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Higher-Order Line Element Analysis of Potential Field
with Slender Heterogeneities

H.-S. Wang1,2, H. Jiang3,4, B. Yang2

Abstract: Potential field due to line sources residing on slender heterogeneities
is involved in various areas, such as heat conduction, potential flow, and electro-
statics. Often dipolar line sources are either prescribed or induced due to close
interaction with other objects. Its calculation requires a higher-order scheme to
take into account the dipolar effect as well as net source effect. In the present work,
we apply such a higher-order line element method to analyze the potential field with
cylindrical slender heterogeneities. In a benchmark example of two parallel rods,
we compare the line element solution with the boundary element solution to show
the accuracy as a function in terms of rods distance. Furthermore, we use more
complicated examples to demonstrate the capability of the line element technique.

Keywords: Electrostatics; Heat conduction; Integral equation technique; Line
element method; Mesh reduction method, Potential field problems.

1 Introduction

Potential field problems described by Laplace (and generally, Poisson) equation are
important in many areas such as thermal conduction, potential flow, and electrostat-
ics [Telles and Wrobel (1984); Liu (2009)]. Very often slender bodies (i.e., hetero-
geneities) are involved, such as nanowires in nano- and micro-electro-mechanical
systems, [Chen, Mukherjee, and Aluru (2008); Shen (2009)] and nanotube and
glass fibers in composite materials [Nishimura and Liu (2004); Wang and Yao
(2013); Chen and Mukherjee (2006); Fiamegkou, Athanasopoulos, and Kostopou-
los (2014); Han and Fina (2011)]. Many biological materials such as protein,
[Simonson (2003); Grochowski and Trylska (2008)] collagens and fibrins, [Dong
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(2009); Jiang, Yang, and Liu (2013)] and solvated biomolecular system [Lu (2008)]
fall in this class as well. The computational analysis of a system of slender bodies
poses great challenge due to the high aspect ratio. The literature has seen scarce
computational work on the potential field analysis with slender bodies despite its
importance, likely due to difficulties arising from the high aspect ratio.

Finite difference (FD) method [Mitchell and Griffiths (1980)] and finite elemen-
t (FE) method [Reddy and Gartling (2011)] are popular domain-based numerical
techniques. By them, the domain is discretized into grids/elements, and a field over
the domain is approximated piecewise with basis functions (such as polynomials)
over local grids/elements. They are versatile, capable of dealing with virtually any
physical problems. However, when they are applied to solve slender-body prob-
lems, a fine grid/mesh is required to reasonably resolve the characteristics of a
slender body and its surrounding domain. Even if an adaptive mesh is used, the
computational task can be prohibitively large. Boundary element (BE) method is
another popular numerical technique. It is derived from a boundary integral equa-
tion and only involves numerical discretization on the boundary of a domain. The
dimensionality reduction from a domain to a surface, typically by applying ana-
lytical integral kernels, is advantageous compared to the FD and the FE methods.
However, the resulting stiffness matrix is full in contrast to the sparse matrix of the
FD and the FE methods. When it is applied to solve slender-body problems, the
computational task remains prohibitively large. In order to effectively and accurate-
ly solve slender-body problems, further mesh reduction is required. For potential
field problems, [Chen and Mukherjee (2006)] introduced a line integral equation
model summing the surface charge density around a slender heterogeneity into a
line charge density meanwhile neglecting higher-order terms, such as line dipole
density due to uneven charge distribution around the perimeter. On the other hand,
such higher-order effect may become significant when the material property mis-
match between the slender body and the surrounding medium is significant or when
slender bodies closely interact with each other or with other objects. A line inte-
gral equation formulation has been applied to the hydrodynamics of a slender body
with only side net force density [Pozrikidis (2011); Tornberg and Shelley (2004)]
and with both net force and moment densities [Jiang, Wu, Zhao, and Yang (2014);
Jiang and Yang (2013)]. In the present work, we introduce a higher-order line in-
tegral equation technique for potential field problems with slender heterogeneities,
examine its efficiency and accuracy, and examine the characteristics of the potential
field around a slender body.

