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Experimental and Numerical Analysis of the Polyvinyl
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Abstract: The polyvinyl chloride PVC is a polymer material widely used for a
large variety of applications. The present work focuses on the identification of the
physical processes responsible for the mechanical properties of the PVC contain-
ing different crystallinities rate applied in large deformation and different strain
rates. In order to understand the behavior of the PVC, a thermodynamic modeling
is needed. Therefore, the contribution of this approach was demonstrated by ex-
periment and numerical modeling. This comparative study demonstrates that the
proposed model provides better agreement with experimental evidence.
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1 Introduction

The polymers are inseparable from our environment and our practical life. They
have established themselves in all areas of our business through their use in hygiene
and food products. Most often synthetic, sometimes natural, they must this rise to
their wide range of features, hard, soft and elastic, transparent or opaque, insulated
and occasionally conductors, more or less resistant to aggressive conditions of their
use, always lightweight. The semi-crystalline polymers are materials that having a
complicated microstructure consisted of an amorphous disordered phase and a vi-
cious nature structured crystalline phase. Coexistence and interaction of these two
phases of very different natures are the origin of the complexity of their macroscop-
ic behavior that could fall within the scope of such as elasto-viscoplastic behavior
[Kichenin (1992); Paquin and Berveiller (1996); Ouakka, Dang Van, Gueugnaut,
and Blouet (1997); Polanco-Loria, Clausen, Berstad, and Hopperstad (2007)]. Sev-
eral fracture study ways were investigated, the first take place on the scale of the
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continuum mechanics. This approach allows predicting the evolution of this lat-
ter according to the state of loading and leads to a characterization of mechanical
quantities at the instant of the rupture. Other phenomenological approaches are
looking for simple mathematical models in order to translate sufficient conditions
for the rupture is primed.

The expression of criteria and descriptors put into play may be different according
to the importance of the plastic process developing in the material. The polymer-
s are composed of macromolecules that are obtained by adding small molecules
called monomers. When a polymerization reaction is happened, the monomers are
generally of long chains that can fold on themselves and/or entangle with neighbor-
ing macromolecules. The long chain polymer can have crystalline domains and/or
amorphous as appropriate. Our aim is to depict the different routes of possible
study and choose the most appropriate to the description of our material (PVC), es-
tablishing laws of behavior of Gurson Model [Gurson (1977)] and rupture criteria
relevant implementable in a numerical simulation of the behavior of the PVC struc-
ture commonly used in the industry. We firstly present present much information
that will glimpse the importance of the combined effects of the formulation and
implementation of PVC.

2 Analytical modeling of the strain rate deformation of polymers

Modeling of polymers is based initially on the rheological model of Voigt and
Maxwell. These models are used to combine both of viscoelastic and Viscoplastic-
ity [Lamloumi, Hassini, Lecomte-Nana, Elcafsi, and Smith (2014)], two behaviors
encountered in polymers. In the case of semi-crystalline, although the behavior of
the amorphous phase is very different from the behavior of the crystalline phase,
many models have tried to describe by means of a unique equation of the two-phase
behavior [Gurson (1977)] Other models, based on the Eyring equation [Bahadur
(1977)] make it possible to account for the rubber elasticity of the amorphous phase
as well as the deformation of the crystalline phase [Eyring (1936)]. Other models
have chosen to rely solely on modeling the crystalline texture [G’sell and Jonas
(1981)]. The polymer is then considered as a polycrystalline aggregate of crys-
tallises formed randomly. The crystalline phase is believed to have a viscoelastic
behavior, crystalline lamellae deforming sliding, parallel or perpendicular to the
channels. The failure to take into account the contribution of the amorphous phase
to plastic deformation implies an underestimation of the plastic hardening, espe-
cially in shear. This will be checked especially as the amount of amorphous phase
is important in the polymer. To take into account the contribution of the amor-
phous phase, the previous model is complemented by the model Van Der Giessen
dealing with the rubber elasticity [Dahoun (1992)]. This model adds two param-
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eters: density in the crystallises and limited by the average number of segments
by sub channels flexible chains. To combine the two models, the mean stress is
decomposed due to the stress between the crystalline phase and the stress due to
the amorphous phase such as (1):

σ̄ = Xcσ
c +(1−Xc)σ

a (1)

Xc: Is a constant in eq (1).

The introduction of Van Der Giessen model [Wu and Van Der Giessen (1993)] to
account for the contribution of the amorphous phase improves the original Dahoun
model [Dahoun (1992)]. However, the juxtaposition of both models as shown in
the equation above is nevertheless a simplification since no coupling or interaction
between the two phases are taken into account. It is seen that the complexity of the
semi-crystalline structures seriously complicates models compared to amorphous
polymers, formed from a single homogeneous phase behavior. Modeling of these
is then often taken as a basis for reflection.

