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Dispersion of Axisymmetric Longitudinal Waves in A
Bi-Material Compound Solid Cylinder Made of

Viscoelastic Materials
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Abstract: The paper studies the dispersion of axisymmetric longitudinal waves
in the bi-material compound circular cylinder made of linear viscoelastic materials.
The investigations are carried out within the scope of the piecewise homogeneous
body model by utilizing the exact equations of linear viscoelasto-dynamics. The
corresponding dispersion equation is derived for an arbitrary type of hereditary
operator and the algorithm is developed for its numerical solution. Concrete nu-
merical results are obtained for the case where the relations of the constituents of
the cylinder are described through fractional exponential operators. The influence
of the viscosity of the materials of the compound cylinder on the wave dispersion is
studied through the rheological parameters which indicate the characteristic creep
time and long-term values of the elastic constants of these materials. Dispersion
curves are presented for certain selected dispersive and non-dispersive attenuation
cases under various values of the problem parameters and the influence of the afore-
mentioned rheological parameters on these curves is discussed. As a result of the
numerical investigations, in particular, it is established that in the case where the
rheological parameters of the components of the compound cylinder are the same,
the viscosity of the layers’ materials causes the axisymmetric wave propagation
velocity to decrease.
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1 Introduction

The study of time-harmonic wave dispersion and attenuation in viscoelastic ma-
terials and in elements of constructions made from these materials is required not
only by theoretical, but also by application needs. The nondestructive inspection
of tubes and pipes which are used in the infrastructure of many industries such
as gas, oil, and water transport can be taken as an example of such applications.
This is because, in many cases, these tubes are coated with viscoelastic polymer
coatings for corrosion protection and therefore, under nondestructive testing of the
tubes with guided waves, it is necessary to know the attenuation and dispersion
rules of the waves propagating therein. Moreover, the study of the propagation of
guided waves in viscoelastic materials and constructions made of those, used in vis-
coelastic systems for attenuation of vibrations and waves caused by an earthquake
or with various types of sound sources, is an another example of the application of
this study.

These and many other application fields using the results of the studies of wave
propagation in viscoelastic bodies necessitate investigation of related problems
from both the theoretical and experimental aspects. Nevertheless, up to now, inves-
tigations related to wave propagation in structural elements made from viscoelastic
materials have not been as numerous as studies which have been made for the same
structural elements made from purely elastic materials. We consider a brief review
of these investigations the first of which was made in the papers by Weiss (1959);
Tamm and Weiss (1961) which relate to Lamb wave propagation in an isotropic
viscoelastic layer with stress-free surfaces. In these papers, non-dispersive atten-
uation is considered, i.e. it is assumed that the elastic constants are complex and
independent of frequency. Lamb wave propagation in a plate from viscoelastic ma-
terials with small losses and frequency-dependent elastic moduli is investigated in
a paper by Coquin (1964) in which an approximate method is also proposed for
this investigation. Chervinko and Shevchenko (1986) investigated the influence of
low-compressibility materials with real Poisson’s ratio and frequency dependent
complex shear moduli on the propagation of Lamb waves.

Lamb wave propagation in elastic plates coated with viscoelastic materials was
also studied by Simonetti (2004) in which the effect of damped coatings on the
dispersion characteristics of waves in these plates was also analyzed. The results
reviewed above were noted and/or detailed in the monograph by Rose (2004).

Wolosewick and Raynor (1967) considered axisymmetric non-stationary torsional
wave propagation in the semi-infinite circular cylinder for the case where arbitrary
radial axially symmetric tangential shear stress distribution harmonic in time acts
on the end of the cylinder.
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Axisymmetric longitudinal guided wave dispersion and attenuation in a metal e-
lastic hollow cylinder coated with a polymer viscoelastic layer was studied by
Barshin- ger and Rose (2004). The viscoelasticity of the coated layer was taken
into consideration through attenuation coefficients of the longitudinal and shear
waves in the corresponding viscoelastic materials. These coefficients are deter-
mined experimentally for the frequencies in the order 1–5 MHz and are used for
determination of the corresponding complex moduli. Consequently, using these
complex moduli, the wave dispersion and attenuation dispersion in the bi-layered
hollow cylinder was investigated.

It follows from the foregoing review that the investigations on the dispersion of
guided waves in the plates or cylinders made from viscoelastic materials were car-
ried out mainly in the following cases: the complex modulus of viscoelastic mate-
rials is taken as frequency independent; the viscoelasticity of the materials is de-
scribed by the simplest models such as the Maxwell and Kelvin-Voigt models; and
the expression for the complex elasticity modulus is obtained experimentally for
concrete polymer materials. In other words, it follows from the works considered
above, that the corresponding investigations on wave dispersion and attenuation
were not connected with the more complicated and real models for viscoelastic
materials and a few of the numerical results obtained in these works do not illus-
trate the character of the influence of the rheological parameters of the viscoelastic
materials on this dispersion. In this sense, the first attempt was made in a paper
by Akbarov and Kepceler (2015) in which the torsional wave dispersion in the
sandwich hollow cylinder made from linear viscoelastic materials was studied. It
was assumed that the mechanical relations of the layers’ materials of the cylinder
are given through the fractional exponential operators by Rabotnov (1980) and the
numerical results obtained for the wave dispersion and attenuation dispersion are
connected with the rheological parameters which enter these operators.

Note that the fractional exponential operators by Rabotnov (1980) have many ad-
vantages for describing the hereditary viscoelastic properties of many polymer ma-
terials and epoxy-based composites with continuous fibers and layers. For instance,
these operators allow us to describe, with the very high accuracy required, the ini-
tial parts of the experimentally and theoretically constructed creep and relaxation
graphs and their asymptotic values. Moreover, these operators have many sim-
ple rules for complicated mathematical transformations, for example, the Fourier
and Laplace transformations were also used in the paper by Akbarov and Kepceler
(2015). The results obtained in this paper were also detailed in the monograph by
Akbarov (2015). Besides all the aforementioned advantages, through variation of
the rheological parameters contained within these operators, many possible cases
can be considered which relate to the dynamics of the viscoelastic materials. Note
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that such variation of the rheological parameters was already used in the paper by
Akbarov and Kepceler (2015).

In the present paper, taking into consideration the foregoing discussions and sig-
nificance of the related studies we continue the investigations begun by Akbarov
and Kepceler (2015) and attempt to investigate the axisymmetric longitudinal wave
dispersion in a bi-material compound circular solid cylinder made of viscoelastic
materials, the rheological relations for which are given through the fractional ex-
ponential operators by Rabotnov (1980). The exact field equations and relations of
the linear theory of viscoelasticity are used and it is assumed that perfect contac-
t conditions take place on the interface surface between the inner solid and outer
hollow cylinders.

2 Formulation of the problem

We consider the bi-material compound solid circular cylinder shown in Fig. 1 and
assume that the radius of the cross-section circle of the inner solid cylinder is R and
the thickness of the outer covering hollow cylinder is h. The values related to the
inner solid and external hollow cylinders will be denoted by the upper indices (2)
and (1), respectively.

We assume that the materials of the constituents are isotropic, homogeneous and
hereditary-viscoelastic. We use the cylindrical system of coordinates Orθz (Fig. 1)
for determination of the position of the points of the system under consideration.
Moreover, we assume that the cylinders have infinite length in the direction of the
Oz axis.

Figure 1: The geometry of the bi-material circular compound cylinder.

Thus, within the scope of the piecewise homogeneous body model let us investigate
the axisymmetric longitudinal wave propagation along the Oz axis in the considered
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compound cylinder with the use of the equations of motion of the linear theory for
viscoelastic bodies.

We write the governing field equations and mechanical relations for the case under
consideration.