The rest of the paper is organized as follows. In Sec. 2, we derive the line integral
equations of potential field from the general boundary integral equations along a
slender body by expanding the integral kernels in Taylor series about the slender
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body central line and retaining the first two integral terms plus a finite term. The
finite terms of a cylinder are derived, which carry the local information of a cross-
sectional shape and represent the core structure behind the singularities. In Sec. 3,
the numerical treatments to the line integral equation formulation are discussed. In
Sec. 4, four examples are presented to demonstrate the capability and validity of
the present method, in the context of steady-state heat conduction. They are: (a)
temperature distribution along two parallel rods, both sources; (b) temperature dis-
tribution along two parallel rods, one source and the other sink; (c) temperature dis-
tribution along a spiral rod; (d) temperature distribution along a three-dimensional
(3D) architecture of rods. In the cases of two parallel rods, the problem is examined
with their distance as the parameter to show when the dipolar term is important and
when the line model is accurate. In Sec. 5, conclusions are drawn.
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Figure 1: Schematic of two parallel rods with separation distance.

2 Line integral equations of potential field around a slender heterogeneity

2.1 Line integral equations along a slender cavity

Consider a problem of a scalar potential field around a slender cavity C in a domain
Ω, as shown in Fig. 1. The fixed Cartesian coordinate system (x1, x2, x3; O) is
established for reference. Meanwhile, a Cartesian body frame (X1, X2, X3; xc) is
established with the second axis directed along the longitudinal direction and the
normal axes residing within a cross section, and origin xc being the centroid of the
same cross section, of C. A lower-case subscript index will be used to indicate a
component in the global frame, while an upper-case subscript index to indicate a
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component in the body frame. Whenever a numerical number or a Greek letter is
used to indicate a component, it refers to the body frame. (x, y, z) and (X , Y , Z) may
also be used to indicate the components, in the global and the body frames, respec-
tively, and they should not be confused with their bold-faced or indexed counterpart
of a vector or a component of a vector.

The scalar potential field T satisfies the Laplace equation, ∇2T = 0, within Ω. By
applying the reciprocal theorem, the following boundary integral equation can be
derived as

c(yyy)T (yyy) =
∫

Γ

[T ∗ (yyy,xxx)J (xxx)− J∗ (yyy,xxx)T (xxx)]dΓ(xxx) , (1)

where Γ is the boundary of Ω (including the surface of cavity C and a possible
external surface if Ω is finite), J ≡ −∇∇∇T · nnn, and n is the outward unit vector at a
point on Γ. Constant c= 1 if yyy∈Ω;= 1/2 if yyy∈ Γ;= 0 if yyy∈C. Integral kernels T ∗

and J∗ are the fundamental solutions satisfying ∇2T ∗+δ = 0 and J∗ ≡−∇∇∇T ∗ ·nnn,
where δ is the Dirac delta function representing a point source, in an infinite space.
They are given in terms of source point y and field point x by

T ∗ (yyy,xxx) =
1

4πr
and J∗ (yyy,xxx) =

r,n
4πr2 , (2)

where r = yyy− xxx, and r,n =
∂ r
∂xxx
·nnn.

In order to derive the corresponding line integral equation, let us approximate the
potential field along the perimeter of a cross section of the slender cavity as

T (xxx) = T a (xxxc)+T a
,i (xxx

c)ρi +o
(
ρ

2) . (3)

where ρρρ = xxx−xxxc, ρ = |ρρρ|, the subscript comma is reserved to denote the partial d-
ifferentiation with respect to the index that follows and the repeated index indicates
the Einstein convention of summation. T a should be understood as the average po-
tential on the perimeter. Meanwhile, T a

, j should be understood as the difference of
potential across the cross section (normalized by the distance) along jth axis, i.e.,
the nominal gradient of potential along the perimeter. They are assigned to centroid
xc to merely indicate that they belong to the cross section centered at xc. By setting
y to be on the center line of the slender cavity (hence yyy ∈C), and truncating Eq. (3)
at the linear order and substituting it to the second term on the right-hand side of
Eq. (1), we obtain∫