2.1 The criterion of gurson

In connection with the approach mentioned above, the model comprises a Gurson
flow condition, a measure of the volume fraction of voids, a law characteristic
nucleation and a law of evolution cavities. This volume increases in polymers due
to void growth is commonly reported in many recent studies [G’sell and Dahoun
(1994); Laiarinandrasana, Morgeneyer, Proudhon, N’guyen, and Maire (2012)].

The flow function has been obtained in the following manner:

• The Von Mises criterion is used to characterize the flow of the matrix.

• A rigid plastic model is assumed to be valid due to its large deformation
caused by the process of ductile fracture.

• A form of the velocity field is considered in the aggregate to enable the cav-
ities to grow while maintaining the incompressibility of the plastic matrix.
This velocity field must also verify the kinematic boundary conditions of the
tensor of deformation rate on the surfaces of a unit cell of cubic shape. Based
on these assumptions, an approximate flow of a porous material according to
which stress depends on the macroscopic, microscopic flow stress of the ma-
trix and the volume fraction of actual cavities is obtained as follows (2):

Φ(σ ,σ0, f ) =
σ2

eq

σ2
0
+2 f cossh(

3
2

σm

σ0
)−1− f 2 = 0 (2)
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With:

Φ: Function of flow

σeq: The equivalent macroscopic stress

σm: Average macroscopic stress

f : The porosity of the material

σ0: The limit of elasticity of the matrix

σ : The macroscopic stress tensor (matrix + pores)

Gurson model gives satisfactory approximations for high triaxiality constraints but,
overestimates the fracture strain of the material for low levels of triaxiality.

2.2 Mechanical behavior

Despite large differences in the nature and structure of metals (and alloys) and
polymers (and composite), we paradoxically observed strong similarities in their
macroscopic behavior. Thus, with orders of magnitude different, the terms of e-
lasticity, viscosity, plastic deformation, hardening, brittle fracture, ductile failure,
apply to all such materials. This is what justifies a priory the overall approach to
the mechanics of materials using the concepts of continuum mechanics.

Thermodynamics and rheology, it allows building models that do not depend on
their foundations of the materials. Thus, it is not uncommon for the analysis meth-
ods of the mechanical properties developed for the metals are applied to polymers.
However, if the rheological behavior of materials appears to involve macroscopic
phenomena similar, they differ in the basic phenomena involved as well as their
magnitude. This is the case for example for the way they develop or not nicking
(plastic instability observed in simple tension beyond a certain critical strain). Ex-
perimentally this phenomenon, which often occurs at the center of the specimen
[Castagnet and Deburck (2007); Laiarinandrasana, Besson, Lafarge, and Hochstet-
ter (2009); Boisot, Laiarinandrasana, Besson, Fond, and Hochstetter (2011)], is
characterized by a concentration of the local plastic deformation. For a metal, this
local thinning is increasing more and more up to the lead to rupture of the spec-
imen. In contrast, for some polymers, the thinning of the striation stabilizes and
then we observed a propagation shoulder of the striation. The experimental test is
performed to determine the behavior law of PVC; the specimen was collected in the
form of a plate. Geometry corresponds to the ASTM D638 standard M1A [ASTM
D638 (2010)] as shown in Fig. 1.

The test was performed on an Inströn tensile testing machine at room temperature
of 23◦C. Different elastoplastic material properties can be obtained from the stress-
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strain curve (see Fig 1.a). The mechanical properties of PVC used are presented in
Tab. 1.

Figure 1: Specimens geometry used in tension test.

Table 1: Mechanical properties of the Polyvinyl Chloride (PVC).

dε/dt (S−1) E (MPa) σy (MPa) υ Specific gravity
0.1 656 50

0.4 0.870.01 652 42
0.001 650 40

Fig. 2. (b), (c) and (d) shows the experimental and numerical stress-strain curve
for different strain rate (v = 0.1, v = 0.01 and v = 0.001). These figures show
the typical response of PVC under tensile, consisting of three regions: an initial
linear elastic phase, a stress plateau and a densification stage, characterized by a
steep stiffness increase. Results show very good comparison between the numerical
predictions obtained from the FE models and experimental data. The developed FE
model using is capable of predicting with some accuracy not only the duration and
peak stress of the impact at different strain rate, but also the typical nonlinear shape
of the stress-strain curves. The experimental and numerical comparison showed to
be in a good agreement.