Equations of motion:
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Strain-displacement relations:
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The relations (1)–(4) are the complete system of equations of the theory of linear
viscoelasticity for isotropic bodies; conventional notation is used.

Consider also formulation of the boundary and contact conditions. According to
Fig. 1 we can write the boundary and contact conditions.
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This completes the formulation of the problem on the axisymmetric longitudinal
wave dispersion in the bi-material compound solid cylinder made of viscoelastic
materials with arbitrary kernel functions λ

(n)
1 (t) and µ

(n)
1 (t) which enter the consti-

tutive relations (3).

3 Method of solution

First, we represent the displacements and strains as:
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and we use the relation∫ t
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in the mechanical relations (2) and (3). Thus, taking the relations (6)–(8) into
account in Eqs. (2) and (3), we can write the following relations:

T (n)
(ii) = λ

(n)
0 ϑ

(n)(r)ei(kz−ωt)+ eikz
ϑ

(n)(r)
∫ t

−∞

λ
(n)
1 (t− τ)e−iωτdτ

+2µ
(n)
0 γ

(n)
(ii)(r)e

i(kz−ωt)+ eikz
γ
(n)
(ii)(r)

∫ t

−∞

µ
(n)
1 (t− τ)e−iωτdτ. (9)

Using the transformation t − τ = s we can make the following manipulations for
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Taking the relations (8)–(11) into account we can write the following expressions
for the stresses:
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Thus, we obtain the complex constants Λ (n) and M(n) (13), the real and imaginary
parts of which are determined through the expressions (11) and (13). This means
that the complete system of field Eqs. (1), (2), (4), (12) and (13) for the viscoelas-
tic system, can also be obtained from that given for the purely elastic system by
replacing the elastic constants λ
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0 and µ
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0 with the complex constants Λ (n) and

M(n) respectively. In other words, the foregoing mathematical calculations confir-
m the dynamic correspondence principle (see Fung (1965)) for the problem under
consideration and the solution method used here coincides with this principle.

The real parts of the complex constants, i.e. Re Λ (n)(ω) and Re M(n)(ω), are
called the storage moduli, while the imaginary parts, Im Λ (n)(ω) and Im M(n)(ω),
are called the loss moduli. The ratios Im Λ (n)(ω)/Re Λ (n)(ω) and Im M(n)(ω)/
Re M(n)(ω) determine the phase shifting between the strains and stresses.

Thus, substituting the expression (12) into the equation of motion (1) and taking
the relation (6) into consideration we obtain the following equations of motion in
terms of the displacement amplitudes.
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According to the foregoing transformations and expressions in (6) and (12), the
boundary and contact conditions in (5) can be rewritten as follows:

σ
(2)
rr

∣∣∣
r=R

= σ
(1)
rr

∣∣∣
r=R

, σ
(2)
rz

∣∣∣
r=R

= σ
(1)
rz

∣∣∣
r=R

,

v(2)r

∣∣∣
r=R

= v(1)r

∣∣∣
r=R

, v(2)z

∣∣∣
r=R

= v(1)z

∣∣∣
r=R

,

σ
(1)
rr

∣∣∣
r=R(1+h/R)

= 0, σ
(1)
rz

∣∣∣
r=R(1+h/R)

= 0. (16)

For the solution to the problem formulated through Eqs. (14), (6), (7) and (12), with
the boundary and contact conditions in (16), according to Guz (2004), we employ
the following representation for the displacement amplitudes:
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where ω/k is the complex phase velocity of the wave propagation.

Thus, we determine the following expression for the function X (n) from Eqs. (18)
and (19).
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where J0(x) and Y0(x) are Bessel functions of the first and second kinds with zeroth
order, respectively.



Dispersion of Axisymmetric Longitudinal Waves 113

Using the expression (20) and Eqs. (17), (13), (6) and (7), we obtain the following
dispersion equation from the conditions in (16):
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(
ζ
(1)
3 ,χ

(1)
3

)
, β16 = β15

(
ζ
(1)
3 ,χ

(1)
3

)
, β24 = β23

(
ζ
(1)
3 ,χ

(1)
3

)
,

β26 = β25

(
ζ
(1)
3 ,χ

(1)
3

)
, β33

(
ζ
(1)
2 ,χ

(1)
2

)
=−ζ

(1)
2 J1

(
χ
(1)
2

)
,

β43

(
ζ
(1)
2 ,χ

(1)
2

)
=

(
−β

(1)
1

(
ζ
(1)
2

)2
−β

(1)
2

)
J0

(
χ
(1)
2

)
,

β35

(
ζ
(1)
2 ,χ

(1)
2

)
=−ζ

(1)
2 Y1

(
χ
(1)
2

)
,

β45

(
ζ
(1)
2 ,χ

(1)
2

)
=

(
−β

(1)
1

(
ζ
(1)
2

)2
−β

(1)
2

)
Y0

(
χ
(1)
2

)
, β34 = β33

(
ζ
(1)
3 ,χ

(1)
3

)
,

β36 = β35

(
ζ
(1)
3 ,χ

(1)
3

)
, β44 = β43

(
ζ
(1)
3 ,χ

(1)
3

)
, β46 = β45

(
ζ
(1)
3 ,χ

(1)
3

)
,

β53

(
ζ
(1)
2 ,χ

(1)
2h

)
= (Λ (1)(ω)+2M(1)(ω))

(
−
(

ζ
(1)
2

)2 1
2

(
J2

(
χ
(1)
2h

)
− J0

(
χ
(1)
2h

)))
+

Λ (1)(ω)

η
ζ
(1)
2 J1

(
χ
(1)
2h

)
+

Λ (1)(ω)

2
×
(

β
(1)
1

(
ζ
(1)
2

)2(
J2

(
χ
(1)
2h

)
−J0

(
χ
(1)
2h

))
−

s(1)2
η

J1

(
χ
(1)
2h

)
−β

(1)
2 J0

(
χ
(1)
2h

))

β63

(
ζ
(1)
2 ,χ

(1)
2h

)
=−M(1)(ω)ζ

(1)
2 J1

(
χ
(1)
2h

)
+

M(1)(ω)

4

(
β
(1)
1

((
ζ
(1)
2

)3(
3J1

(
χ
(1)
2h

)

− J3

(
χ
(1)
2h

))
+

ζ
(1)
2
η2 J1

(
χ
(1)
2h

)
+

(
ζ
(1)
2

)2

2η

(
J2

(
χ
(1)
2h

)
− J0

(
χ
(1)
2h

))
+β

(1)
2 ζ

(1)
2 J1

(
χ
(1)
2h

))
β55

(
ζ
(1)
2 ,χ

(1)
2h

)
= (Λ (1)(ω)+2M(1)(ω))

(
−
(

ζ
(1)
2

)2 1
2

(
Y2

(
χ
(1)
2h

)
−Y0

(
χ
(1)
2h

)))
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+
Λ (1)(ω)

η
ζ
(1)
2 Y1

(
χ
(1)
2h

)
+

Λ (1)(ω)

2
×
(

β
(1)
1

(
ζ
(1)
2

)2(
Y2

(
χ
(1)
2h

)
−Y0

(
χ
(1)
2h

))
−

ζ
(1)
2
η

Y1

(
χ
(1)
2h

)
−β

(1)
2 Y0

(
χ
(1)
2h

))

β65

(
ζ
(1)
2 ,χ

(1)
2h

)
=−M(1)(ω)ζ

(1)
2 Y1

(
χ
(1)
2h

)
+

M(1)(ω)

4

(
β
(1)
1

((
ζ
(1)
2

)3(
3Y1

(
χ
(1)
2h

)

