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Fractional Order Derivative Model of Viscoelastic layer
for Active Damping of Geometrically Nonlinear Vibrations

of Smart Composite Plates
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Abstract: This paper deals with the implementation of the one dimensional form
of the fractional order derivative constitutive relation for three dimensional analysis
of active constrained layer damping (ACLD) of geometrically nonlinear laminated
composite plates. The constraining layer of the ACLD treatment is composed of
the vertically/obliquely reinforced 1–3 piezoelectric composites (PZCs). The von
Kármán type nonlinear strain displacement relations are used to account for the ge-
ometric nonlinearity of the plates. A nonlinear smart finite element model (FEM)
has been developed. Thin laminated substrate composite plates with various bound-
ary conditions and stacking sequences are analyzed to verify the effectiveness of
the three-dimensional FDM for both the passive and active control authority of the
ACLD patch located at the center of the laminates.
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1 Introduction

Controlling vibration levels in structures under dynamic loading is an important
aspect in the study of dynamics and control as high vibration often generates noise
and can lead to cyclic fatigue failure of the structure. The drive to use lightweight
composite structures, particularly in aerospace, automotive and marine industries,
makes them more vibration prone. The composite materials provide high strength
to weight ratio and enhanced performance but most of them have very little inherent
damping to offer. Thus the incorporation of damping into the flexible host structure
by bonding a viscoelastic layer to the same became one of the popular approaches
to reduce the noise and vibration of host structure and the viscoelastic layer is
called as the free-layer or ‘unconstrained’ treatment [Stanway, Rongong, and Sims
(2003)].
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The direct and the converse piezoelectric effects inherently present in the piezoelec-
tric materials enabled them to act as distributed actuators and sensors, respectively.
Instead of attaching the piezoelectric layer directly to the host structure, if it is
bonded to the structure using a viscoelastic layer such that the viscoelastic layer is
constrained between the host structure and the piezoelectric layer, the active con-
strained layer damping (ACLD) treatment is formed [Baz and Ro (1995)]. The
flexural vibration control by the constrained layer damping treatment is due to the
dissipation of energy in the constrained viscoelastic layer. As the dissipation of
energy is mostly due to the transverse shear deformation of the constrained layer,
it can be increased by improving the transverse shear deformations of the same.
When activated by suitable control voltage, the constraining piezoelectric layer of
the active constrained layer damping (ACLD) treatment increases the transverse s-
hear deformation of the constrained viscoelastic layer over its passive counterpart
resulting in active or smart damping of the host structure. If the piezoelectric layer
is left inactive, the standard passive constrained layer damping (PCLD) is achieved.
The use of piezoelectric materials has been extensively investigated by several re-
searchers [Ha, Keilers, and Chang (1992); Hwang and Park (1993); Baz and Ro
(1994); Shen (1994); Baz and Ro (1995); Yi, Ling, and Ying (1998); Ray (1998);
Yi and Sze (2000); Balamurugan and Narayanan (2002); Ray and Mallik (2005);
Ray (2007); Ray and Shivakumar (2009); Ray, Dong, and Atluri (2015)] for active
control of flexible lightweight structures.

Piezoelectric composite (PZC) materials are the new class of distributed smart ma-
terials in which piezoelectric fiber reinforcements are used along with epoxy as
matrix. Among the different types of PZC materials studied by the researchers,
the vertically and the obliquely reinforced 1–3 PZC materials are commercially
available [Gentilman, Fiore, Houston, and Corsaro (1999)]. Recently, Ray, and
his co-researchers [Ray and Pradhan (2006); Ray and Pradhan (2007); Ray and
Batra (2007); Panda and Ray (2009a); Biswas and Ray (2013); Kundalwal, Ku-
mar, and Ray (2013); Kanasogi and Ray (2013)] analyzed the performance of these
1–3 PZC materials for active damping of linear and geometrically nonlinear vibra-
tions of composite and functionally graded beams, plates and shells. For the time
domain analysis, the constrained viscoelastic layer of the ACLD treatment is mod-
eled by the Golla-Hughes-McTavish (GHM) [Golla and Hughes (1985); McTavish
and Hughes (1993)] method. Golla and Hughes (1985) proposed a time domain
model with ordinary integer differential operators where hereditary integral for-
m of the viscoelastic constitutive law is used to formulate a finite element model
(FEM). Later [McTavish and Hughes (1993)] extended the Golla-Hughes model
and formulated the Golla-Hughes-McTavish (GHM) model representing the mate-
rial modulus as a series of mini-oscillators. Using GHM model the FEM is first



Fractional Order Derivative Model of Viscoelastic layer for Active Damping 49

derived in the Laplace domain and the resulting FEM is retransformed to obtain the
FEM in time-domain. Auxiliary dissipative coordinates are used to model the en-
ergy dissipation of the viscoelastic material. Several other methods for modelling
linear viscoelastic material are available in the open literature [Lesieutre and Min-
gori (1990); Lesieutre and Bianchini (1995); Bagley and Torvik (1983a); Bagley
and Torvik (1983b)]. Lesieutre and Mingori (1990) developed a frequency depen-
dent linear viscoelastic model in terms of augmenting thermodynamic fields (ATF)
that are coupled with the mechanical displacement field. The ATF model intro-
duces additional thermal coordinates to account for the dissipation. Lesieutre and
Bianchini (1995) introduced another time-domain model of linear viscoelasticity
based on the anelastic displacement field (ADF) in three-dimensional form. In this
model, the dissipation is modeled by considering anelastic component of the dis-
placement field in addition to the elastic counterpart. Bagley and Torvik (1983a)
established a link between the molecular theories to predict the macroscopic behav-
ior of certain viscoelastic media and an empirically developed fractional calculus
approach to viscoelasticity. Later using the fractional calculus approach they pro-
posed an effective time domain model of the viscoelastic material named fractional
derivative model (FDM) [Bagley and Torvik (1983b); Bagley and Torvik (1985)].
Modelling of viscoelastic material in time domain for implementing different mod-
ern control strategies is an important issue particularly in case of active damping of
nonlinear vibrations of three-dimensional structures. The GHM method has been
extensively used to model the constrained viscoelastic layer in time-domain [Panda
and Ray (2012); Panda and Ray (2009b); Sarangi and Ray (2010); Kumar and Ray
(2013); Kattimani and Ray (2014a); Kattimani and Ray (2014b); Kanasogi and
Ray (2015)] for active damping of linear and geometrically nonlinear vibrations of
beams, plates and shells. However, as already mentioned the GHM method need-
s to introduce additional dissipative coordinates resulting in the twofold increase
in the overall generalized degrees of freedom of the overall structure. Hence, the
computational cost is also enormously increased limiting the use of the GHM par-
ticularly in case of active control of geometrically nonlinear vibrations. The FDM
of viscoelastic material does not require any additional generalized dissipative co-
ordinates and appears to be an efficient method for modelling viscoelastic layer in
time-domain. Galucio, Deü, and Ohayon (2004) presented a finite element model
for transient dynamic analysis and ACLD of sandwich beams [Galucio, Deü, and
Ohayon (2005)] using one-dimensional fractional derivative constitutive equations
for viscoelastic layer. However, the study on the effectiveness of this fractional
derivative model for three-dimensional analysis of both PCLD and ACLD of ge-
ometrically nonlinear vibrations of composite structures is not yet available in the
open literature.
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The present work is concerned with the implementation of the one-dimensional
fractional order derivative constitutive relation of viscoelastic material for three-
dimensional analysis of passive and active constrained layer damping of geomet-
rically nonlinear vibrations of smart composite plates. Needless to say that the
finite element method has been established as an efficient tool for numerical analy-
sis of structures [Dong, El-Gizawy, Juhany, and Atluri (2014a); Dong, El-Gizawy,
Juhany, and Atluri (2014b)]. Hence, a three dimensional finite element model has
been developed. In this model von Kármán strain-displacement relations are con-
sidered for incorporating the geometric nonlinearity. Third order shear deformation
theory (TSDT) [Reddy (2004)] or zeroth-order shear deformation theory (ZSDT)
[Ray (2003); Datta and Ray (2015)] provides accurate analysis for thin and thick
plates but if they are used for the host plates, transverse shear stresses at the top and
bottom surfaces of the plates will be zero. But at the interface between the patch
of the ACLD treatment and the substrate plate, transverse shear stresses cannot be
zero and must be modeled. Thus TSDT or ZSDT cannot be used for modeling s-
mart structure with patch type piezoelectric actuator. On the other hand, although
higher order shear deformation theory (HSDT) presented by Lo, Christensen, and
Wu (1977) can be used for accurate analysis of smart structures, the computational
cost of the analysis highly increases because of large number of generalized de-
grees of freedom. For the present analyses thin plates have been considered and
consequently the axial displacement fields based on the first order shear deforma-
tion theory (FSDT) is used to model the axial displacements in all the layers of
the overall plate. Substrate laminated plates with various stacking sequences and
boundary conditions have been presented to check the efficacy of the passive and
active control authority of the ACLD patch using the derived finite element model.