2.3 Numerical study

Many recent papers in fracture analysis of complex 2D & 3D solid structures and
materials are presented [see, Dong and Atluri (2012a); Dong and Atluri (2012b);
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Figure 2: Stress vs Strain curves a) Experimental analysis, b) experimental and
numerical cures at V = 0.001 s−1, c) experimental and numerical cures at V = 0.01
s−1, d) experimental and numerical cures at V = 0.1 s−1.

Bendouba, Djebli, Aid, Benseddiq, and Benguediab (2015)]. Working on ax-
isymmetric notched specimens (AE) as presented in [Meddah, Selini, Benguedia-
b, Bouziane, and Belhamiani (2009); Ognedal, Clausen, Dahlen, and Hopperstad
(2014); Ognedal, Clausen, Berstad, Seelig, and Hopperstad (2014)], it is possi-
ble to study multiaxial loading, only using a tensile test. These specimens allow
overcoming stress conditions plane strain. For a notched, as the elastic limit is not
exceeded the maximum constraint is on the bottom of notch phenomenon by stress
concentration. The yield strength is reached first at this location. If the test contin-
ues to be deformed plastically, the deformed area expands and eventually invaded
the notched section. The load reaches the limit load of the specimen. To meet the
criterion of plasticity (Von Mises or Tresca), it is necessary to increase all the axial
stress. Thus, plastic deformation confined raises the general level of stress and the
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rate of stress triaxiality β . This is defined as (7):

β =
σm

σeq
(3)

σm = (
1
3
(σ11 +σ22 +σ33))

σm: The mean stress

σeq: The equivalent Von Mises stress.

For a cylindrical test piece having a groove notch root radius (R) leaving a collar of
radius (a) in the minimum cross section (Figure 2), the calculation of distribution
of stress and strain is complicated and not fully resolved analytically. Simplifying
assumptions are necessary as that of equality between the radial and tangential s-
trains into the minimum section where Z = 0. However, it follows that the radial
and tangential stresses are equal and the deflector is independent of the radial coor-
dinate (r) for this style. With these assumptions, the equilibrium equations and the
plasticity criterion, it is shown that:

dσrr

dr
=−

σeq

ρ
(4)

With (r) is the radius of curvature of isostatic lines, where they intercept the plane
Z = 0.

Bridgman (1994) was assumed that isostatic lines can be treated as circles that
intersect at right angles of the notch which is the ring [Cayzac, Saï, and Laiarinan-
drasana (2013)].

The radius (r) of curvature is given by (eq 5):

ρ =
a2 +2aR− r22r

2r
(5)

The average axial force σ̄ZZ i.e. the load applied to the test piece is given by the
following expression (6):

σ̄ZZ = σeq(1+
2R
a
) ln(1+

a
2R

) (6)

The ratio of maximum stress triaxiality is on the axis of the specimen such as (7):

σm

σeq
=

1
3
+ ln(1+

a
2R

) (7)

Thus as shown in Fig. 3 the stress profile is a parabola, with a maximum at the
center of the specimen. The axial stress will be proportionately higher than the
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(a) (b)

Figure 3: (a) Schematic of the specimen AE, (b) Distribution of the axial stress,
radial and tangential as calculated by Bridgman.

radius of curvature R will be low. Choice has occurred in this work on AE specimen
four different radii of curvature in order to study the influence of the rate of stress
triaxiality on the behavior of “damage” material.

The four radii studied are R = 80 mm (AE80), 10 mm (AE10), 4 mm (E4) and
2 mm (AE2) respectively. The geometries of the specimen are such that the total
length is 66 mm, the diameter of the barrel is 10 mm, and the bottom of notch
diameter is 5 mm (Fig. 4).

Figure 4: AE specimen geometry.

The studied geometries by notched symmetry (axisymmetric), only quarter of the
specimen is meshed with reduced quadratic axisymmetric element integration. Thus,
because of the symmetry it is possible to mesh the quarter length to represent the
entire structure as shown in Fig. 5. In the indented area, the mesh is finished, unlike
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AE2, ββ =0.8 AE2, β =00.6 AE80, ββ =0.33 EE4, β =0.44A

Figure 5: Mesh of the quarter specimens test.

the smooth area where it is coarser.

The tests on the specimen were made in AE with imposed displacement. Numeri-
cally it is not possible to return to such a condition directly in the calculation load.
At first, the longitudinal displacement of the test was measured at a test speed of
variable diameter reduction.