−Y3

(
χ
(1)
2h

))
+

ζ
(1)
2
η2 Y1

(
χ
(1)
2h

)
+

(
ζ
(1)
2

)2

2η

(
Y2

(
χ
(1)
2h

)
−Y0

(
χ
(1)
2h

))
+β

(1)
2 ζ

(1)
2 Y1

(
χ
(1)
2h

))
βn4 = βn3

(
ζ
(1)
3 ,χ

(1)
3h

)
, βn6 = βn5

(
ζ
(1)
3 ,χ

(1)
3h

)
,

βn1 = βn2 = 0, n = 5,6. (22)

In relation (22), Jn(x) and Yn(x) are Bessel functions of the first and second kinds,
respectively. Moreover in (22) the following notation is used:

χ
(n)
2 = kRζ

(n)
2 , χ

(n)
3 = kRζ

(n)
3 , n = 1,2,

χ
(1)
2h = kR

(
1+

h
R

)
ζ
(1)
2 , χ

(1)
3h = kR

(
1+

h
R

)
ζ
(1)
3

β
(n)
1 =

(Λ (n)(ω)+2M(n)(ω))

(Λ (n)(ω)+M(n)(ω))

β
(n)
2 =

M(n)(ω)

(Λ (n)(ω)+M(n)(ω))
−ρ

(n)
(

ω

k

)2
(Λ (n)(ω)+M(n)(ω))−1. (23)

Thus, the dispersion equations obtained for the considered wave propagation prob-
lems have been derived in the form (21)–(23).

In the case where λ
(n)
1c = λ

(n)
1s = µ

(n)
1c = µ

(n)
1s = 0 in (13), i.e. in the case where

Λ (n) = λ
(n)
0 and M(n) = µ

(n)
0 the foregoing dispersion equation transforms into the

corresponding one obtained for the wave dispersion in the purely elastic case which
is detailed for instance in the papers by Akbarov and Guliev (2009), Akbarov and
Ipek (2010) and Akbarov (2013) and in the monograph by Akbarov (2015).

4 Numerical results and discussions

4.1 Selection of the operators in (3) and dimensionless rheological parameters

According to the problem formulation, we must take the complex wave number k
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which can be presented as follows:

k = k1 + ik2 = k1(1+ iβ ), β =
k2

k1
, (24)

where k2 (or parameter β in (24)), i.e. the imaginary part of the wave number k,
defines the attenuation of the wave amplitude under consideration and β is called
the coefficient of the attenuation.

We determine the phase velocity of the studied waves through the expression

c =
ω

k1
(25)

and introduce the notation c(n)20 =

√
µ
(n)
0 /ρ(n).

We use below the arguments

c

c(2)20

, k1R, and
h
R
. (26)

Thus, to solve the dispersion equation (21) it is necessary to give the values of
λ
(n)
1c ,λ (n)

1s , µ
(n)
1c and µ

(n)
1s which are determined by the expressions in (11) through

the kernel functions µ
(n)
1 (t) and λ

(n)
1 (t) of the operators in (3). We recall that these

operators are the viscoelastic properties of the materials of the cylinder’s layers.
Consequently, for determination of the quantities λ

(n)
1c , λ

(n)
1s , µ

(n)
1c and µ

(n)
1s , it is

necessary to give explicit expression for the functions µ
(n)
1 (t) and λ

(n)
1 (t).

As in the papers by Akbarov (2014) and Akbarov and Kepceler (2015), here we also
assume that the viscoelasticity of the materials of the cylinder’s layers is described
by Rabotnov’s (1980) fractional exponential operator, i.e. we assume that

µ
(n)∗

ϕ(t) = µ
(n)
0

[
ϕ(t)−

3β
(n)
0

2(1+ν
(n)
0 )

Π
(n)∗
α(n)

(
−

3β
(n)
0

2(1+ν
(n)
0 )
−β

(n)
∞

)
ϕ(t)

]
,

λ
(n)∗

ϕ(t) = λ
(n)
0

[
ϕ(t)+

β
(n)
0

(1+ν
(n)
0 )

Π
(n)∗
α(n)

(
−

3β
(n)
0

2(1+ν
(n)
0 )
−β

(n)
∞

)
ϕ(t)

]
,

E(n)∗
ϕ(t) = E(n)

0

[
ϕ(t)−β

(n)
0 Π

(n)∗
α(n)

(
−β

(n)
0 −β

(n)
∞

)
ϕ(t)

]
,

ν
(n)∗

ϕ(t) = ν
(n)
0

[
ϕ(t)+

1−2ν
(n)
0

2ν
(n)
0

β
(n)
0 Π

(n)∗
α(n)

(
−β

(n)
0 −β

(n)
∞

)
ϕ(t)

]
, (27)

where

Π
(n)∗
α(n) (x

(n))ϕ(t) =
∫ t

0
Π

(n)
α(n)(x

(n), t− τ)ϕ(τ)dτ,
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Π
(n)
α(n)(x

(n), t) = t−α(n)
∞

∑
p=0

(x(n))pt p(1−α(n)))

Γ ((1+ p)(1−α(n)))
, 0≤ α

(n) < 1. (28)

In (28) Γ (x) is the gamma function. Moreover, the constants α(n), β
(n)
0 and β

(n)
∞ in

(27) and (28) are the rheological parameters of the n-th component of the cylinder.

According to expressions in (27), we can write that

(λ (n)∗+
2
3

µ
(n)∗)ϕ(t) = (λ

(n)
0 +

2
3

µ
(n)
0 )ϕ(t). (29)

As (λ (n)
0 + 2

3 µ
(n)
0 ) is the modulus of volume expansion (denote it by K(n)

0 ), we can
conclude that the selection of the operators in (27) corresponds to the case where
the volumetric expansion of the materials of the layers is purely elastic. Introducing
the notation:

T (n) = T (n)
rr +T (n)

θθ
+T (n)

zz , D(n)
rr = T (n)

rr −T (n),

D(n)
θθ

= T (n)
θθ
−T (n), D(n)

zz = T (n)
zz −T (n),

D(n)
rz = T (n)

rz , s(n)rr = ε
(n)
rr −θ

(n)/3, s(n)
θθ

= ε
(n)
θθ
−θ

(n)/3,

s(n)zz = ε
(n)
zz −θ

(n)/3, s(n)rz = ε
(n)
rz , (30)

the constitutive relations in (2) can be rewritten as follows

T (n)(t) = K(n)
0 θ

(n)(t), D(n)
(ii) = 2µ

(n)∗s(n)(ii), (ii) = rr;θθ ;zz;rz (31)

As usual in the literature, D(n)
(ii) (s(n)(ii)) is called the component of the deviatoric stress-

es (strains).

Consequently, it follows from (31) that in the case under consideration, the operator
µ(n)∗ is sufficient to describe the viscoelasticity of the materials of the layers.