Figure 1: Schematic representation of a laminated composite plate integrated with
the patch of ACLD treatment composed of constrained viscoelastic layer and 1–3
PZC constraining layer.
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2 Basic equations

Figure 1 illustrates a rectangular substrate laminated plate integrated with a rectan-
gular patch of the ACLD treatment at the top surface of the plate. The constraining
layer of the patch of the ACLD treatment is made of the vertically/obliquely rein-
forced 1-3 PZC material with a thickness denoted by hp while the thickness of the
laminated substrate plate and the constrained viscoelastic layer is represented by
h and hv, respectively. The substrate plate is composed of N number of unidirec-
tional fiber-reinforced orthotropic layers. The laminate co-ordinate system (xyz) is
chosen in such a way that the mid-plane of the substrate laminate represents the
reference plane while the lines x = 0, a and y = 0, b represent the boundaries of
the same. The thickness co-ordinates zof the top and the bottom surfaces of any kth
(k = 1,2,3 . . .N + 2) layer of the overall plate are represented by hk+1 and hk, re-
spectively. θk is the fiber orientation in any layer of the substrate plate in the plane
(xy) of the lamina with respect to laminate co-ordinate system. As mentioned ear-
lier, the reinforcing piezoelectric fibers in the constraining layer of the patch may
be vertical (Fig. 2(a)) or coplanar with the vertical xz (Fig. 2(b)) or yz (Fig. 2(c))

(a) (b)

(c)

Figure 2: (a). Lamina of vertically reinforced 1-3 PZC; (b). Lamina of 1–3 PZC
where the piezoelectric fibers are coplanar with the vertical xz plane.; (c). Lamina
of 1–3 PZC where the piezoelectric fibers are coplanar with the vertical yz plane.
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(a) (b)

Figure 3: Kinematics of deformation of the plate in the xz and yz planes.

plane making an angle ψ with respect to z axis. The kinematics of axial defor-
mations of the overall plate based on the layerwise FSDT has been illustrated in
Fig. 3. Displayed in this figure, the variables u0 and v0 are the generalized trans-
lational displacements of a point (x, y) on the reference plane (z = 0) along x- and
y-directions, respectively. θx, φx and γx denote the generalized rotations of the nor-
mals to the middle planes of the substrate plate, the viscoelastic layer and the PZC
layer, respectively in the xz plane while θy, φy and γy represent their generalized
rotations in the yz plane. According to the kinematics of deformation illustrated in
Fig. 3, the axial displacements u(x,y,z, t) and v(x,y,z, t) of a point in any layer of
the overall plate along the x and y directions, respectively, can be expressed as

u(x,y,z, t) = u0(x,y, t)+(z−〈z−h/2〉)θx(x,y, t)

+(〈z−h/2〉−〈z−hN+2〉)φx(x,y, t)+ 〈z−hN+2〉γx(x,y, t) and

v(x,y,z, t) = v0(x,y, t)+(z−〈z−h/2〉)θy(x,y, t)

+(〈z−h/2〉−〈z−hN+2〉)φy(x,y, t)+ 〈z−hN+2〉γy(x,y, t) (1)

where, a function within the bracket 〈 〉 represents the appropriate singularity func-
tions such that the interface continuity of displacements between the substrate and
the viscoelastic layer and between the viscoelastic layer and the constraining layer
are satisfied. Since the objective of the present analysis is to control the flexural
vibrations of the substrate plate and the magnitude of the transverse piezoelectric
coefficient of the 1-3 PZC layer is much greater than that of the in-plane piezoelec-
tric coefficients of the same, the transverse normal strain in the overall plate must
be considered in the model. The transverse displacement w(x,y,z, t) at any point in
the overall structure may be assumed to have quadratic variation with respect to z
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across their thicknesses and can be expressed as

w(x,y,z, t) = w0(x,y, t)+ zθz(x,y, t)+ z2
φz(x,y, t) (2)

in which w0 refers to the transverse displacement at any point on the reference
plane, θz and φz are the generalized displacements representing the gradient and
the second order derivative of the transverse displacement in the overall structure
with respect to the thickness coordinate (z). Such quadratic variation of transverse
displacement also provides parabolic distribution of transverse shear stress across
the thickness of the overall plate. For introducing geometric nonlinearity in the
model, von Kármán type strain displacement relations are considered as follows:

εx =
∂u
∂x

+
1
2

(
∂w0

∂x

)2

; εy =
∂v
∂y

+
1
2

(
∂w0

∂y

)2

; εz =
∂w
∂ z

;

γxy =
∂u
∂y

+
∂v
∂x

+
∂w0

∂x
∂w0

∂y
; γxz =

∂u
∂ z

+
∂w
∂x

and γyz =
∂w
∂y

+
∂v
∂ z

. (3)

For the ease of analysis, the generalized displacement variables are categorized into
the following two generalized translational and rotational vectors:

{dt}= [u0 v0 w0]
T and {dr}= [θx θy θz φx φy φz γx γy]

T . (4)

The state of strain at any point in the overall system is divided into the bending
strain vector {εb} and the out of plane shear strain vector {εs} as follows:

{εb}= {εx εy γxy εz}T and {εs}= {γxz γyz}T (5)

where εx, εy, εz are the normal strains along x, y and z directions, respectively, γxy

is the in-plane shear strain and γxz, γyz are the transverse shear strains. By using
the displacement fields (Eqs. (1) and (2)) and the nonlinear strain displacement
relations (Eq. (3)), the bending and shear strain vectors are obtained. The bending
strain vectors {εb}c, {εb}v and {εb}p in the substrate composite plate, the con-
strained viscoelastic layer and the active constraining layer, respectively, can be
expressed as

{εb}c = {εbt}+[Z1]{εbr}+{εbnl} ;{εb}v = {εbt}+[Z3]{εbr}+{εbnl} and

{εb}p = {εbt}+[Z5]{εbr}+{εbnl} . (6)

Similarly, the transverse shear strain vectors {εs}c, {εs}v and {εs}p in the substrate
composite plate, the constrained viscoelastic layer and the active constraining layer,
respectively, are given by:

{εs}c = {εst}+[Z2]{εsr} ; {εs}v = {εst}+[Z4]{εsr} and
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{εs}p = {εst}+[Z6]{εsr} . (7)

The matrices
[
Zβ

]
(β = 1,2, . . . ,6) appearing in Eqs. (6) and (7) have been defined

in the Appendix, while the generalized strain vectors are given by

{εbt}=
[

∂u0

∂x
∂v0

∂y

(
∂u0

∂y
+

∂v0

∂x

)
0
]T

;{εst}=
[

∂w0

∂x
∂w0

∂y

]T

;

{εbr}=
[

∂θx

∂x
∂θy

∂y

(
∂θx

∂x
+

∂θy

∂y

)
θz

∂φx

∂x
∂φy

∂y

(
∂φx

∂x
+

∂φy

∂y

)
φz

∂γx

∂x
∂γy

∂y

(
∂γx

∂x
+

∂γy

∂y

)]T

;

{εsr}=
[

θx θy
∂θz

∂x
∂θz

∂y
φx φy

∂φz

∂x
∂φz

∂y
γx γy

]T

and

{εbnl}=
1
2

[(
∂w0

∂x

)2 (
∂w0

∂y

)2

2
∂w0

∂x
∂w0

∂y
0

]T

. (8)

Similar to the strain vectors given by Eq. (5), the state of stresses at any point in
the overall plate are described by the following bending and transverse shear stress
vectors:

{σb}= [σx σy σxy σz]
T and {σs}= [σxz σyz]

T (9)

where σx, σy, σz are the normal stresses along x, y and z directions, respectively,
σxy is the in-plane shear stress and σxz, σyz are the transverse shear stresses.