3 Results and discussion

Fig 6 (a, b, c and d) shows a simulation of the stress-strain curve taken at the criti-
cal point of the specimen to the four radii obtained (β = 0.33 for AE80, β = 0.44
for AE10, β = 0.6 for AE4 and β = 0.8 for AE2) for tensile tests at four different
speeds (0.2, 0.6, 1 and 1.4 mm/s). We note that with the same displacement, the
stress is higher when the radius of curvature is smaller. In the test AE80, there is
an increase in the maximum stress and a diameter reduction. In contrast, between
AE4, AE2 and AE10, no difference in the maximum stress is observed, while a
decrease diameter is obtained. So it seems that beyond a radius value limit, the
maximum stress is “saturated”. Only analyzes for low speed are presented, know-
ing that the same interpretation can be made for higher speeds. On the general
appearance of the curves, two interesting results are worth mentioning. The first is
the presence of a tow hook at the maximum end; this hook may indicate either a
structural effect, or a softening of the material. In the case of a structural effect, the
traction hook indicates the rapid formation of the constriction which supports the
majority of the stress and elongation.

It then reflects softening attributed to the formation and growth of cavities formed
at the location of the deformation in the notched area. The second interesting point
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Figure 6: Effect of triaxiality on the constitutive law for four speeds solicitation.

concerns the plastic deformation tray. The load remains almost constant as the
diameter reduction and the end of analysis for AE80 is characterized by work hard-
ening. This result indicates a strong plastic flow associated with orientation and
sliding strings. Finally, the fibrils are highly stretched, and then they create addi-
tional resistance.

Fig. 7(a, b, c, d) illustrates stress vs strain curves at different strain rate (v = 0.2,
v = 0.6, v = 1 and v = 1.4 mm/s) with the variation of (β = 0.8, β = 0.6, β = 0.44
and β = 0.33), in this figure we can see the influence of the rate of stress triaxiality
β on the mechanical properties of the material studied and we can pronounce that
the same shape of the curves is observed. We note that the presence of the hook still
in the smallest speed. In the test v = 0.2 mm/s et β = 0.8 there is an increase in the
maximum stress. In contrast, between v = 1 mm/s and v = 1.4 mm/s any difference
in the maximum stress is observed, while a reduction in diameter is obtained.

Fig. 8 (a, b, c, d) shows the evolution of the deformation according to the thickness
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Figure 7: Effect of the strain rate.

of the specimen (diametral position) for each radius of curvature R, indicating the
influence of strain rate on this evolution. It is noted from this representation that
the deformation progress from the heart to the outside position, whatever the strain
rate and is important for the high strain rate, but for the case when R = 2 mm and
the speed V = 1.4 mm/s, the deformation is significant which causes quick failure
of the specimen. It is deduced from this study that the notch bottom is the most
critical position. In particular for the curvature radius R = 2 mm and the strain rate
V = 1.4 mm/s.

Fig. 9 represents the levels equivalent stresses (Von Mises) in function of the vari-
ation of the notch radius at different speeds. Firstly, these stresses are concentrated
in the bottom of the notch, the concentration decreases in the way from the notch
is noted on the other hand, it increases with increasing radius of the notch, and that
the distribution of these stresses is not homogeneous on the side closest to the fault
is subjected to relatively low stress amplitude. The largest stresses are located at
the bottom of the notch, the amplitude decreases gradually from this zone. If the
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Figure 8: Evolution of strain versus specimen thickness.
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Figure 9: Stress distribution for different notch root radius of curvature.

stress exceeds the elastic limit of the material, a plastic region in the vicinity of the
bottom of notch appears.
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We also note that the damage was located in the area of the smallest radius of the
specimen. It thus appears that these test pieces are adapted to highlight damaged
by cavitations. For higher speeds, the effect of speed on the diametric reduction
is demonstrated (reduced diametric reduction with increase in strain rate of the
specimen).

4 Conclusion

Gurson-Tvergaard-Needleman model usually used for metallic materials [Tver-
gaard and Needleman (1984); Leblond, Perrin, and Devaux (1995)] has been used
here to model the damage behavior of PVC. The damage in this model is described
as being due to the growth of cavities, represented by parameters. The impor-
tance of damage during deformation has led us to use the GTN model that allows
the coupling of the constitutive law with the effect of damage. The model was
used to account for all mechanical results and determine a related failure mode
and failure by crazing approach, a critical criterion in fibril elongation at low rate
and triaxiality criterion coalescence of cavities rates triaxiality high. On behavior,
effective plastic strain rate is described by the law of Norton. Hardening is con-
sidered isotropic, consists of a constant threshold elastoplastic behavior, describing
a saturation deformation crystalline and amorphous phases, and an increase of the
rigidity of elongated channels (work hardening). The latter describes exponential
for large deformations, the fibril orientation and crystalline phases. The damage
is taken into account by adjusting the parameters of the model on the evolution of
volumetric strain, and on the draw hook reflecting the softening load due to the
strong growth of cavities.
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