Γ sc
J∗ (yyyc,xxx)

(
T a (xxxc)+T a

,i (xxx
c)ρi

)
dΓ (xxx)

=
∫

Γ sc
T ∗ (yyyc,xxx)J (xxx)dΓ (xxx)+T ex (yyyc) ,

(4a)
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T ex (yyyc) =
∫

Γ ex
T ∗ (yyyc,xxx)J (xxx)dΓ (xxx)−

∫
Γ ex

J∗ (yyyc,xxx)T (xxx)dΓ (xxx) , (4b)

where Γ sc is the slender cavity boundary, and Γ ex is the external boundary. Exam-
ining it in the vicinity of yc, one may realize that the term on the left-hand side of
Eq. (4a) is equal to T (yc) plus residual on the order of ρ2/L2, where L is a char-
acteristic length scale, for instance, the radius of curvature of the slender cavity,
the distance between the slender body and an external boundary, and the distance
between slender bodies if there are multiple of them – whichever is the smallest.
Thus, the above equation may be rewritten as

T (yyyc) =
∫

Γsc
T ∗ (yyyc,xxx)J (xxx)dΓ(xxx)+T ex (yyyc) . (5)

We then expand T ∗ in Taylor series (up to the linear term) in the vicinity of xc and
use it to approximate Eq. (5) as

T (yyyc) =T f t (yyyc)+
∫

Γ

[
T ∗ (yyyc,xxxc)J (xxx)+T ∗,i (yyy

c,xxxc)ρi (xxx)J (xxx)
]

dΓ(xxx)+T ex (yyyc) ,
(6)

where the integrals are taken in the sense of Cauchy or Hadamard principal value
depending on the odd or even order of a singularity in the kernels, and T f t is a finite
term resulting from the limiting process of xc→ yc. By realizing that the integral
kernels are now independent of local circumferential direction (s) of a cross section,
we rewrite Eq. (6) as

T a = T f t +
∫

l

[
T ∗Q+T ∗,i Di

]
dl +T ex, (7)

where Q(≡
∮

Jds) is the net source density per unit length, and Di (≡
∮

Jρids) is
the source dipole density per unit length, derived from the distributed sources on
a perimeter. Q is conjugate with potential T a, and Di is conjugate with nominal
potential gradient T a

,i . Thus, we have derived the line integral equation of poten-
tial along center line l for a slender cavity based on the generic boundary integral
equation that makes no assumption b beyond Laplace’s equation.

In order to complete the formulation, higher-order integral equations are required.
By taking derivative of all terms in Eq. (1) with respect to source point y, and
following the same procedure of derivation as above, we can obtain the line integral
equation of potential gradient. For the sake of brevity, the derivation is omitted.
This equation is given by

T a
,p = T f t

,p +
∫

l

[
T ∗,pQ+T ∗,ipDi

]
dl +T ex

,i . (8)
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The above equations (7) and (8) are termed as the dual line-integral equations for
perimeter-average potential T a and nominal potential gradient T a

,p at a slender cav-
ity. They are accurate on the order of ρ/L, with higher-order terms neglected. The
loading terms of net source and source dipole are taken into account. In the fol-
lowing, we shall fill the slender cavity with a slender body so that the above line
integral equations can be further reduced.

2.2 Line integral equation formulation of a slender heterogeneity

Let us fill in the above slender cavity C with a heterogeneity H of the same shape.
The potential field inside H is modeled as one-dimensional, and is characterized
by using average potential T H and nominal gradients T H

,1 and T H
,2 along local axes

X and Y over a cross section, along central line l. The conjugate loading terms
are correspondingly heat source and dipoles, QH , DH

1 and DH
2 , defined over a cross

section. By assuming the continuity conditions of both potential and source fields
across the interface between the heterogeneity and surrounding medium, and sub-
stituting the heterogeneity fields in Eqs. (7) and (8), we have

T H = T f t +
∫

l

[
T ∗QH +T ∗,αDH

α

]
dl +T ex, (9)

T H
,β = T f t

,β +
∫

l

[
T ∗,β QH +T ∗,αβ

DH
α

]
dl +T ex

,β , (10)

where α and β range from 1 to 2, representing X and Y in the body frame.