According to Rabotnov (1980); Adojfsson et al. (2005); Sawicki and Padovan
(1999), and other works listed therein and according to the Laplace transformation

f̄ (s)=
∫

∞

0
f (t)e−stdt of the functions Πα(x, t) (28) and Π1α(x, t)=

∫ t

0
Πα(x, t− τ)

dτ which are

Π̄α(x,s) =
1

s1−α − x
, Π̄1α(x,s) =

1
s(s1−α − x)

, (32)

In the papers by Akbarov (2014); Akbarov and Kepceler (2015) the mechanical
meaning of the rheological parameters α(n), β

(n)
0 and β

(n)
∞ was detailed. It was con-

cluded that the dimensionless rheological parameter α(n) characterizes the mechan-
ical behavior of the viscoelastic material around the initial state of the deformation,
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i.e. in the vicinity of t = 0. Moreover, it was concluded that the dimension of the
rheological parameter β

(n)
∞ coincides with the dimension of the rheological param-

eter β
(n)
0 and is T α(n)−1, where T is the time dimension. And, according to (27) and

(28), the following expressions are obtained for the long term values of the elastic
constants:

λ
(n)
∞ = lim

t→∞
λ
(n)∗ = λ

(n)
0

(
1+

1

1+ν
(n)
0

1

(3/(2(1−ν
(n)
0 ))+d(n))

)
,

µ
(n)
∞ = lim

t→∞
µ
(n)∗ = µ

(n)
0

(
1− 3

2(1+ν
(n)
0 )

1

(3/(2(1−ν
(n)
0 ))+d(n))

)
,

E(n)
∞ = lim

t→∞
E(n)∗ = E(n)

0

(
1− 1

1+d(n)

)
,

ν
(n)
∞ = lim

t→∞
ν
(n)∗ = ν

(n)
0

(
1+

1−2ν
(n)
0

2ν
(n)
0

1
1+d(n)

)
, (33)

where

d(n) =
β
(n)
∞

β
(n)
0

. (34)

is used. The expressions (33) and (34) show that the constant d(n) characterizes the
long-term values of the elastic constants.

Consider the expressions for µ
(n)
c and µ

(n)
s for the selected fractional exponential

operator (27) and (28). Using the relations (11) and (27) these expressions can be
written as follows:

µ
(n)
c = µ

(n)
0

[
1− 3

2(1+ν
(n)
0 )

(
d(n)+β

(n)
01

)−1
Π

(n)
α(n)c

(−β
(n)
01 −β

(n)
∞ ,k1Rc)

]
,

µ
(n)
s =−µ

(n)
0

3

2(1+ν
(n)
0 )

(
d(n)+β

(n)
01

)−1
Π

(n)
α(n)s

(−β
(n)
01 −β

(n)
∞ ,k1Rc), (35)

where

β
(n)
01 =

3β
(n)
0

2(1+ν
(n)
0 )

. (36)

We recall that the ratio µ
(n)
s /µ

(n)
c is the loss tangent, i.e. tanη(n) = µ

(n)
s /µ

(n)
c , where

the angle η(n) can be interpreted as providing the phase angle by which the devia-
toric strain lags behind the deviatoric stress in steady-state harmonic oscillation in
the viscoelastic materials under consideration.
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Thus, substituting (iω) for s in the Laplace transformation (32) of the core func-
tion (28) of the fractional exponential operator (27) and doing some mathematical
manipulations, we obtain

Π
(n)
α(n)c

(−β
(n)
01 −β

(n)
∞ ,k1Rc) =

(ξ (n))2 +ξ (n) sin
πα(n)

2

(ξ (n))2 +2ξ (n) sin
πα(n)

2
+1

,

Π
(n)
α(n)s

(−β
(n)
01 −β

(n)
∞ ,k1Rc) =

ξ (n) cos
πα(n)

2

(ξ (n))2 +2ξ (n) sin
πα(n)

2
+1

. (37)

where

ξ
(n) = (Q(n)

Ω)α(n)−1, Q(n) =
c(n)20

R(β (n)
01 +β

(n)
∞ )

1
1−α(n)

, Ω = k1R
c

c(2)20

. (38)

It follows from the foregoing discussions on the rheological parameters β
(n)
∞ and

β
(n)
0 , that Q(n) and ξ (n) in (37) and (38) are dimensionless parameters. Moreover,

it follows from (35), (37) and (38), and from the numerical analyses made in the
papers by Akbarov (2014) and Akbarov and Kepceler (2015) that µ

(n)
s /µ

(n)
0 → 0 as

ξ (n)→ 0 or as ξ (n)→∞, but the absolute values of µ
(n)
c (Π

(n)
α(n)c

) decrease (increase)

monotonically with ξ (n) and µ
(n)
c /µ

(n)
0 → 1 (µ(n)

c /µ
(n)
0 → µ

(n)
∞ /µ

(n)
0 ) as ξ (n) →

0(ξ (n)→ ∞).

Now we attempt to give mechanical sense to the parameter Q(n) , although such
meaning has been already discussed in the monograph by Akbarov (2015) and in
the papers by Akbarov (2014); Akbarov and Kepceler (2015). Thus, according to
these references we introduce the notation

t(n)c =
(

β
(n)
01 +β

(n)
0

) −1
(1+α(n)) (39)

and call it the characteristic creep time for the n-th layer’s material. According to
(38) and (39), we obtain

Q(n) = t(n)c c(2)20 /R. (40)

It follows from (40) that for fixed c(2)20 /R an increase (a decrease) in the values of
Q(n) means an increase (a decrease) in the values of the characteristic creep time
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t(n)c . Therefore we call the parameter Q(n) the dimensionless characteristic creep
time.

The other dimensionless rheological parameter which was introduced above is the
parameter d(n) (34). This parameter enters into the expressions (33) and (35) and
characterizes the long-term values of the mechanical properties, i.e., for instance,
the values of µ

(n)
∞ are determined by expression (33) and µ

(n)
∞ < µ

(n)
0 . Nevertheless,

the magnitude of µ
(n)
∞ increases with d(n). To be more precise, the following relation

occurs

µ
(n)
∞ → µ

(n)
0 , µ

(n)
s → 0 as d(n)→ ∞. (41)

Consequently, the wave dispersion curves in the considered viscoelastic system
must approach the corresponding ones obtained for the same purely elastic system
with the constant d(n).

At the same time, according to the expressions (37) and (38), we can write the
following limit cases:

ξ
(n)→ ∞; Π

(n)
α(n)c

(−β
(n)
1 −β

(n)
∞ ,k1Rc)→ 1; Π

(n)
α(n)s

(−β
(n)
1 −β

(n)
∞ ,k1Rc)→ 0

as (Q(n)
Ω)→ 0 or as k1R→ 0, (42)

ξ
(n)→ 0; Π

(n)
α(n)c

(−β
(n)
1 −β

(n)
∞ ,k1Rc)→ 0; Π

(n)
α(n)s

(−β
(n)
1 −β

(n)
∞ ,k1Rc)→ 0

as (Q(n)
Ω)→ ∞ or as k1R→ ∞. (43)

It follows from the relation (42) that in the cases where (Q(n)Ω)� 1, the behavior
of the viscoelastic system must be very close to the corresponding purely elastic
system with long-term values of the elastic constants. As well, it follows from the
relation (43) that in the cases where (Q(n)Ω)� 1, the behavior of the viscoelastic
system must be very close to that of the corresponding purely elastic system with
instantaneous values of the elastic constants at t = 0.

Thus, according to the foregoing discussions, we can conclude that the influence
of the viscosity of the viscoelastic materials under consideration on the wave prop-
agation velocity dispersion (i.e. on the dependence between c/c(2)20 and k1R) and
on the wave attenuation dispersion (i.e. on the dependence between the attenuation
coefficient β (24) and k1R) can be characterized through the parameters Q(n) and
d(n). It must be taken into account that an increase in the values of the parameters
Q(n) and d(n) will correspond to a decrease in the viscous part of all the viscoelastic
deformations of the constituents. Note that the influence of the other rheological
parameter α(n) on the viscous part of the viscoelastic deformations can be taken
into account through the parameter Q(n) (38).
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This completes consideration of the selection of the dimensionless rheological pa-
rameters through which we will study the influence of the viscoelasticity properties
of the layers’ materials on the axisymmetric longitudinal wave dispersion.

