 

Type of membership functions for each input Gaussian 

Type of membership functions for each output  Linear 

Number of training epochs  50 

Training and testing performance are illustrated in the table 4. 

The performance of training and testing dataset has been illustrated in figure 2. It is 

observed from figure that the value of R is equal to one for training as well as testing 

dataset. So, this proves that it is the most effective technique/model for the prediction of 

28 days compressive strength of SCC. 

The value of error and correlation functions for ANFIS is shown in table 4. 



 

 

 

168   Copyright © 2017 Tech Science Press             CMC, vol.53, no.2, pp.157-174, 2017 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

P
re

d
ic

te
d

 N
o

rm
a

li
ze

d
 S

tr
en

g
th

Actual Normalized Strength

Training

Testing

Actual=Prediction

R (Training)= 0.999

R (Testing)= 0.9999

 

Figure 3: Performance of training and testing dataset (ANFIS) 

For MARS model, during training, the forward stepwise procedure was carried out to 

select 42 basis functions (BF) to build the MARS model. This was followed by the 

backward stepwise procedure to remove redundant basis functions. The final model 

includes 36 basis functions, which are listed in Table 2 together with their corresponding 

equations and am. 

Table 2: list of basis functions which give the best performance 

Basis Function Equation am 

BF1   Max (0, c -0.337078651685393) 0.4165 

BF2   Max (0, 0.337078651685393 -c) -0.5637 

BF3   Max (0, a -0.444444444444444) -0.0704 

BF4   BF3 * max (0, 0.43 -f) -0.0574 

BF5   BF1 * max (0, 0.333333333333333 -a) 1.5582 

BF6   Max (0, w/p -0.512479201331115) 1.1826 

BF7   Max (0, 0.512479201331115 –w/p) -0.9909 

BF8  
 Max (0, 0.444444444444444 -a) * max (0, sp -

0.923841059602649) 
-17.9948 

BF9  
 Max (0, 0.444444444444444 -a) * max (0, 

0.923841059602649 -sp) 
0.0267 

BF10   Max (0, s -0.593869731800766) 0.8714 

BF11   BF9 * max (0, s -0.555555555555556) 2.0546 

BF12   BF9 * max (0, 0.555555555555556 -s) -69.6125 
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BF13   BF1 * max (0, f -0.43) 23.4321 

BF14   BF1 * max (0, 0.43 -f) 2.9236 

BF15   BF6 * max (0, f -0.35) -5.7696 

BF16   BF2 * max (0, s -0.632183908045977) -1.8302 

BF17   BF2 * max (0, 0.632183908045977 -s) 101.1253 

BF18   BF17 * max (0, sp -0.748344370860927) -506.0321 

BF19   BF17 * max (0, 0.748344370860927 -sp) -2881.9644 

BF20   BF9 * max (0, 0.3 -f) -1.9861 

BF21   BF6 * max (0, c -0.224719101123596) -0.8562 

BF22   BF6 * max (0, 0.224719101123596 -c) -3.9773 

BF23   BF1 * max (0, sp -0.758278145695364) 1.2984 

BF24   BF1 * max (0, 0.758278145695364 -sp) -10.7550 

BF25   Max (0, sp -0.735099337748344) -0.1593 

BF26   Max (0, 0.735099337748344 -sp) 5.0107 

BF27   BF25 * max (0, f -0.2) 6.1196 

BF28   BF25 * max (0, 0.2 -f) 4.4944 

BF29   BF25 * max (0, s -0.689655172413793) 4.9905 

BF30   BF25 * max (0, 0.689655172413793 -s) -2.4291 

BF31   BF11 * max (0, f -0.3) 4.4487 

BF32   BF11 * max (0, 0.3 -f) -17.1001 

BF33   BF29 * max (0, 0.2 -f) -3.0855 

BF34   BF27 * max (0, a -0.111111111111111) -17.1058 

BF35   BF27 * max (0, 0.111111111111111 -a) -28.8211 

The final equation for the prediction of strength (fck) based on MARS model is given 

below: 

)( 0.2947
1

xBaf m

M

m

mck 




                                                                              

(18) 

where, 

a0= 0.2947  = coefficient of the constant basis function, or the constant term; 

 ma = vector of coefficients of the non-constant basis functions, m= 1, 2, …, M; 

mB  are the basis functions that are selected for inclusion in the model; 
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The ANOVA decomposition is specified in row wise for each ANOVA function. The 

columns represent summary quantities for corresponding ones. The first column lists the 

function number. The second gives the standard deviation (STD) of the function. This 

gives indication of its (relative) importance to the overall model and can be interpreted in 

a manner like a standard regression coefficient in a linear model. The third column 

provides another indication of the importance of the corresponding ANOVA function, by 

listing the GCV score for a model with the entire basis functions corresponding to that 

ANOVA function removed. This can be used to judge whether this ANOVA function is 

making an important contribution to the model, or whether it just slightly helps to 

improve the global GCV score. The fourth column gives the number of basis functions 

comprising the ANOVA and the last column of Table 3 gives the predictor variables 

associated with the ANOVA function. Table 3 shows the ANOVA decomposition for 

Training dataset. 