2.1 Constitutive relation for the orthotropic material

As the laminated composite plate is made of several orthotropic layers with their
principal material axes arbitrarily oriented with respect to the laminate coordinate
system (xyz), the constitutive equations of each layer is transformed to the laminate
coordinate system. Thus the stress–strain relations for the kth off-axis lamina with
respect to the laminate coordinate system can be arranged in the context of the
present formulation as follows:{

σ
k
b

}
=
[
C̄
]{

ε
k
b

}
and

{
σ

k
s

}
=
[
C̄k

s

]{
ε

k
s

}
(10)

where
[
C̄k

b

]
and

[
C̄k

s
]

are the transformed elastic coefficient matrices with respect to
the laminate coordinate system. The explicit form of the elastic coefficient matrices[
C̄k

b

]
and

[
C̄k

s
]

are presented in the Appendix.
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2.2 Fractional order constitutive modeling of the viscoelastic material

The three-dimensional fractional order constitutive relations for the viscoelastic
layer is derived using the four-parameter one-dimensional fractional order deriva-
tive constitutive relation. The one-dimensional fractional order derivative constitu-
tive equation introduced by Bagley and Torvik (1983a) is given by

σ(t)+ τ
α dασ(t)

dtα
= E0ε(t)+ τ

αE∞

dαε(t)
dtα

(11)

where σ and ε are the stress and the strain, respectively, E0 and E∝ are the relaxed
and non-relaxed elastic moduli, τ is the relaxation time and α is the fractional order
of the time derivative (0 < α < 1). Different definitions of fractional operator are
available, out of which the best known are the Riemann-Liouville and Grünwald
definition [Schmidt and Gaul (2002)]. However, the Grünwald definition is easy to
implement numerically [Schmidt and Gaul (2002)]. The fractional operator for a
function of time f (t), approximated by the Grünwald definition can be expressed
as [Schmidt and Gaul (2002)]:

dα f (t)
dtα

=
1

(∆t)α

Nt

∑
j=0

A j+1 f (t− j∆t) (12)

where ∆t is the time increment for the numerical scheme and the upper limit Nt is
the number of responses in memory and seems to be somewhat arbitrary, however
it should be strictly less than the total number of time steps. A j+1 is the so called
Grünwald constant and can be expressed by Gamma function (Γ) or recurrence
formula as [Galucio, Deü, and Ohayon (2004)]:

A j+1 =
Γ( j−α)

Γ(−α)Γ( j+1)
or A j+1 =

j−α−1
j

A j. (13)

Assuming constant Poisson’s ratio (ν) for the isotropic viscoelastic material and
using Eq. (11), the normal strains εx

x , ε
y
y , εz

z under uniaxial loading alone along the
x, y and z directions, respectively and the in-plane shear strain γv

xy are given by

ε
x
x =

1
E0

σ
v
x +

τα

E0

dασ v
x

dtα
− τα

E0
E∞

dαεx
x

dtα
;

ε
y
y =

1
E0

σ
v
y +

τα

E0

dασ v
y

dtα
− τα

E0
E∞

dαε
y
y

dtα
;

γ
v
xy =

1
G0

σ
v
xy +

τα

G0

dασ v
xy

dtα
− τα

G0
G∞

dαγv
xy

dtα
;

ε
z
z =

1
E0

σ
v
z +

τα

E0

dασ v
z

dtα
− τα

E0
E∞

dαεz
z

dtα
. (14)
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and similarly the transverse shear strainsγv
xz and γv

yzcan be expressed as

γ
v
xz =

1
G0

σ
v
xz +

τα

G0

dασ v
xz

dtα
− τα

G0
G∞

dαγv
xz

dtα
;

γ
v
yz =

1
G0

σ
v
yz +

τα

G0

dασ v
yz

dtα
− τα

G0
G∞

dαγv
yz

dtα
. (15)

For an isotropic material, the three-dimensional normal strains εv
x , εv

y and εv
z along

x, y and z directions, respectively under three-dimensional state of stresses are given
by

ε
v
x = ε

x
x −νε

y
y −νε

z
z ; ε

v
y =−νε

x
x + ε

y
y −νε

z
z and ε

v
z =−νε

x
x −νε

y
y + ε

z
z . (16)

Thus using Eqs. (11), and (14)–(16), the three-dimensional constitutive relation for
the viscoelastic material can be written as

{σ v
b}+ τ

α dα

dtα
{σ v

b}= [Cv]{εv
b}+ τ

α E∞

E0
[Cv]

dα

dtα
{εv

b} ;

{σ v
s }+ τ

α dα

dtα
{σ v

s }= G0 {εv
s }+ τ

αG∞

dα

dtα
{εv

s } (17)

where

[Cv] =


Cv

11 Cv
12 0 Cv

12
Cv

12 Cv
11 0 Cv

12
0 0 Cv

66 0
Cv

12 Cv
12 0 Cv

11

 and
G∞

G0
=

E∞

E0
(18)

while the elastic coefficients Cv
i j are presented in the Appendix.

At this juncture two anelastic strain functions can be introduced as follows:

{σ v
b}=

E∞

E0
[Cv] ({εv

b}−{ε̄v
b}) ;

{σ v
s }= G∞ ({εv

s }−{ε̄v
s }) ; (19)

where the anelastic bending strain function
{

ε̄v
b

}
and the anelastic transverse shear

strain function {ε̄v
s } are given by

{ε̄v
b}=

[
ε̄

v
x ε̄

v
y γ̄

v
xy ε̄

v
z
]T and {ε̄v

s }=
[
γ̄

v
xz γ̄

v
yz
]T

. (20)

Substituting Eq. (19) into Eq. (17), the following equations are obtained which
contain only one fractional derivative term.

{ε̄v
b}+ τ

α dα

dtα
{ε̄v

b}=
E∞−E0

E0
{εv

b} ;
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{ε̄v
s }+ τ

α dα

dtα
{ε̄v

s }=
E∞−E0

E0
{εv

s } . (21)

Substituting the Grünwald definition of fractional derivative (Eq.(12)) into Eq. (21)
and noting that A1 = 1 [Schmidt and Gaul (2002)], the following discretized general
relations in the time domain are obtained at any (n+1)th time step:

{ε̄v
b}n+1 = (1− c)

E∞−E0

E∞

{εv
b}n+1− c

Nt

∑
j=1

A j+1 {ε̄v
b}n+1− j ;

{ε̄v
s }n+1 = (1− c)

E∞−E0

E∞

{εv
s }n+1− c

Nt

∑
j=1

A j+1 {ε̄v
s }n+1− j (22)

where c is a dimensionless parameter given by c = τα

τα+(∆t)α .

Finally, substituting the relations given in Eq. (22) into Eq. (19), the discretized
forms of the constitutive relations of the viscoelastic material are obtained as fol-
lows:

{σ v
b}n+1 = [Cv

b]{εv
b}n+1 +

[
C̄v

b
] Nt

∑
j=1

A j+1 {ε̄v
b}n+1− j ;

{σ v
s }n+1 = [Cv

s ]{εv
s }n+1 +

[
C̄v

s
] Nt

∑
j=1

A j+1 {ε̄v
s }n+1− j (23)

where
[
Cv

b

]
,
[
C̄v

b

]
, [Cv

s ] and
[
C̄v

s
]

are explicitly given in the Appendix.