4.2 On the algorithm for numerical solution to the dispersion equation (21)

As the components βi j in (22) are complex, the values of the determinant obtained
in (21) are also complex. Therefore the dispersion equation (21) can be reduced to
the following one∣∣det

∥∥βi j
∥∥∣∣= 0. (44)

Here
∣∣det

∥∥βi j
∥∥∣∣means the modulus of the complex number det

∥∥βi j
∥∥. Consequent-

ly for construction of the dispersion curves it is necessary to solve numerically the
equation (44) for the selected problem parameters. In this solution procedure, the
values of all the problem parameters (except c,k1R and β ) are selected in advance.
Consequently, the equation (44) has three unknowns: c, k1R and β which must be
determined from this equation. Note that in the corresponding purely elastic prob-
lems the dispersion equation contains only two unknowns: c and k1R. The values
of c are determined for each possible selected value of k1R through the solution to
this equation. Moreover, in the purely elastic case this solution procedure is car-
ried out by employing the well-known “bi-section” method which is based on the
sign change of the dispersion determinant. A more detailed description of the so-
lution algorithm of the dispersion equations related to the purely elastic problems
is given in the monograph by Akbarov (2015) and in papers such as Akbarov and
Guliev (2009); Akbarov and Ipek (2010). However, in the case under consideration
we have not changed the sign of the dispersion determinant, i.e.

∣∣det
∥∥βi j

∥∥∣∣ ≥ 0
and this determinant, as noted above, contains three unknowns. Consequently, for
the solution to the dispersion equation (44) we cannot employ the aforementioned
algorithm based on the “bi-section” method. Therefore, for the solution to the dis-
persion equation (44) we use the algorithm which is based on direct calculation of
the values of the moduli of the dispersion determinant

∣∣det
∥∥βi j

∥∥∣∣ and determination
of the sought roots from the criterion

∣∣det
∥∥βi j

∥∥∣∣ ≤ 10−12. It should be noted that
under employing this algorithm it is necessary to give in advance a certain value
of one of the unknowns c, k1R or β . For instance, in the paper by Barshinger and
Rose (2004) the admissible values for the wave propagation velocity c are given
in advance and the values of the attenuation coefficient β are determined for each
selected value of k1R. It is also possible to give a value to the attenuation coefficient
β and then to determine the phase velocity c for each selected value of k1R. This
latter case was considered in the paper by Akbarov and Kepceler (2015) and we
will also follow this approach in the present paper.
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Thus, according to Ewing, Jazdetzky, and Press (1957); Kolsky (1963), as in the
paper by Akbarov and Kepceler (2015), we assume that

β =
1
2

µ
(1)
1s (ω)

µ
(1)
0 +µ

(1)
1c (ω)

, (45)

or

β =
1
2

µ
(2)
1s (ω)

µ
(2)
0 +µ

(2)
1c (ω)

. (46)

It should be noted that the cases (45) and (46) which are given for the attenuation
coefficient relate to the dispersive attenuation case. At the same time, the non-
dispersive attenuation case can also be considered under which the values selected
for k2R (or β ) in (24) do not depend on the wave frequency ω .

This completes consideration of the numerical solution algorithm to the dispersion
equation (48).

4.3 On the low and high wavenumber limit values on the wave propagation
velocity

First, we note that the results presented in the present subsection occur in the case
where the attenuation of the waves under consideration is dispersive and the coef-
ficient of attenuation satisfies the following conditions:

β → 0 as k1R→ 0 and β → 0 as k1R→ ∞. (47)

For instance, the conditions in (47) satisfy the cases where the relation (45) or (46)
takes place.

Thus, according to the discussions made in subsection 4.1 and according to the
monograph by Akbarov (2015), we can write the following low wavenumber limit
values for the wave propagation velocity in the bi-layered circular solid cylinder
made of viscoelastic materials.

c

c(2)20

=

√√√√µ
(2)
∞

µ
(2)
0


e(2)∞ η(2)+ e(1)∞ η(1) µ

(1)
∞

µ
(2)
∞

η(2)+η(1) ρ(1)

ρ(2)


1
2

as k1R→ 0, (48)

where

e(n)∞ = 2

(
1+

λ
(n)
∞

2(λ (n)
∞ +µ

(n)
∞ )

)
, η

(2) =

(
1+

h
R

)−2

,
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η
(1) =

(
2

h
R
+

(
h
R

)2
)(

1+
h
R

)−2

. (49)

In a similar manner, according to the discussions made in subsection 4.1 and ac-
cording to the monograph by Akbarov (2015), we can write the following high
wavenumber limit values for the case under consideration:

c

c(2)20

= min

{
c(1)R

c(2)20

,1,
cS

c(2)20

}
, (50)

where c(n)R is the Rayleigh wave propagation velocity of the n-th material for the
instantaneous values of the elastic constants of this material and cS is the Stoneley
wave propagation velocity of the selected pair of materials of the layers as well as
for the instantaneous values of the elastic constants of these materials.

It should be noted that the expressions (48)–(50) occur not only for the fractional
exponential operators given in (27) and (28), but also for arbitrary possible oper-
ators describing the viscoelasticity of the constituents’ materials of the cylinder.
However, the existence of the expressions (48)–(50) requires satisfaction of the
conditions in (47).

4.4 Numerical results on dispersion and dispersive attenuation curves

First, we consider dispersion curves obtained for the homogeneous solid circular
cylinder in the case where ν0 = 0.3 (instantaneous value of the Poisson coefficient)
and α = 0.5. These curves are constructed for the first lowest mode as a result of the
solution to the corresponding dispersion equation which can be easily derived from
the foregoing expressions and equations. Corresponding results for the dispersive
attenuation case where the coefficient of the attenuation β is determined through the
expression (45) (or (46)) are given in Fig. 2. Note that the curves illustrated in this
figure are constructed for various values of the parameter Q under a fixed value of
the parameter d (= 10) (Fig. 2(a)) and for various values of the parameter d under a
fixed value of the parameter Q(= 50) (Fig. 2(b)). Corresponding dispersion curves
for the coefficient of the attenuation β , i.e. the graphs of the dependents between
β and the parameter Ω (38) are given in Fig. 3(a) for the case where d = 10 and in
Fig. 3(b) for the case where Q = 50. Note that the curves given in Fig. 3 occur for
all cases which will be considered below and therefore we do not return to analysis
of the attenuation dispersion, because the considered type attenuation depends only
on the rheological parameters of the cylinder’s materials.

If we assume that η(1) = 0 and η(2) = 1, then we obtain from (48) and (49) that the
low wavenumber limit value of the wave propagation velocity is determined from
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(a) (b)

Figure 2: Dispersion curves constructed for the solid homogeneous cylinder under
various values of the parameter Q under a fixed value of the parameter d (= 10) (a)
and for various values of the parameter d under a fixed value of the parameter Q (=
50) (b).

(a) (b)

Figure 3: The graphs of the dependence between the coefficient of the attenuation
β and the dimensionless frequency Ω (38) constructed for various values of the
parameter Q under a fixed value of the parameter d (= 10) (a) and for various
values of the parameter d under a fixed value of the parameter Q (= 50) (b).

the expression

c
c20

=

√
µ∞

µ0
e∞, e∞ = 2

(
1+

λ∞

2(λ∞ +µ∞)

)
as k1R→ 0 (51)
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Taking the relations E∞ = µ∞e∞ and c20 =
√

µ0/ρ into consideration, we obtain
from (51) that

c =
√

E∞/ρ as k1R→ 0, (52)

where
√

E∞/ρ is the long-term bar velocity for the cylinder under consideration.

According to well-known mechanical considerations and to the expression (50), we
can conclude that the high wavenumber limit value of the wave propagation veloci-
ty c is cR, which is the Rayleigh wave propagation velocity in the cylinder material
with instantaneous values of the elastic constants. Thus, we turn to consideration
of the numerical results given in Fig. 2, which show that they are limited with the
velocities obtained for the instantaneous values (i.e. at t = 0) of the elastic con-
stants (upper limit) and with the velocities obtained for the long-term values (i.e. at
t = ∞) of elastic constants (lower limit).