2.3 Finite terms

The line integrals in Eqs. (6)–(10) are singular when the source and field points co-
incide. They are taken in the sense of Cauchy or Hadamard principal value depend-
ing on their odd or even order. It means that these line integrals do not contain any
physical information inside the core of the singularity, such as the cross-sectional
shape and the interfacial continuity condition. Thus, it must be added back to the
line-integral equations to represent the physics correctly. In light of this under-
standing, these finite terms are defined as

T f t =
∫

Γsc
T ∗JdΓ−

∫
l

[
T ∗Q+T ∗,αDα

]
dl, (11)

T f t
,β =

∫
Γsc

T ∗,β JdΓ−
∫

l

[
T ∗,β Q+T ∗,αβ

Dα

]
dl. (12)

In the present work, we specify the slender cavity C (and hence, the matching
heterogeneity H) to be of a circular cross section. Also, it is assumed that the
central line l is only slightly curved so that it can be reasonably approximated as
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straight locally at its any middle location. Under these conditions, the finite terms,
T f t , T f t

,1 and T f t
,2 can be derived. We have analytically integrated over an infinite

slender cavity and obtained the following results:

T f t =
1

2π
(ln2− lnR)QH , (13)

T f t
,α =

1
2πR2 DH

α , (14)

where R is the radius of the circular cross section. Assigning Q and Dα to slender
heterogeneity, it was implied that the fields are continuous across the interface.

3 Numerical line element method

In this section, we introduce a numerical scheme to solve the problem of potential
field with a slender heterogeneity as formulated above. A slender heterogeneity,
modeled as a line object, is discretized by using piecewise straight elements. A
single node is placed at the middle point of each element. Each node is associated
with 3 degrees of freedom, average potential T H , and nominal potential gradient
within a cross-sectional plane, T f t

,β , for β = 1, 2. The discretized versions of Eqs.
(9) and (10) are given by

T H(n) = T f t(n)+
N

∑
m=1

[
T̂ ∗(nm)QH(m)+ T̂ ∗(nm)

,α DH(m)
α

]
+T ex(n), (15)

T H(n)
,β = T f t(n)

,β +
N

∑
m=1

[
T̂ ∗(nm)
,β QH(m)+ T̂ ∗(nm)

,αβ
DH(m)

α

]
+T ex(n)

,β , (16)

where superscript n/m denotes the nth/mth node, and N is the total number of nodes.
The nodal finite terms are: T f t(n) = 1

2π
(ln2− lnR)QH(n), and T f t(n)

,α = 1
2πR2 DH(n)

α ,
in which R is taken to be the slender-body radius at the nth node. Note that only
a remote external boundary is considered here whose corresponding terms, if any,
are treated as prescribed.

The influence coefficients T̂ ∗(nm), T̂ ∗(nm)
,α , T̂ ∗(nm)

,β , and T̂ ∗(nm)
,αβ

are line integrals of
corresponding fundamental solutions over the element of the mth node. For exam-
ple, T̂ ∗(nm) =

∫
l(m) T ∗(yyyc(n),xxxc)dl(xxxc). These line integrals along a straight line can

all be analytically obtained; for the sake of brevity, they are not presented here.

Finally, we can apply Eqs. (15) and (16) to solve for nodal potential quantities or
corresponding loading sources, whichever are unknown, given the other. In the fol-
lowing section of numerical examples, we shall only consider such a case. If these
fields are all unknown, for instance, if the slender heterogeneity is itself conductive
and of a finite conductivity in the case of heat condition, another set of equations
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based on the physical process within the slender heterogeneity would be derived
to complete the formulation for a unique solution; we leave this consideration to
future studies. In converting Eqs. (9) and (10) to Eqs. (15) and (16), the only nu-
merical parameter is the element size. Similar to the hydrodynamic case, we have
found convergence of numerical results with mesh refinement, except the following
note. Since the finite terms (Eqs. (13) and (14)) are for interior nodes, the end effect
of a slender heterogeneity has not been captured in the present work. We need to
use a long enough element at the ends to avoid computational instability that may
occur otherwise. We leave it for future consideration to derive the finite terms for
an end node due to a semi-infinite line source.