2.3 Constitutive relation for the 1-3 piezo-composite (PZC) material

The constraining 1–3 PZC layer is considered to be subjected to the electric field
Ez along the z-direction only. Accordingly, the constitutive relations for the con-
straining layer of the ACLD treatment are given by [Ray and Pradhan (2006)]{

σ
p
b

}
=
[
Cp

b

]{
ε

p
b

}
+
[
Cp

bs

]
{ε p

s }−{eb}Ez;

{σ p
s }=

[
Cp

bs

]T {
ε

p
b

}
+[Cp

s ]{ε p
s }−{es}Ez and

Dz = {eb}T {
ε

p
b

}
+{es}T {ε p

s }+ ∈33 Ez (24)

Here, Dz represents the electric displacement along the z-direction and ∈33 is the
dielectric constant. The transformed elastic coefficient matrices

[
Cp

b

]
and

[
Cp

s
]

are
similar to those of

[
C̄k

b

]
and

[
C̄k

s
]

for orthotropic layer, respectively. It may be
noted from the above form of constitutive relations that the transverse shear strains
are coupled with the in-plane stresses due to the orientation of piezoelectric fibers in
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the vertical xz- or yz-plane and the corresponding elastic coupling constant matrix[
Cp

bs

]
is given by

[
Cp

bs

]
=


C̄p

15 0
C̄p

25 0
0 C̄p

46
C̄p

35 0

 or
[
Cp

bs

]
=


0 C̄p

14
0 C̄p

24
C̄p

56 0
0 C̄p

34

 (25)

according as the piezoelectric fibers are coplanar with the vertical xz- or yz-plane.
If the fibers of the PZC are coplanar with both the xz- and the yz-planes i.e. vertical-
ly reinforced, this coupling matrix becomes a null matrix. Also, the piezoelectric
constant matrices {eb} and {es} appearing in Eq. (24) contain the following trans-
formed effective piezoelectric coefficients of the 1–3 PZC:

{eb}= [ē31 ē32 ē36 ē33]
T and {es}= [ē35 ē34]

T (26)

The principle of virtual work is employed to derive the governing equations of the
overall smart structure and can be expressed as

N+2

∑
k=1

∫
Ωk

(
δ

{
ε

k
b

}T {
σ

k
b

}
+δ

{
ε

k
s

}T {
σ

k
s

}
−δ {dt}T

ρ
k{d̈t

})
dΩk

−
∫

ΩN+2

δEz ∈33 EzdΩk−
∫
A

δ {dt}T { f}dA = 0 (27)

in which ρk is the mass density of the kth layer, { f} is the externally applied surface
traction acting over a surface area A and Ωk represents the volume of the kth layer.
It may be noted that the layer numbers N + 1 and N + 2 represent the viscoelastic
layer and the piezoelectric layer, respectively.

3 Finite element formulation

The overall plate is discretized by eight-noded isoparametric quadrilateral elements.
Following Eq. (4), the generalized displacement vectors, associated with the ith
(i = 1,2,3, . . . ,8) node of the element can be written as

{dti}= [u0i v0i w0i]
T and {dri}= [θxi θyi θzi φxi φyi φzi γxi γyi]

T . (28)

Thus the generalized displacement vector at any point within the element can be
expressed in terms of the nodal generalized displacement vectors {de

t } and {de
r} as

follows:

{dt}= [Nt ]{de
t } and {dr}= [Nr]{de

r} (29)
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in which

[Nt ] = [Nt1 Nt2 · · · Nt8] ; [Nr] = [Nr1 Nr2 · · · Nr8] ; Nti = niIt ; Nri = niIr;

{de
t }=

[
{de

t1}
T {de

t2}
T · · · {de

t8}
T
]T

and

{de
r}=

[
{de

r1}
T {de

r2}
T · · · {de

r8}
T
]T

(30)

while It and Ir are the (3 × 3) and (8 × 8) identity matrices, respectively and ni

is the shape function of natural coordinates associated with the ith node. Making
use of the relations given by Eqs. (6) to (8) and (29), the strain vectors at any point
within the element can be expressed in terms of the nodal generalized displacement
vectors as follows:

{εb}c = [Btb]{de
t }+[Z1] [Brb]{de

r}+
1
2
[B1] [B2]{de

t } ;

{εb}v = [Btb]{de
t }+[Z3] [Brb]{de

r}+
1
2
[B1] [B2]{de

t } ;

{εb}p = [Btb]{de
t }+[Z5] [Brb]{de

r}+
1
2
[B1] [B2]{de

t } ;

{εs}c = [Bts]{de
t }+[Z2] [Brs]{de

r} ;

{εs}v = [Bts]{de
t }+[Z4] [Brs]{de

r} ;

{εs}p = [Bts]{de
t }+[Z6] [Brs]{de

r} (31)

in which the nodal strain–displacement matrices [Btb], [Brb], [Bts], [Brs], [B1] and [B2]
are given by

[Btb] = [Btb1 Btb2 · · · Btb8] ; [Brb] = [Brb1 Brb2 · · · Brb8] ;

[Bts] = [Bts1 Bts2 · · · Bts8] ; [Brs] = [Brs1 Brs2 · · · Brs8] ;

[B1] =


∂w0

∂x
0

∂w0

∂y
0

0
∂w0

∂y
∂w0

∂x
0


T

and [B2] = [Bts] . (32)

The sub-matrices of [Btbi], [Brbi], [Btsi] and [Brsi] as shown in Eq. (32) have been
presented in the Appendix. Similarly the time dependent anelastic strain vectors
associated with the viscoelastic layer can be expressed as

{ε̄v
b}= [Btb]

{
d̄e

t
}
+[Z3] [Brb]

{
d̄e

r
}
+

1
2
[B1] [B2]

{
d̄e

t
}

;

{ε̄v
s }= [Bts]

{
d̄e

t
}
+[Z4] [Brs]

{
d̄e

r
}

(33)
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where
{

d̄e
t
}

and
{

d̄e
r
}

are the generalized anelastic nodal displacement vectors and
have the similar forms of {de

t } and {de
r}, respectively.

On substitution of Eqs. (31) and (33) into Eq. (27) and recognizing that Ez =
−V/hpwith V being the applied voltage across the thickness of the piezoelectric
layer, one can derive the following open-loop equations of motion of an element
integrated with the ACLD treatment:

[Me]
{

d̈e
t
}
+[Ke

ttn]{de
t }+[Ke

trn]{de
r}= {Fe}−{F̄e

tn}−
{

Fe
t pn
}

V ;

[Ke
rtn]{de

t }+[Ke
rr]{de

r}=−{F̄e
rn}−

{
Fe

rp
}

V (34)

The elemental mass matrix ([Me]), the elemental stiffness matrices ([Ke
ttn], [K

e
trn],

[Ke
rtn] and [Ke

rr]), the elemental memory load vectors due to the viscoelastic material
({F̄e

tn} and {F̄e
rn}), the elemental electroelastic coupling vectors (

{
Fe

t pn
}

and
{

Fe
rp
}
)

and the elemental load vector {Fe} appearing in Eq. (34) are given by

[Me] =

ae∫
0

be∫
0

m̄ [Nt ]
T [Nt ]dxdy;

[Ke
ttn] = [Ke

tb]+ [Ke
ts]+ [Ke

tbn] ; [K
e
tr] = [Ke

trb]+ [Ke
trs]+ [Ke

trbn] ;

[Ke
rt ] = [Ke

rtb]+ [Ke
rts]+ [Ke

rtbn] and [Ke
rr] = [Ke

rrb]+ [Ke
rrs] ;

{F̄e
tn}= [K̄e

ttn]
Nt

∑
j=1

A j+1
{

d̄e
t
}

n+1− j +[K̄e
trn]

Nt

∑
j=1

A j+1
{

d̄e
r
}

n+1− j ;

{F̄e
rn}= [K̄e

rtn]
Nt

∑
j=1

A j+1
{

d̄e
t
}

n+1− j +[K̄e
rr]

Nt

∑
j=1

A j+1
{

d̄e
r
}

n+1− j ;

[K̄e
ttn] = [K̄e

tb]+ [K̄e
ts]+ [K̄e

tbn] ; [K̄e
trn] = [K̄e

trb]+ [K̄e
trs]+ [K̄e

trbn] ;

[K̄e
rtn] = [K̄e

trb]
T
+[K̄e

trs]
T
+

1
2
[K̄e

trbn]
T ; [K̄e

rr] = [K̄e
rrb]+ [K̄e

rrs] ;{
Fe

t p
}
= {Fe

tb}+{Fe
ts}+{Fe

tbn} ;
{

Fe
rp
}
= {Fe

rb}+{Fe
rs} ;

m̄ =
N

∑
k=1

ρ
k (hk+1−hk)+ρ

vhv +ρ
php (35)

in which the elemental stiffness matrices associated with the bending strain vector
are given by