Table 3: ANOVA decomposition for Training dataset 

Function 

Number 

Standard 

Deviation 
GCV 

Basis 

Function 
Parameters Variable(s) 

1 0.112 0.059 2 2 1 

2 0.108 0.1 1 1 2 

3 0.005 0.003 1 1 3 

4 0.197 0.225 2 2 5 

5 0.596 1.645 2 2 6 

6 0.508 1.174 2 2 1 2  

7 0.017 0.005 1 1 1 3  

8 0.197 0.222 2 2 1 4  

9 0.048 0.058 2 2 1 5  

10 0.643 1.927 2 2 1 6  

11 0.062 0.021 2 2 2 6  

12 0.001 0.003 1 1 3 4  

13 0.041 0.014 2 2 3 6  

14 0.11 0.077 1 1 4 5  

15 0.116 0.08 2 2 4 6  

16 0.471 1.019 2 2 1 2 6  

17 0.081 0.033 2 2 2 3 6  

18 0.001 0.003 1 1 2 4 6  

19 0.032 0.008 3 3 3 4 6  

20 0.013 0.004 2 2 2 3 4 6  
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Figure 3 depicts the performance of training and testing dataset. It is observed from 

figure that the value of R is close to one for training but not close to one for testing 

datasets. Therefore, the developed MARS proves its feeble ability for prediction of 28 

days compressive strength of SCC. 

The value of error and correlation functions for MARS is shown in table 3. 
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Figure 4: Performance of training and testing dataset (MARS) 

The approximates of error and correlation functions i.e. mean absolute error (MAE), root-

mean-square error (RMSE), coefficient of correlation(R) and performance index (ρ) for 

all the methods employed are consolidated in table 4.   

Table 4: Approximates of error and correlation functions 

Models 

Employed 

Mean absolute 

error (MAE) 

Root-mean-square 

error (RMSE) 

Coefficient of 

correlation(R) 

Performance Index 

(ρ) 

 Training Testing Training Testing Training Testing Training Testing 

ELM 0.05842 0.06058 0.07457 0.08010 0.9419 0.8949 0.07918 0.14248 

ANFIS 0.00361 0.00092 0.00985 0.00211 0.9990 0.9999 0.01016 0.00356 

MARS 0.02106 0.09222 0.02582 0.11046 0.9932 0.8068 0.02671 0.20605 

A comparative study has been carried out between the developed ELM, ANFIS and 

MARS models. Figure 1, 2 and 3 shows the graph of R value of the training and testing 

datasets for ELM, ANFIS and MARS models respectively. It can be inferred from figure 

2 that the performance of ANFIS is best than the performance of ELM and MARS model. 

It is also clear from Table 5 that the performance of ANFIS is best. 
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 The performance of training and testing dataset is almost same for the ELM and MARS 

models but ANFIS shows the best performance among the three models. So, the 

developed models do not show overtraining. Therefore, the developed models have good 

generalization capability. Datasets are normalized between for developing the ELM, 

ANFIS and MARS models. The developed models do not make assumption about the 

dataset. The developed MARS gives equation for prediction of strength. However, 

ANFIS and MARS do not use statistical parameters of the dataset for prediction. ELM 

makes use of single-hidden layer feed-forward neural networks (SLFNs). ANFIS uses 

membership function for developing the model. MARS adopts basis function for final 

prediction.  

7 Summary and conclusions 

This study has described the application of ELM, ANFIS and MARS models for the 

prediction of 28 days compressive strength of Self Compacting Concrete (SCC). The 

performance of ANFIS is better than ELM and MARS model. User can employ the 

developed model for prediction of compressive strength. The developed models can be 

used as a quick tool for prediction of 28 days compressive strength of Self Compacting 

Concrete (SCC). This paper shows that the developed ANFIS is a robust model for 

prediction of 28 days compressive strength of Self Compacting Concrete (SCC). 
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