It follows from Fig. 2 that the viscoelasticity of the cylinder material causes a de-
crease in the values of the wave propagation velocity. According to the foregoing
discussions, it can be predicted that the low wavenumber limit of the wave propaga-
tion velocity depends only on the rheological parameter d. Consequently, the low
wavenumber limit values of the wave propagation velocity must be the same for
various values of the rheological parameter Q under a fixed d and this limit is equal
to the long-term bar velocity of the cylinder material for which the value E∞ in (52)
is determined through the expression (33) for the selected value of d. Note that this
prediction is proven by the results given in Fig. 2(a). This prediction is also proven
with the results illustrated in Fig. 2(b), according to which, the low wavenumber
limit values of the wave propagation velocity increase with the rheological param-
eter d. At the same time, the results given in Fig. 2 show that the propagation
velocity of the axisymmetric wave in the cylinder approaches its corresponding
“instantaneous values” with the rheological parameters d and Q. Observation of
the results allows us to also conclude that, in the case under consideration the ef-
fect of the viscoelasticity of the cylinder material on the wave propagation velocity
becomes significant under relatively small values of the dimensionless wavenumber
k1R.

Consider also the numerical results related to the second mode. For clarity we con-
sider the graphs between (c− c|t=∞

)/c20 and k1R through which the influence of
the rheological parameters of the cylinder material on the wave propagation veloc-
ity in the second mode can be estimated. These graphs are given in Fig. 4(a) (in
Fig. 4(b)) which are constructed for various values of the rheological parameter Q
(parameter d) under a fixed value of d (= 10) (of Q (= 50)). It follows from these
graphs that a decrease in the values of the parameter Q as well as in the values of the
parameter d also causes a decrease in the values of the wave propagation velocity
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in the second mode.

(a) (b)

Figure 4: The graphs of the dependence between (c− c|t=∞
)/c20 and k1R obtained

for the homogeneous solid cylinder in the second mode under various values of
the parameter Q, under a fixed value of the parameter d (= 10) (a) and for various
values of the parameter d under a fixed value of the parameter Q (= 50) (b).

We recall that the foregoing results are obtained for the attenuation dispersion case
for which the attenuation is determined through the expression (45) (or (46)). Now
we consider the results obtained for the first lowest mode in the non-dispersive at-
tenuation case and assume that k2R = 0.005. The graphs illustrating the dispersion
curves related to this case are given in Fig. 5(a) (in Fig. 5(b)), which are construct-
ed for various values of the rheological parameter Q (parameter d) under a fixed
value of d (= 10) (under a fixed value of Q (= 50)). It follows from the graphs
that in the non-dispersive attenuation case, the cut off values of the dimensionless
wavenumber k1R (denoted by (k1R)c. f .) (or cut off frequency (denoted by ωc. f .)
determined by expression ωc. f . = (k1R)c. f .× c|k1R=(k1R)c. f .

), appear. Also it follows
from the graphs that, as in the dispersive attenuation case, a decrease in the values
of the rheological parameters Q and d causes a decrease in the wave propagation
velocity. Moreover, the results show that the values of (k1R)c. f . increase (decrease)
with Q (with d).

The results given in Fig. 6 illustrate how the values of k2R effect the values of
(k1R)c. f . and accordingly, it can be concluded that (k1R)c. f . decreases with decreas-
ing k2R.

Now we consider the results related to the bi-material compound solid cylinder and
assume that ν

(1)
0 = ν

(2)
0 = 0.3 and α(1) = α(2) = 0.5. Consider the cases where
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(a) (b)

Figure 5: Dispersion curves constructed in the non-dispersive attenuation case for
the homogeneous solid cylinder under various values of the parameter Q for a fixed
value of the parameter d (= 10) (a) and for various values of the parameter d for a
fixed value of the parameter Q (= 50) (b) in the case where k2R = 0.005.

µ
(2)
0 /µ

(1)
0 = 0.5 and µ

(2)
0 /µ

(1)
0 = 2. First, we analyze the results obtained in the

case where the viscoelasticity properties of the cylinder’s layers are the same, i.e.
first, we analyze the results obtained in the case where Q(1) = Q(2)(= Q) and d(1) =
d(2)(= d) and denote it as the V.V. case. We recall that, unless otherwise specified,
the results discussed below are obtained within the scope of the attenuation relation
(45) or (46). Here we consider mainly the results obtained for the first lowest
(fundamental) mode. At the same time, we will also consider some results related
to the second mode.

Thus, we consider the graphs given in Figs. 7, 8 and 9 (in Figs. 10, 11 and 12)
which are constructed in the cases where h/R = 0.1, 0.3 and 0.5, respectively,
under µ

(2)
0 /µ

(1)
0 = 0.5 (under µ

(2)
0 /µ

(1)
0 = 2). Note that in these figures the graphs

grouped by the letter a illustrate the influence of the parameter Q on the dispersion
curves under a fixed value of the parameter d (i.e. under d = 10) and the graphs
grouped by the letter b illustrate the influence of the parameter d on the dispersion
curves under a fixed value of the parameter Q (i.e. under Q = 50).

According to the discussions made in subsections 4.1 and 4.3, and according to the
discussions made above for the solid homogeneous cylinder, we can predict that
the wave propagation velocity in the compound solid cylinder obtained for all the
selected values of the parameter Q under a fixed value of the parameter d must
have the same low wavenumber limit as k1R→ 0 and the values of this limit co-
incide with those determined by the expression (48). Moreover, according to the
foregoing discussions it can be predicted that the limit values of the wave propaga-
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Figure 6: The influence of k2R on the cut off values of (k1R)c. f . obtained for the
non-dispersive attenuation case for the homogeneous solid cylinder under Q = 50
and d = 10.

(a) (b)

Figure 7: Dispersion curves obtained for various values of the parameter Q under a
fixed value of the parameter d (= 10) (a) and for various values of the parameter d
under a fixed value of the parameter Q (= 50) (b) in the V.V. case under µ

(2)
0 /µ

(1)
0 =

0.5 and h/R = 0.1.

tion velocity in the compound cylinder also depend on the rheological parameter d
and do not depend on the rheological parameter Q. These predictions are proven
with the results illustrated in Figs. 7–12 and it follows from these results that the
dispersion curves obtained under fixed values of the parameter d are limited to the
corresponding dispersion curves obtained for the purely elastic cases under instan-
taneous values of the elastic constants (upper limits), i.e. under t = 0, and under
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(a) (b)

Figure 8: Dispersion curves obtained in the case considered in Fig. 7 under h/R =
0.3.

(a) (b)

Figure 9: Dispersion curves obtained in the case considered in Fig. 7 under
h(1)/R = 0.5.

long-term values of the elastic constants (lower limits), i.e. under t = ∞. Note that
in the figures, the graphs related to the limit cases are given by dashed lines and
coincide with the corresponding ones given in the monograph by Akbarov (2015)
and in the paper by Akbarov and Ipek (2012). Consequently, the results illustrated
in Figs. 7–12, not only give new information about the influence of the rheolog-
ical parameters on the dispersion curves, but also illustrate the reliability of these
results and the reliability of the calculation algorithm by which they were obtained.
Moreover, the results show that for each value of the rheological parameters the
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(a) (b)

Figure 10: Dispersion curves obtained in the case considered in Fig. 7 under
µ
(2)
0 /µ

(1)
0 = 2 and h/R = 0.1.

(a) (b)

Figure 11: Dispersion curves obtained in the case considered in Fig. 10 under
h/R = 0.3.

wave propagation velocity approaches the corresponding one which relates to the
elastic cases as k1R→ ∞, i.e. the relation (50) holds. According to the results ob-
tained, we can conclude, as can be predicted, that as a result of the increase in the
values of the rheological parameters d and Q (see the graphs given in Figs. 7–12)
the dispersion curves come near to the corresponding dispersion curves obtained
for the purely elastic case constructed under t = 0.