[Ke
tb] =

ae∫
0

be∫
0

[Btb]
T [Dp

tb

]
[Btb]dxdy+

ae∫
0

be∫
0

[Btb]
T [Dp

tbs

]
[Bts]dxdy;
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[Ke
tbn] =

ae∫
0

be∫
0

(
1
2
[Btb]

T [Dp
tb

]
[B1] [B2]+ [B2]

T [B1]
T [Dp

tb

]
[Btb]

+
1
2
[B2]

T [B1]
T [Dp

tb

]
[B1] [B2]

)
dxdy

+

ae∫
0

be∫
0

[B2]
T [B1]

T [Dp
tbs

]
[Bts]dxdy+

ae∫
0

be∫
0

1
2
[Bts]

T [Dp
tbs

]T
[B1] [B2]dxdy;

[Ke
trb] =

ae∫
0

be∫
0

[Btb]
T [Dp

trb

]
[Brb]dxdy+

ae∫
0

be∫
0

[Btb]
T [Dp

trbs

]
[Brs]dxdy;

[Ke
trbn] =

ae∫
0

be∫
0

[B2]
T [B1]

T [Dp
trb

]
[Brb]dxdy+

ae∫
0

be∫
0

[B2]
T [B1]

T [Dp
trbs

]
[Brs]dxdy

+

ae∫
0

be∫
0

1
2
[Brs]

T [Dp
trbs

]
[B1] [B2]dxdy;

[Ke
rtb] =

ae∫
0

be∫
0

[Brb]
T [Dp

trb

]T
[Btb]dxdy+

ae∫
0

be∫
0

[Brb]
T [Dp

rtbs

]
[Bts]dxdy;

[Ke
rtbn] =

1
2
[Ke

trbn]
T ;

[Ke
rrb] =

ae∫
0

be∫
0

[Brb]
T [Dp

rrb

]
[Brb]dxdy+

ae∫
0

be∫
0

[Brb]
T [Dp

rrbs

]
[Brs]dxdy;

[K̄e
tb] =

ae∫
0

be∫
0

[Btb]
T [C̄v

b
]

hv [Btb]dxdy;

[K̄e
tbn] =

ae∫
0

be∫
0

(
1
2
[Btb]

T [C̄v
b
]

hv [B1] [B2]+ [B2]
T [B1]

T [C̄v
b
]

hv [Btb]

+
1
2
[B2]

T [B1]
T [C̄v

b
]

hv [B1] [B2]

)
dxdy; [K̄e

trb]=

ae∫
0

be∫
0

[Btb]
T [D1] [Brb]dxdy;

[K̄e
trbn] =

ae∫
0

be∫
0

[B2]
T [B1]

T [D1] [Brb]dxdy; [K̄e
rrb] =

ae∫
0

be∫
0

[Brb]
T [D3] [Brb]dxdy;
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{Fe
tb}=

ae∫
0

be∫
0

[Btb]
T {eb}dxdy;

{Fe
tbn}=

ae∫
0

be∫
0

[B2]
T [B1]

T {eb}dxdy and

{Fe
rb}=

ae∫
0

be∫
0

[Brb]
T [Dp

rb

]
{eb}dxdy (36)

and those associated with transverse shear strain vector are given by

[Ke
ts] =

ae∫
0

be∫
0

[Bts]
T [Dp

ts
]
[Bts]dxdy+

ae∫
0

be∫
0

[Bts]
T [Dp

tbs

]T
[Btb]dxdy;

[Ke
trs] =

ae∫
0

be∫
0

[Bts]
T [Dp

trs
]
[Brs]dxdy+

ae∫
0

be∫
0

[Bts]
T [Dp

rtbs

]T
[Brb]dxdy;

[Ke
rts] =

ae∫
0

be∫
0

[Brs]
T [Dp

trs
]T

[Bts]dxdy+
ae∫

0

be∫
0

[Brs]
T [Dp

trbs

]T
[Btb]dxdy;

[Ke
rrs] =

ae∫
0

be∫
0

[Brs]
T [Dp

rrs] [Brs]dxdy+
ae∫

0

be∫
0

[Brs]
T [Dp

rrbs

]T
[Brb]dxdy;

[K̄e
ts] =

ae∫
0

be∫
0

[Bts]
T [C̄v

s
]

hv [Bts]dxdy; [K̄e
trs] =

ae∫
0

be∫
0

[Bts]
T [D2] [Brs]dxdy;

[K̄e
rrs] =

ae∫
0

be∫
0

[Brs]
T [D4] [Brs]dxdy; {Fe

ts}=
ae∫

0

be∫
0

[Bts]
T {es}dxdy and

{Fe
rs}=

ae∫
0

be∫
0

[Brs]
T [Dp

rs]{es}dxdy. (37)

In the above matrices, ae and be indicate the length and the width of the element
under consideration and the various rigidity matrices appearing in the above ele-
mental stiffness matrices are given in the Appendix. Finally, the elemental equa-
tions of motion are assembled to obtain the open-loop global equations of motion
of the overall structure integrated with the ACLD patch at any (n+ 1)th time step
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as follows:

[M]
{

Ẍ
}

n+1 +[Kttn]{X}n+1 +[Ktrn]{Xr}n+1 = {F}n+1−{F̄tn}n+1−{Ft pn}V ;

[Krtn]{X}n+1 +[Krr]{Xr}n+1 =−{F̄rn}n+1−{Frp}V (38)

where [M] is the global mass matrix, [Kttn], [Ktrn], [Krtn] and [Krr] are the global
stiffness matrices; {F̄tn}n+1 and {F̄rn}n+1 are the global viscelastic memory load;
{Ft pn},{Frp} are the global electro-elastic coupling vectors; {X} and {Xr} are the
global nodal generalized displacement vectors and {F}n+1 is the global nodal force
vector.

3.1 Computation of memory load due to the effect of viscoelastic material

Using the relation between the strain vectors and the anelastic strain vector, the
relation between generalized global displacement vector and global anelastic dis-
placement vector can be obtained as follows:

{X̄}n+1 = (1− c)
E∞−E0

E∞

{X}n+1− c
Nt

∑
j=1

A j+1 {X̄}n+1− j ;

{X̄r}n+1 = (1− c)
E∞−E0

E∞

{Xr}n+1− c
Nt

∑
j=1

A j+1 {X̄r}n+1− j . (39)

It may be mentioned here that the Grünwald coefficients (A j) in Eq. (39) decreases
with the increase in the value of j. Thus the response of the viscoelastic mate-
rial at a particular time depends more strongly on the recent past history of the
response than on the remote past history of the response. Therefore the Grünwald
coefficients corresponding to the large value of j describe the fading memory of the
viscoelastic layer and truncation of the Grünwald series after some value of j does
not affect the response. Substituting Eq. (39) in Eq. (38), the open-loop global
equations of motion of the overall structure is obtained in time domain as follows:

[M]
{

Ẍ
}

n+1 +[K∗tn]{X}n+1 +[K∗trn]{Xr}n+1 = {F}n+1 +{F
∗

tn}n+1−{Ft pn}V ;

[K∗rtn]{X}n+1 +[K∗rrn]{Xr}n+1 = {F
∗

rn}n+1−{Frp}V (40)

in which [K∗tn], [K
∗
trn], [K

∗
rtn], [K

∗
rr], {F∗tn}n+1 and {F∗rn}n+1 are given by

[K∗tn] = [Kttn]+

(
1− c

c

)(
E∞−E0

E∞

)
[K̄ttn] ;

[K∗trn] = [Ktrn]+

(
1− c

c

)(
E∞−E0

E∞

)
[K̄trn] ;
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[K∗rtn] = [Krtn]+

(
1− c

c

)(
E∞−E0

E∞

)
[K̄rtn] ;

[K∗rr] = [Krr]+

(
1− c

c

)(
E∞−E0

E∞

)
[K̄rr] ;

{F∗tn}n+1 =
1
c

(
[K̄ttn]{X̄}n+1 +[K̄trn]{X̄r}n+1

)
and

{F∗rn}n+1 =
1
c

(
[K̄trn]

T {X̄}n+1 +[K̄rr]{X̄r}n+1

)
. (41)