4 Numerical examples

In this section, the proposed LE method is demonstrated by using examples in heat
conduction. At first, the case of two parallel rods with identical, higher temperature
in an infinite medium is used as a benchmark problem to demonstrate the validity
of the method. By the process of retrieving the local information, more physical
interpolations of the finite terms are given. It demonstrates that the proposed LE
method is valid at the slender heterogeneity limit compared to the BE method.
In order to further show the capability of the proposed LE method, three more
applications of (b) two anti-symmetric parallel rods with separation distance; (c) a
helical rod; and (d) 3-dimentional cross architecture of rods in a temperature field,
are discussed. Compared with the BE solution, the LE solution is shown to be valid
and far more efficient, which can be expected as a powerful tool for the study of
potential field problems.

Figure 2: Schematic of two parallel rods with separation distance.
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4.1 Two parallel rods, both sources

Two parallel rods as shown in Fig. 2 are used in the first case study. In this case, the
remote temperature is set to be zero, i.e. T∞ = 0. The temperature of both rods is
specified as one unit, representing a symmetric condition. The rod radius a is used
as the characteristic length scale and the length of each rod is 100 times of that.
Thus, the high aspect ratio satisfies the slender body assumption. For the purpose
of validity demonstration of the proposed LE method, the BE method is used to
provide a baseline solution in this case.
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Figure 3: Variation of heat flux along a slender rod, predicted with various mesh
densities.

For the case of rod separation distance d = 3a, the LE results of heat flux along
the rod obtained with 10, 20, 25 elements are shown in Fig. 3. The corresponding
BE result is also shown, which is due to a mesh of 100 equal divisions in length,
24 equal divisions in circumference, and 5 equal divisions in radius, over the rod
surface. This mesh was checked to yield converged BE solutions. The results
presented in Fig. 3 show that the solutions of LE method are stable and agree with
the results obtained by using the BE method.

Secondly, we examine the separation distance dependence of the LE solution. Fig-
ures 4(a) and (b) show the heat flux and flux gradient, respectively, when the sepa-
ration distance between the two rods are 3a, 5a, and 9a. The results show excellent
agreement between the LE and BE solutions, especially when the separation dis-
tance is relatively large. As shown in Fig. 4(a), the heat flux on the two rods are the
same, exhibiting the symmetry. When the separation distance is decreasing, the val-
ue of the heat flux decreases. As shown in Fig. 4(b), the heat flux nonuniformality
around the rod perimeter becomes larger when they get close to each other.

Upon the above mesh and separation distance dependence analysis, we present
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Figure 4: (a) Variation of heat flux (Q) and (b) Variation of heat flux gradient (Q,
1) around two slender rods, at separation distance d = 3a, 5a and 9a.

some detailed results for further analysis and discussion. Recalling in the process of
line integral derivation, the net source and source dipole are the integrations along
the perimeter of the cross-section, we are able to retrieve the local information by
curve fitting using the least square (LSQ) method. Let us assume that the local heat
flux can be expressed as

Jn = J0 +acos(∅)+bsin(∅) , (17)

where Jn is the total heat flux at a specific position on the center line of the slender
body; J0 =

∮
Jnds = (J1 + J2)/2; a and b are constants, which can be interpolated

as a =
∮

Jnka cos∅d∅ and b =
∮

Jnkb sin∅d∅, respectively; ∅ is the azimuth angle
ranging from 0 to 2π . If the position of y is specified as the middle point on the
center line of the rod, the curve fitting results and corresponding residual errors for
different separation distances between the two rods are shown in Fig. 5(a) and (b).
The parameters for curve fitting are listed in Table 1.