Analyses of the foregoing results show that for the considered change range of
the problem parameters, the influence of the viscoelasticity parameters d and Q on
the wave propagation velocity is significant in the cases where k1R ≤ 1.5. More-
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(a) (b)

Figure 12: Dispersion curves obtained in the case considered in Fig. 10 under
h/R = 0.5.

over, analyses of the foregoing results show that in the case where µ
(2)
0 /µ

(1)
0 = 0.5

(µ(2)
0 /µ

(1)
0 = 2) an increase in the values of h/R causes an increase (a decrease)

in the values of the wave propagation velocity c/c(2)20 . This is because in the case
where µ

(2)
0 /µ

(1)
0 = 0.5 (µ(2)

0 /µ
(1)
0 = 2) an increase in the values of h/R means that

the volumetric concentration of stiffer (softer) material in the compound cylinder
increases and, according to this provision, the wave propagation velocity increases.
Moreover, according to this provision, this explains the fact that the wave propaga-
tion velocity obtained for a homogeneous solid cylinder, as illustrated in Fig. 2, is
less (greater) than the corresponding one obtained in the case where µ

(2)
0 /µ

(1)
0 =

0.5 (µ(2)
0 /µ

(1)
0 = 2) for the compound cylinder as illustrated in Figs. 7–12.

We note the following important fact which also follows from the analysis of the
foregoing results and from the results which will be considered below. This fac-
t relates to the character of the dependence between c/c(2)20 and k1R in the cases
where 0 < k1R < 1.5. So that, if the materials of the cylinders are purely elastic
then this dependence is monotonic, i.e. the values of c/c(2)20 increase monotonically
with decreasing k1R. However, if the materials of the cylinders are viscoelastic,
then this dependence may have a non-monotonic character. The non-monotonic
character is observed for all values of Q under a fixed d and also for the relatively
small values of the parameter d under a fixed Q. It follows from the appearance
of the aforementioned non-monotonic part in the dispersion curves that there exists
such a value of k1R (denoted by (k1R)∗) under which dc/d(k1R) = 0. This equa-
tion means that at k1R = (k1R)∗ the phase velocity is equal to the group velocity
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and around k1R = (k1R)∗ the backward waves may appear (see, Akbarov (2015)).
Consequently, the viscoelasticity of the cylinder’s materials acts not only quantita-
tively on the dispersion curves of the axisymmetric waves in the cylinders, but also
quantitatively.

We recall that the foregoing results are obtained in the cases where both the mate-
rials of the inner and outer layers of the hollow cylinder are viscoelastic, i.e. under
the V.V. case. Now we consider the results obtained in the case where the material
of the inner solid cylinder is purely elastic, but the material of the outer hollow
cylinder is viscoelastic and denote this case as the V.E. case. Assume that the at-
tenuation coefficient β for this case is given through the relation (45). Thus, we
analyze the related dispersion curves which are given in Figs. 13–15 (Figs. 16–18)
and obtained for µ

(2)
0 /µ

(1)
0 = 0.5 (µ

(2)
0 /µ

(1)
0 = 2) in the cases where h/R = 0.1, 0.3

and 0.5, respectively. As above, in these figures the graphs grouped by the letter a
are constructed for a fixed value of the parameter d(1) (= 10) for various values of
the parameter Q(1). However the graphs grouped by the letter b are constructed for
a fixed value of the parameter Q(1) (= 50) for various values of the parameter d(1).

(a) (b)

Figure 13: Dispersion curves obtained for various values of the parameter Q(1)

under a fixed value of the parameter d(1) (= 10) (a) and for various values of the
parameter d(1) under a fixed value of the parameter Q(1) (= 50) (b) in the V.E. case
under µ

(2)
0 /µ

(1)
0 = 0.5 and h/R = 0.1.

We introduce the notation cv.v. and cv.e. to indicate the wave propagation velocity
in the V.V. and V.E. cases. Comparison of the results given in Figs. 13, 14 and 15
(Figs. 16–18) with the corresponding ones given in Figs. 7, 8 and 9 (Figs. 10–12)
shows that cv.e. > cv.v.. Moreover, this comparison shows that the character of the
dispersion curves and the character of the influence of the problem parameters on
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(a) (b)

Figure 14: Dispersion curves obtained in the case considered in Fig. 13 under
h/R = 0.3.

(a) (b)

Figure 15: Dispersion curves obtained in the case considered in Fig. 13 under
h/R = 0.5.

these curves in the V.E. case are similar to those observed in the V.V. case. For
instance, in both cases for all selected values of the problem parameters, the wave
propagation velocity is less (greater) than the corresponding one obtained for the
purely elastic case with instantaneous (long-term) values of the elastic constants.
However, as we will consider below, in the case where the material of the outer
cylinder is purely elastic, but the material of the inner solid cylinder is viscoelastic
(denote this case as the E.V. case) the aforementioned type of limitation of the wave
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(a) (b)

Figure 16: Dispersion curves obtained in the case considered in Fig. 13 under
µ
(2)
0 /µ

(1)
0 = 2 and h/R = 0.1.

propagation velocity may be violated.

(a) (b)

Figure 17: Dispersion curves obtained in the case considered in Fig. 16 under
h/R = 0.3.

Thus, we consider the dispersion curves related to the E.V. case and given in Figs.
19, 20, 21 and 22 (Figs. 23, 24, 25 and 26) constructed for µ

(2)
0 /µ

(1)
0 = 0.5

(µ(2)
0 /µ

(1)
0 = 2) in the cases where h/R = 0.1, 0.3, 0.5 and 0.7 (h/R = 0.1, 0.3,

0.7 and 1), respectively. Analysis of these results shows that for the relatively small
values of h/R (for instance, under h/R = 0.1 in the case where µ

(2)
0 /µ

(1)
0 = 0.5 and

under h/R≤ 0.3 in the case where µ
(2)
0 /µ

(1)
0 = 2) the upper and lower limitations of



Dispersion of Axisymmetric Longitudinal Waves 135

(a) (b)

Figure 18: Dispersion curves obtained in the case considered in Fig. 16 under
h/R = 0.5.

(a) (b)

Figure 19: Dispersion curves obtained for various values of the parameter Q(2)

under a fixed value of the parameter d(2) (= 10) (a) and for various values of the
parameter d(2) under a fixed value of the parameter Q(2) (= 50) (b) in the E.V. case
under µ

(2)
0 /µ

(1)
0 = 0.5 and h/R = 0.1.

the dispersion curves are the same type as in the V.V. and V.E. cases. However, for
the relatively greater values of h/R (for instance, under h/R≥ 0.3 in the case where
µ
(2)
0 /µ

(1)
0 = 0.5 and under h/R≥ 0.7 in the case where µ

(2)
0 /µ

(1)
0 = 2) the foregoing

limitation of the dispersion curves is violated, i.e. in the cases where 0 < k1R≤ 1.0
the dispersion curves obtained for the E.V. case have an upper (lower) limit and
this upper (lower) limit is the dispersion curve constructed for the purely elastic
case with long-term (instantaneous) values of the elastic constants. Consequently,
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(a) (b)

Figure 20: Dispersion curves obtained in the case considered in Fig. 19 under
h/R = 0.3.

(a) (b)

Figure 21: Dispersion curves obtained in the case considered in Fig. 19 under
h/R = 0.5.

in the E.V. case under satisfaction of certain conditions, the viscoelasticity of the
inner solid cylinder may increase the longitudinal axisymmetric wave propagation
velocity in the compound solid cylinder under consideration. In these cases, the
wave propagation velocity increases with a decrease in the parameters d and Q.