4 Closed loop model

For activating the patches of the ACLD treatment with a control voltage, a simple
negative velocity feedback control law has been implemented. According to this
law, the control voltage for each patch at any (n+1)th time step can be expressed
in terms of the derivatives of the global nodal degrees of freedom as follows:

V l
n+1 =−Kl

dẇn+1 =−Kl
d [U

l]
{

Ẋ
}

n+1 (42)

in which Kl
d is the control gain for the lth patch and [U l] is a unit vector defining

the location of sensing the velocity signal. Finally, substituting Eq. (42) into Eq.
(40) and condensing the generalized degrees of freedom {Xr}n+1, the equations
of motion governing the closed loop dynamics of the laminated composite plate
activated by the patch of the ACLD treatment can be obtained as follows:

[M]
{

Ẍ
}

n+1 +[Cn]
{

Ẋ
}

n+1 +[Kn]{X}n+1 = {F}n+1 +{F̄n}n+1 (43)

where the active damping matrix [Cn], the stiffness matrix [Kn] and the load vector
due to the viscoelastic effect denoted by {F̄n}n+1 are given by

[Cn] =
m

∑
l=1
−Kl

d

(
{Ft pn}− [K∗trn] [K

∗
rr]
−1 {Frp}

)[
U l
]

[Kn] = [K∗tn]− [K∗trn] [K
∗
rr]
−1 [K∗rtn]

{F̄n}n+1 = {F
∗

tn}n+1− [K∗trn] [K
∗
rr]
−1 {F∗rn}n+1 (44)

with m being the number of ACLD patches.

5 Validation of the model

The boundary conditions used for computing the numerical results are presented
in Table 1. A MATLABr code is developed using the finite element model for-
mulated in the previous section. In order to verify the validity of the present finite
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Table 1: Various boundary conditions used in the finite element model.
Type At x = 0 and a At y = 0 and b

Simply supported (SS1) v0=w0=θy=θz=φy=φz=γy=0 u0=w0=θx=θz=φx=φz=γx=0
Simply supported (SS2) u0=w0=θy=θz=φy=φz=γy=0 v0=w0=θx=θz=φx=φz=γx=0

Clamped-clamped (CC)
v0=w0=θx=θy=θz=φx=φy=φz
=γx=γy=0

u0=w0=θx=θy=θz=φx=φy=φz
=γx=γy=0

element model, three examples are selected from the literature. For solving the
nonlinear algebraic equations given in Eq. (43) an iterative method is required and
for the present analysis direct iteration method is used. The first example is con-
cerned about validating the direct iteration method where the nonlinear bending of
a square simply-supported (SS1), orthotropic plate (aspect ratio a/h = 10) made
of high modulus glass-epoxy fiber-reinforced material integrated with the inactive
ACLD patch of negligible thickness is first computed by the present model and
subsequently, compared with the existing result [Reddy (2004)] of the identical
plate without integrated with the patch as shown Fig. 4. The following material
properties are considered [Reddy (2004)].

E1 = 25E2; E2 = 2.1×106; G12 = G13 = 0.5E2; G23 = 0.2E2;

ν12 = 0.25 and ρ = 800 Kg/m3. (45)

Figure 4: Nonlinear load-deflection
curve for simply-supported orthotropic
square plate under uniform load.

Figure 5: Comparison of nonlinear
transient response at the center of the
simply-supported (SS1) (0◦/90◦/90◦/ 0◦)
symmetric square cross ply plate.

The nondimensional load parameter shown in Fig. 4 is given by P = q0a4/E2h4

where q0 is the uniformly distributed load all over the plate. It may be observed
that the load-deflection curve displayed in Fig. 4 indicates that the present result
matches very accurately with that of the Reddy (2004) validating the present finite
element model and the direct iteration method for solving nonlinear equations.
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The next analysis is performed on a four layer symmetric square cross-ply (0◦/90◦/
90◦/0◦) plate integrated with the inactive ACLD patch of negligible thickness to
compute the nonlinear transient response using the Newmark beta method under
uniform step load with an intensity of 1 N/mm2 [Chen, Dawe, and Wang (2000)].
Material properties are considered as given in Eq. (45) while the geometric proper-
ties are used as a = b = 250 mm and h = 5 mm with each layer having equal thick-
ness [Chen, Dawe, and Wang (2000)]. The present results are compared with the
response presented by Chen, Dawe, and Wang (2000) in Fig. 5 for the same plate
without the ACLD patch. The results computed using the present model matches
very closely with that of the Chen, Dawe, and Wang (2000) proving the accuracy
of the implementation of the numerical integration method.

Finally, a viscoelastic simply-supported beam [Galucio, Deü, and Ohayon (2004)]
is chosen to validate the proposed three-dimensional constitutive relation for the
viscoelastic material using the FDM. To compute the linear transient transverse vi-
bration of the viscoelastic beam, the structure in Fig. 1 is first modified. The ACLD
patch is extended over the whole top surface of the substrate plate and subsequent-
ly the present model is reduced to a beam considering the geometrical parameters
and the material properties same as that of the beam considered by Galucio, Deü,
and Ohayon (2004). The following geometric data is then adopted following Galu-
cio, Deü, and Ohayon (2004), a = 10 m, b = 2 m, hv = 0.5 m while negligible
thicknesses of the substrate plate (h) and the 1–3 PZC layer (hp) are considered.
The viscoelastic material properties [Galucio, Deü, and Ohayon (2004)] are ρ =
500 kg/m3, ν = 0.3, E0 = 19.6 MPa, E∞ = 98 MPa, τ = 2.24 sec and α = 0.75.
The shear correction factor used for this analysis is assumed as [Galucio, Deü, and
Ohayon (2004)] kc = 10(1+ν)/(12+11ν). The time dependent transverse dis-
placement of the center of the beam under uniform step load of 10 N/m applied
all over the beam is compared with that computed by Galucio, Deü, and Ohayon
(2004) as shown in Fig. 6. It may be observed that the two response curves match
excellently with each other. This confirms that the present three-dimensional con-
stitutive relation for the viscoelastic material using the FDM is highly accurate and
can be successfully implemented for three-dimensional analysis of passive and ac-
tive constrained layer damping of geometrically nonlinear smart composite plates.

6 Results and discussion

In this section, the numerical results obtained by the finite element model derived
in Section 4 have been presented. Numerical results are presented considering d-
ifferent stacking sequences and boundary conditions (Table 1) for the laminated
square substrate plates integrated with a patch of ACLD treatment attached at the
center of the top surface of the substrate plates. The length and the width of the
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Figure 6: Comparison of transient re-
sponse of the center of the simply-
supported viscoelastic beam for α =
0.75.

Figure 7: Backbone curves for square
plates with different boundary condi-
tions under uniform load with the ACLD
patch.

patch are considered to be 50% of the length and the width of the substrate plates,
respectively. PZT-5H/spur epoxy composite with 60% piezoelectric fiber volume
fraction has been considered for the material of the constraining layer of the A-
CLD treatment. The elastic and the piezoelectric properties and the density of this
constraining layer are [Ray and Pradhan (2007)]:

Cp
11 = 9.29 GPa; Cp

12 = 6.18 GPa; Cp
13 = 6.05 GPa; Cp

33 = 35.44 GPa;

Cp
23 =Cp

13; Cp
44 = 1.58 GPa; Cp

66 = 1.54 GPa; Cp
55 =Cp

44; ρ
p = 5090 kg/m3;

e31 =−0.1902 C/m2, e32 = e31, e33 = 18.4107 C/m2,

e24 = 0.004 C/m2, e15 = e24. (46)

The thickness of the 1-3 PZC layer is considered as hp = 600µm for all the anal-
yses. The viscoelastic material is chosen as ISD112 which is characterized by the
following material properties [Galucio, Deü, and Ohayon (2005)]:

E0 = 1.5 MPa; E∞ = 69.95 MPa; ν = 0.49; α = 0.7915;

τ = 1.4052×10−2 ms;ρ
v = 1600 kg/m3. (47)

The thickness of the constrained viscoelastic layer is chosen as hv = 250µm. The
material of the orthotropic layers of the substrate plates is a graphite/epoxy com-
posite and its material properties are [Reddy (2004)]:

E1 = 172 GPa; E1/E2 = 25; G12 = 0.5E2; G13 = G12; G23 = 0.2E2;

ν12 = 0.25; ν13 = ν23 = ν12; ρ = 1600 kg/m3. (48)
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The length (a) and the width (b) of the substrate plates with SS1 and SS2 type
boundary conditions are considered as a = b = 0.4 m while for the CC type bound-
ary condition the same was assumed as a = b = 0.5 m. In all the examples the
overall thickness of the substrate plates is taken as h = 3 mm and each orthotropic
layer of a substrate plate is considered to be of equal thickness. The shear correction
factor is chosen to be kc = 5/6. A uniformly distributed load is suddenly applied
all over the plate to analyze the control of the transient vibration. The intensity of
the applied load is decided from the backbone curve (Fig. 7) of the corresponding
substrate laminated plate and to incorporate sufficient nonlinearity in the present
analyses, the frequency ratio (ωnl/ωl) is kept more than 1.1. The control voltage
supplied to the ACLD patch is negatively proportional to the velocity of the point at
the center ẇ(a/2,b/2,h/2) of the plate. Depending on the applied load, the control
gain is chosen arbitrarily such that the value of the control voltage is nominal and
the vibrations are also under control.