Meanwhile, the second order non-linear curve fitting to the full solution is tested,
which is expressed by

Jn = J0 +acos(∅)+bsin(∅)+ ccos(2∅)+d sin(2∅) , (18)

where c and d are additional constants, which can be interpolated as c =
∮

Jnkc

cos2∅d∅ and d =
∮

Jnkd sin2∅d∅, respectively. The curve fitting results and cor-
responding residual errors for various separation distances between the two rods
are shown in Figs. 6(a) and (b), respectively. The parameters obtained from the
curve fitting are listed in Table 2.

As shown in Figs. 5 and 6, both of the first-order and second-order curve fittings
can fit the local heat flux qualitatively well. It indicates that the local information
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Figure 5: The first order nonlinear curve fit result.

Table 1: First order nonlinear curve fit parameters result.

d value Value Standard Error

3
JJJ0 0.11942 0.00327
a −0.07062 0.00463
b −1.49E-13 0.0046

7
JJJ0 0.13068 7.93E-04
a −0.03633 0.00112
b 9.98E-13 0.00112

15
JJJ0 0.14426 1.97E-04
a −0.01878 2.78E-04
b −1.91E-15 1.17E-04

30
JJJ0 0.15999 5.48E-05
a −0.00971 7.74E-05
b −2.47E-16 0

dropped in the integration reduction can be retrieved if the geometry of the cross-
section is known. When the two rods are far enough away from each other, the
high-order term can be neglected, and the first order term can be used attaining
enough numerical accuracy. When the separation distance decreases, the fitting
results deviate from the full solution, as may be expected. This is because the high
order terms become more significant as the two rods get close to each other. By
comparing the results in Figs. 5(a) and Fig. 6(a), it can be seen that when the
separation distance is comparable to the diameter of the rod, the high order curve
fitting gives more accurate fitting results, suggesting that the higher-order term (>
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Figure 6: The second order nonlinear curve fit result.

Table 2: Second order nonlinear curve fit parameters result.

d value Value Standard Error

3

JJJ0 0.11942 9.47E-04
a −0.07062 0.00134
b 3.50E-16 0
c −0.02038 0.00134
d −7.97E-16 8.42E-04

7

JJJ0 0.13068 1.17E-04
a −0.03633 1.65E-04
b −3.35E-15 1.05E-04
c −0.00509 1.65E-04
d 3.21E-15 2.45E-04

15

JJJ0 0.14426 1.37E-05
a −0.01878 1.94E-05
b 1.14E-14 1.83E-05
c −0.00127 1.94E-05
e 9.88E-15 2.52E-05

30

JJJ0 0.15999 1.93E-06
a −0.00971 2.73E-06
b 2.10E-15 0
c −3.55E-04 2.73E-06
d −2.52E-15 1.52E-06

dipole) should be considered to achieve higher quantitative accuracy.
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4.2 Two parallel rods, one source and the other sink

In the second example, the thermal distribution of two anti-symmetric parallel rods
with various separation distances is analyzed. The geometry of both rods is the
same as in the above case. The heat flux condition is prescribed with Q = 1 unit
on one rod and Q = −1 unit on the other. They represent a source and a sink,
respectively. No dipole is prescribed on either rod. The LE results of temperature
and temperature gradient along the two rods obtained with 20 elements for selected
separation distance are shown in Fig. 7.
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Figure 7: (a) Variation of temperature (T ) and (b) temperature gradient (T , 1) dis-
tribution around the two anti-symmetry rods when d = 3a, 5a, 7a, 9a, 11a.

As shown in Fig. 7(a), the temperature on the two rods have the same value but dif-
ferent signs, exhibiting the skew symmetry. When the separation distance is small,
the absolute value of the temperature approaches to zero. When they get close to
each other, the source and sink of equal intensity basically annihilate. As shown
in Fig. 7(b), the temperature nonuniformality around the rod perimeter is trivial
when the rods are far away from each other but becomes significant when they get
close to each other. It might be worth noting that if the rods are thermoelastic, they
would bend due to the varying temperature around the surface and inside the rods.