We recall that all the results discussed above relate to the dispersive attenuation
case. Now we consider the dispersion curves obtained for the non-dispersive at-
tenuation case and for this we select the V.E. case and assume that k2R = 0.005,
h/R = 0.3 and µ

(2)
0 /µ

(1)
0 = 0.5. These curves are given in Fig. 27 which are

constructed for various values of the parameter Q(1) under a fixed d(1) (= 10)
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(a) (b)

Figure 22: Dispersion curves obtained in the case considered in Fig. 19 under
h/R = 0.7.

(a) (b)

Figure 23: Dispersion curves obtained in the case considered in Fig. 19 under
µ
(2)
0 /µ

(1)
0 = 2 and h/R = 0.1.

(Fig. 27(a)) and for various values of the parameter d(1) under a fixed Q(1) (=
50) (Fig. 27(b)). It follows from these results that, as in the dispersive attenua-
tion case, in the non-dispersive attenuation case the viscoelasticity of the external
cylinder material causes a decrease in the values of the wave propagation velocity.
However, in the non-dispersive attenuation case, the cut off values of k1R (denot-
ed by (k1R)c. f .) (or cut off frequency (denoted by ωc. f .) determined by expression
ωc. f . = (k1R)c. f .× c|k1R=(k1R)c. f .

) appear. The values of (k1R)c. f . decrease (increase)

with d(1) (with Q(1)). Moreover, the values of (k1R)c. f . depend on the values of k2R.
This dependence is illustrated with the graphs given in Fig. 28, according to which,
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(a) (b)

Figure 24: Dispersion curves obtained in the case considered in Fig. 23 under
h/R = 0.3.

(a) (b)

Figure 25: Dispersion curves obtained in the case considered in Fig. 23 under
h/R = 0.7.

as can be predicted, the values of (k1R)c. f . decrease with decreasing k2R.

Consider also some results related to the second mode and for this purpose we a-
gain select the V.E. case and assume that the attenuation is dispersive and h/R =

0.3 and µ
(2)
0 /µ

(1)
0 = 0.5. For clarity of the illustration we consider the graphs of the

dependence between (c− c|t=∞
)/c20 and k1R instead of the corresponding disper-

sion curves. Graphs of this dependence are given in Fig. 29 which are constructed
for various values of the parameter Q(1) under fixed d(1) (= 10) (Fig. 29(a)) and for
various values of the parameter d(1) under fixed Q(1) (= 50) (Fig. 29(b)). It follows
from these graphs that the viscoelasticity of the outer hollow cylinder material of
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(a) (b)

Figure 26: Dispersion curves obtained in the case considered in Fig. 23 under
h/R = 1.0.

(a) (b)

Figure 27: Dispersion curves obtained in the non-dispersive attenuation case under
k2R = 0.005 in the V.E. case for various values of the parameter Q(1) under a fixed
value of the parameter d(1) (= 10) (a) and for various values of the parameter d
under a fixed value of the parameter Q (= 50) (b) in the V.E. case under µ

(2)
0 /µ

(1)
0 =

0.5 and h/R = 0.3.

the compound solid cylinder also causes a decrease in the wave propagation veloc-
ity in the second mode. More careful study of the influence of the viscoelasticity
of the cylinder’s materials on the dispersion of the longitudinal axisymmetric wave
propagation in the second and subsequent modes requires separate investigations
which will be made in future investigations by the authors.

This completes the analysis of the numerical results considered in the present paper.
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Figure 28: The influence of the “attenuation order” k2R on the cut off values of k1R,
i.e. on the values of (k1R)c. f . in the case considered in Fig. 27.

(a) (b)

Figure 29: The influence of the parameter Q(1) under a fixed value of the parameter
d(1) (= 10) (a) and of the parameter d(1) under a fixed value of the parameter Q(1)

(= 50) (b) on the wave propagation velocity in the second mode in the V.E. case
under the dispersive attenuation case and under µ

(2)
0 /µ

(1)
0 = 0.5 and h/R = 0.3.

5 Conclusions

Thus, in the present paper, within the scope of the exact equations of motion of the
theory of linear viscoelasticity, the axisymmetric longitudinal wave propagation
in the bi-material circular compound cylinder made of viscoelastic materials has
been investigated. The corresponding dispersion equation is obtained for arbitrary
hereditary type viscoelastic operators. For concrete numerical investigations, the
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viscoelasticity of the materials is described by the fractional exponential operators
by Rabotnov (1980). The dimensionless rheological parameters characterizing the
characteristic creep time (denoted by Q) and the long-term values of the elastic con-
stants (denoted by d) are introduced, and through these parameters the viscoelas-
ticity of the constituents’ materials on the dispersion curves is studied. An increase
in the values of these parameters means a decrease in the viscosity properties of the
related material. The main attention is focused on the results related to the disper-
sive attenuation case but nevertheless some examples related to the nondispersive
attenuation case are also considered. In the dispersive attenuation case it is as-
sumed that the attenuation coefficient is given in advance through the relation (45)
or (46). The expressions for the low and high wavenumber limit values of the wave
propagation velocity are derived. Related numerical results (dispersion curves) are
presented and discussed for the case where the instantaneous shear modulus of the
outer hollow cylinder material is twice that of the inner solid cylinder, as well as
for the case where the instantaneous shear modulus of the inner solid cylinder ma-
terial is twice that of the outer hollow cylinder. Moreover, the numerical results
obtained for the case where the viscoelasticity properties of the cylinders’ materi-
als are the same (denoted by the “V.V. case”); for the case where the material of
the outer cylinder is viscoelastic, but the material of the inner cylinder is purely e-
lastic (denoted by the “V.E. case”); and for the case where the material of the outer
cylinder material is purely elastic, but the material of the inner cylinder material
is viscoelastic (denoted by the “E.V. case”), are considered separately. Numerical
investigations are made mainly for the first (fundamental) lowest mode and some
examples of the dispersion curves related to the second mode are also considered.
According to these numerical results, we can draw the following main conclusions:

In the V.V. and V.E. cases in the considered attenuation dispersion case, the vis-
coelasticity of the constituents’ materials of the cylinder causes the axisymmetric
longitudinal wave propagation velocity to decrease. The magnitude of this decrease
increases with a decrease in the aforementioned dimensionless rheological param-
eters;

The dispersion curves obtained for the V.V. and V.E. cases are limited by the dis-
persion curves obtained for the purely elastic case with instantaneous values of the
elastic constants (upper limit) and by those obtained for the purely elastic case with
long-term values of the elastic constants (lower limit);

A significant effect of the viscosity of the layers’ materials on the wave propagation
velocity appears in the case where k1R≤ 1.5;

For relatively small values of h/R the foregoing results also occur for the E.V. case.
However, for relatively greater values of h/R in the E.V. case, the viscoelasticity of
the inner cylinder material causes an increase in the values of the wave propagation
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velocity and the magnitude of the increase grows with a decrease in the rheological
parameters related to the inner solid cylinder material;

For all the cases, the low (high) wavenumber limit values of the wave propagation
velocity depends on the long-term (instantaneous) values of the elastic constants of
the layers’ material;

In the non-dispersive attenuation case, the cut off values of k1R (denoted by (k1R)c. f .)
arise and the values of (k1R)c. f . increase (decrease) with the parameter d (with the
parameter Q). Moreover, the values of (k1R)c. f . increase with the non-dispersive
“attenuation order” k2R;

In the V.E. case, under selected types of dispersive attenuation, the viscoelasticity
of the constituents’ materials of the cylinder also causes the wave propagation ve-
locity of the second mode to decrease. Moreover, the viscoelasticity of the layers’
materials causes the cut off values of k1R for the second mode to increase.
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