It is already mentioned earlier that the upper limit of the Grünwald series (Nt) is
the number of responses in memory and is somewhat arbitrary but must be less
than the number of time steps. Thus at this juncture it is crucial to find out whether
an approximate truncated value of Nt can be obtained so that sufficiently accurate
computation of the memory load is possible without losing much memory informa-
tion and the damping property of the viscoelastic material with elapsed time. Two
cases are examined in this regard. First a (0◦/90◦) antisymmetric square cross ply
substrate plate with SS1 type boundary condition is selected to observe the effec-
t of truncated value of Nt under 1.6 kN/m2 uniform load when the plate is under
PCLD treatment. In the next example the same plate is analyzed when it is under
ACLD treatment (Kd = 240). Comparison of responses for Nt = 5, 10 and 2000
are presented in Figs. 8 and 9 when the plate is under PCLD and ACLD treatment
(ψ = 0◦), respectively. It may be observed from Figs. 8 and 9 that obtained re-
sponses using less number of terms in the Grünwald series negligibly differ from
the actual responses when all terms in the Grünwald series is considered. This can
be justified from the definition of Grünwald constant given in Eq. (13). It may be
noted that it depends on the fractional order (α) of the derivative which is constant
for a particular viscoelastic material and thus increasing the number of Grünwald
terms rapidly decreases the corresponding Grünwald constant. This substantiates
the fading memory effect of the viscoelastic material.

For presenting the numerical results all the memory terms in the Grünwald se-
ries are considered while calculating viscoelastic memory load. The efficiency of
the obliquely reinforced 1–3 PZC layer for controlling the vibrations of the plates
is analyzed by measuring the control authority of the ACLD patch for different
piezoelectric fiber orientation angle (ψ) in the vertical xz or yz planes. To measure
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Figure 8: Effect of truncation of N-
t for transient response at the center of
the simply-supported (SS1) (0◦/90◦) an-
tisymmetric square cross ply plate under
PCLD treatment for α = 0.7915.

Figure 9: Effect of truncation of Nt for
transient response at the center of the
simply-supported (SS1) (0◦/90◦) anti-
symmetric square cross ply plate under
ACLD treatment for Kd = 240 and α =
0.7915.

Figure 10: Performance index of the
ACLD patch for different piezoelectric
fiber orientation angle (ψ) of the 1–3
PZC layer in the xz plane for controlling
vibrations of square plates with differ-
ent boundary conditions under uniform
load.

Figure 11: Transient responses of a
simply supported (0◦/90◦/0◦) symmet-
ric square cross-ply plate undergoing P-
CLD and ACLD.

the percentage reduction in the amplitude of vibration at the center of the plate, a
performance index (Id) is defined as follows:

Id =
|a1(a/2,b/2,h/2)|− |a10(a/2,b/2,h/2)|

|a1(a/2,b/2,h/2)|
×100 (49)

where a1 and a10 are the amplitudes of vibration at the 1st peak and the 10th peak.
For a maximum control voltage of 250 V, the variation of the performance index
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(Id) with the piezoelectric fiber orientation angle (ψ) in the xz plane is presented in
Fig. 10 for different substrate plates and boundary conditions. Similar results can
be obtained (not presented here) when the piezoelectric fiber orientation angle (ψ)
is varied in the vertical yz plane. It may be noted that the ACLD patch provides
maximum control authority when vertically reinforced (ψ = 0◦) 1–3 PZC is used.

Figure 12: Control voltage required
for the ACLD of a simply supported
(0◦/90◦/0◦) symmetric square cross-ply
plate undergoing ACLD.

Figure 13: Phase plot of a simply sup-
ported (0◦/90◦/0◦) symmetric cross-ply
plate undergoing ACLD.

Figure 11 illustrates the transient response of a (0◦/90◦/0◦) symmetric square cross
ply plate under 3.8 kN/m2 uniform load with SS1 type boundary condition. The
responses displayed in the figure correspond to the cases when the patch is passive
(Kd = 0) and active (Kd 6= 0) while the piezoelectric fiber orientation angle (ψ) is
considered to be 0◦. The figure clearly reveals that the constraining layer made
of vertically reinforced 1–3 PZC material significantly attenuates the amplitude
of vibrations, enhancing the damping characteristics of the laminated composite
plates over the passive damping (Kd = 0). The control voltages corresponding to
the different gain values are quite nominal as shown in Fig. 12 for controlling the
vibration. Since the control voltage is proportional to the velocity of a point of the
plate, the illustration of the control voltages in Fig. 12 also indicate that at any point
of the overall plate, the velocity also decays with time. The phase plot presented in
Fig. 13, corroborates the same indicating the stability of the plate.

The transient responses of simply-supported (SS2) antisymmetric angle ply plate
with four layers (45◦/−45◦/45◦/−45◦) under 3.1 kN/m2 uniform load and angle
ply plate with eight layers (30◦/60◦)4 under 2.3 kN/m2 uniform load are presented
in Figs. 14 and 15 for both passive (Kd = 0) and active (Kd 6= 0) control, respec-
tively. In this case also the piezoelectric fiber orientation angle (ψ) is considered
as 0◦ to obtain maximum control authority. Figs. 16 and 17 demonstrate the cor-
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responding control voltages required to achieve the active responses presented in
Figures 14 and 15, respectively. It may be observed from these figures that the A-
CLD patch also effectively controls the vibrations of the angle ply plates enhancing
the damping characteristics with nominal control voltage.

Figure 14: Transient responses of a sim-
ply supported (45◦/−45◦/45◦/−45◦) an-
tisymmetric angle-ply plate undergoing
PCLD and ACLD.

Figure 15: Transient responses of a sim-
ply supported (30◦/60◦)4 angle-ply plate
undergoing PCLD and ACLD.

Figure 16: Control voltage required for
the ACLD of a simply supported (45◦/
−45◦/45◦/−45◦) antisymmetric angle-
ply plate undergoing ACLD.

Figure 17: Control voltage required
for the ACLD of a simply supported
(30◦/60◦)4 angle-ply plate undergoing
ACLD.

In the final example similar analyzes have been performed on a clamped-clamped
(CC) laminated plate having six generally orthotropic layers (−45◦/30◦/0◦/0◦/−
30◦/45◦) and the responses under 4.8 kN/m2 uniform load are depicted in Fig. 18
for both passive (Kd = 0) and active (Kd 6= 0) control (ψ = 0◦). From Fig. 18 similar
conclusions can be drawn that the ACLD treatment has significantly improved the
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Figure 18: Transient responses of
a clamped-clamped (−45◦/30◦/0◦/0◦/
−30◦/45◦) symmetric angle-ply plate
undergoing PCLD and ACLD.

Figure 19: Control voltage required
for the ACLD of a clamped-clamped
(−45◦/30◦/0◦/0◦/−30◦/45◦) angle-ply
plate undergoing ACLD.

control of the CC plate over the PCLD treatment. Also the required control voltage
(Fig. 19) is nominal.