4.3 A helical rod

In the third case study, a helical rod as shown in Fig. 8 is considered. The helical
rod is of radius R, and of a center-line shape defined by

x = c1ϕ cos(ϕ) , y = c2ϕ sin(ϕ) , z = c3ϕ (19)

where ϕ is the azimuth angle, (x,y,z) are the coordinates in the global coordinate
system, and c1, c2 and c3 are the constants. Here c1 = c2 = R, c3 = 50R and
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ϕ = [0,6π] are used. A uniform heat flux Q equal to one unit is applied through the
helix. The spiral slender body is discretized into 90 segments and each segment is
treated as a straight rod. The line represents the helical rod, and the black solid dots
show the nodes. The LE solution is superimposed on the rod curve, as shown in
Fig. 8. Each arrow starts from the location of a node, and the end of the arrow is at
(x+T,1x,y+T,1y,z+T,1z). It represents the calculated temperature “gradient” at the
specific position and illustrates the temperature nonuniformity. It can be seen that
the temperature gradient vectors (i.e., arrows) along the solid surface imply that the
heat is released more into the center of the spiral.

Figure 8: A slightly curved slender spi-
ral. The dots show the nodes used in
the simulation and the arrows represent
the predicted temperature gradient vec-
tors along the spiral when heat flux is
considered as a constant.

Figure 9: A 3d architecture of rods.
The dots show the nodes used in the
simulation and the arrows represent the
predicted temperature gradient vectors
along the spiral when heat flux is con-
sidered as a constant.

4.4 A 3D architecture of rods

A 3D cross architecture of rods in a temperature field is discussed in the fourth case.
The rods in a layer are overlapped with right angles to the rods in the neighboring
layers, which is defined by

x = c1 cos(ϕx)

y = c2 cos(ϕy)

z = c3 cos(ϕz)

where ϕx, ϕy and ϕz are the azimuth angles along x axis, y axis and z axis, sepa-
rately. (x,y,z) are the coordinates in the global coordinate system, and c1, c2 and
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c3 are the constants. Here c1 = c2 = c3. ϕy = ϕx +π/2, ϕz = π/2. The geometry of
the 3d cross architecture of rods is presented in Fig. 14. The 3d cross architecture
is stacked by 7 layers of lattices separated by the distance of 3. Each layer consists
of 7 parallel rods and the neighboring rods are separated by the distance of 3. Each
cross rod is discretized into 20 segments. The line with solid dots represents the
3D cross architecture of rods, and the black solid dots show the nodes as shown in
Fig.9.

When heat flux is assumed as a constant (Q = 1), the LE result of temperature
gradient (T,1) distributed on the 3D cross architecture of rods in global frame is
shown in Fig. 9. As shown in this figure, the temperature gradient vectors (i.e.,
arrows) of the cross architecture rods imply heat releasing into the center of 3D
cross architecture. The amplitude of the temperature gradient is decreasing from
the outer layer to the center layer but for each rod, the amplitude of the temperature
gradient is increasing from the ends to its middle point.

5 Conclusion

We have presented a numerical analysis of the potential field problem by applying
a second-order LE method. The LE method is generally a mesh reduction method
further from the BE method, specially devised for slender heterogeneities. The
derivation is rigorous by reducing from the boundary integral equation. It can be
applied to obtain the potential difference and flux difference (dipole) on oppos-
ing sides of a slender heterogeneity as well as the average potential and total flux
around it. Such higher-order terms can be important when to study close interaction
of slender heterogeneities with walls and with themselves. In particular, we have
examined in detail the benchmark case of two parallel rods by comparing the LE
and the BE solutions. The parameterized LE solution is reconstructed by using si-
nusoidal functions. The reconstructed fields agree with the BE solution well when
the rods distance is large (compared to the rod radius). They become different when
the rods get very close to each as expected. This comparative study demonstrates
the validity of the present LE method. Furthermore, three more examples are p-
resented to demonstrate the capability of the present LE method, including a long
spiral heterogeneity and a 3D cross architecture of rods emitting heat. The present
LE method may find itself for various applications in MEMS, fiber composites, etc.
involving slender heterogeneities.
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