7 Conclusions

A three-dimensional finite element analysis has been carried out to investigate the
performance of the patch of the ACLD treatment for controlling geometrically non-
linear vibrations of orthotropic laminated composite plates. The constraining layer
of the ACLD patch is considered to be made of the vertically/obliquely reinforced
1–3 PZC. Existing one-dimensional form of the fractional order derivative con-
stitutive model of the viscoelastic material has been augmented to derive a three-
dimensional fractional order derivative model (FDM) of the constrained viscoelas-
tic layer. The kinematics of deformations of the whole structure is assumed to be
based on the FSDT and von Kármán type strain displacement relation has been used
to account for the geometric nonlinearity. A simple velocity feedback control law
is used to introduce the active damping. Validations for both FSDT and FDM are p-
resented. Examples are presented to determine the effect of the number of memory
terms in the Grünwald series (Nt), so that accurate dynamic response can be ob-
tained with effective implementation of the FDM. Further analyses are performed
on the laminated plates with symmetric/antisymmetric cross-ply and antisymmetric
angle-ply and a general layup laminate with different boundary conditions for eval-
uating the numerical results. The numerical results for controlled responses reveal
that the ACLD treatment significantly improves the active damping characteristics
of the structure over the PCLD treatment of the same for suppressing their geomet-
rically nonlinear transient vibrations. The present investigation suggests that the
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fractional order derivative model of viscoelastic layer is a computationally efficient
model for time domain analysis of the ACLD of geometrically nonlinear vibrations
of laminated composite plates.
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Appendix

The matrices
[
Zβ

]
(β = 1,2, . . . ,6) appearing in Eqs. (6) and (7) are given by

[Z1] =


z 0 0 0 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0 0 0
0 0 z 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 2z 0 0 0

 ;

[Z2] =

[
1 0 z 0 0 0 z2 0 0 0
0 1 0 z 0 0 0 z2 0 0

]
;

[Z3] =


h/2 0 0 0 (z−h/2) 0 0 0 0 0 0

0 h/2 0 0 0 (z−h/2) 0 0 0 0 0
0 0 h/2 0 0 0 (z−h/2) 0 0 0 0
0 0 0 1 0 0 0 2z 0 0 0

 ;

[Z4] =

[
0 0 z 0 1 0 z2 0 0 0
0 0 0 z 0 1 0 z2 0 0

]
;

[Z5] =


h/2 0 0 0 hv 0 0 0 (z−hN+2) 0 0

0 h/2 0 0 0 hv 0 0 0 (z−hN+2) 0
0 0 h/2 0 0 0 hv 0 0 0 (z−hN+2)
0 0 0 1 0 0 0 2z 0 0 0

 ;

[Z6] =

[
0 0 z 0 0 0 z2 0 1 0
0 0 0 z 0 0 0 z2 0 1

]
.

The transformed elastic coefficient matrices in equation (10) have the following
form.

[
C̄k

b

]
=


C̄k

11 C̄k
12 C̄k

16 C̄k
13

C̄k
12 C̄k

22 C̄k
26 C̄k

23

C̄k
16 C̄k

26 C̄k
66 C̄k

36

C̄k
13 C̄k

23 C̄k
36 C̄k

33

 and
[
C̄k

s

]
=

[
C̄k

55 C̄k
45

C̄k
45 C̄k

55

]

where C̄k
i j(i, j = 1,2, . . . ,6) are the transformed elastic coefficient.

In Eq. (18) the elastic coefficients Cv
i j for the viscoelastic material can be written

as:

Cv
11 =

E0 (1−ν)

(1−2ν)(1+ν)
; Cv

12 =
E0ν

(1−2ν)(1+ν)
; Cv

66 = G0 =
E0

2(1+ν)
.
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The matrices
[
Cv

b

]
,
[
C̄v

b

]
, [Cv

s ] and
[
C̄v

s
]

in Eq. (23) are given by

[Cv
b] =

(
1+ c

E∞−E0

E0

)
[Cv] ;

[
Cv

b
]
= c

E∞

E0
[Cv] ;

[Cv
s ] = G0

(
1+ c

E∞−E0

E0

)[
1 0
0 1

]
and

[
Cv

s
]
= cG∞

[
1 0
0 1

]
.

The sub-matrices of [Btbi], [Brbi], [Btsi] and [Brsi] as shown in Eq. (32) can be
explicitly written as:

[Btbi] =


∂ni

∂x
0

∂ni

∂y
0

0
∂ni

∂y
∂ni

∂x
0

0 0 0 0


T

; [Btsi] =

0 0
∂ni

∂x

0 0
∂ni

∂y

 ;

[Brbi] =



∂ni

∂x
0 0 0 0 0 0 0

0
∂ni

∂y
0 0 0 0 0 0

∂ni

∂y
∂ni

∂x
0 0 0 0 0 0

0 0 ni 0 0 0 0 0

0 0 0
∂ni

∂x
0 0 0 0

0 0 0 0
∂ni

∂y
0 0 0

0 0 0
∂ni

∂y
∂ni

∂x
0 0 0

0 0 0 0 0 ni 0 0

0 0 0 0 0 0
∂ni

∂x
0

0 0 0 0 0 0 0
∂ni

∂y

0 0 0 0 0 0
∂ni

∂y
∂ni

∂x



;
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[Brsi] =



ni 0 0 0 0 0 0 0
0 ni 0 0 0 0 0 0

0 0
∂ni

∂x
0 0 0 0 0

0 0
∂ni

∂y
0 0 0 0 0

0 0 0 ni 0 0 0 0
0 0 0 0 ni 0 0 0

0 0 0 0 0
∂ni

∂x
0 0

0 0 0 0 0
∂ni

∂y
0 0

0 0 0 0 0 0 ni 0
0 0 0 0 0 0 0 ni



.

The various rigidity matrices appearing in Eqs. (36) and (37) are given by

[
Dp

tb

]
=

N

∑
k=1

hk+1∫
hk

[
C̄k

b

]
dz+[Cv

b]hv +
[
Cp

b

]
hp;

[
Dp

trb

]
=

N

∑
k=1

hk+1∫
hk

[
C̄k

b

]
[Z1]dz+

hN+2∫
hN+1

[Cv
b] [Z3]dz+

hN+3∫
hN+2

[
Cp

b

]
[Z5]dz;

[
Dp

rrb

]
=

N

∑
k=1

hk+1∫
hk

[Z1]
T
[
C̄k

b

]
[Z1]dz+

hN+2∫
hN+1

[Z3]
T [Cv

b] [Z3]dz+

hN+3∫
hN+2

[Z5]
T [Cp

b

]
[Z5]dz;

[
Dp

ts
]
=

N

∑
k=1

hk+1∫
hk

[
C̄k

s

]
dz+[Cv

s ]hv +[Cp
s ]hp;

[
Dp

trs
]
=

N

∑
k=1

hk+1∫
hk

[
C̄k

s

]
[Z2]dz+

hN+2∫
hN+1

[Cv
s ] [Z4]dz+

hN+3∫
hN+2

[Cp
s ] [Z6]dz;

[Dp
rrs]=

N

∑
k=1

hk+1∫
hk

[Z2]
T
[
C̄k

s

]
[Z2]dz+

hN+2∫
hN+1

[Z4]
T [Cv

s ] [Z4]dz+

hN+3∫
hN+2

[Z6]
T [Cp

s ] [Z6]dz;

[D1]=

hN+2∫
hN+1

[
C̄v

b
]
[Z3]dz; [D2]=

hN+2∫
hN+1

[
C̄v

s
]
[Z4]dz;
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[D3]=

hN+2∫
hN+1

[Z3]
[
C̄v

b
]
[Z3]dz; [D4]=

hN+2∫
hN+1

[Z4]
[
C̄v

s
]
[Z4]dz;

[
Dp

tbs

]
=
[
Cp

bs

]
hp;

[
Dp

trbs

]
=

hN+3∫
hN+2

[
Cp

bs

]
[Z6]dz;

[
Dp

rtbs

]
=

hN+3∫
hN+2

[Z5]
T [Cp

bs

]
dz;

[
Dp

rrbs

]
=

hN+3∫
hN+2

[Z5]
T [Cp

bs

]
[Z6]dz;

[
Dp

rb

]
=

hN+3∫
hN+2

1
hp

[Z5]
T dz; [Dp

rs]=

hN+3∫
hN+2

1
hp

[Z6]
T dz.


