
Copyright © 2015 Tech Science Press CMC, vol.48, no.1, pp.43-55, 2015

Development and Optimization of an Unstructured Kinetic
Model for Sodium Gluconate Fermentation Process
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Abstract: This study proposed a modified unstructured kinetic model for sodium
gluconate fermentation by Aspergillus niger. Four specific growth rate equations
(Monod, Tessier, Contois, and logistic) were considered in the biomass growth e-
quation. The growth, instantaneous biomass concentration, instantaneous product,
and substrate concentration were considered in the equations of product formation
and substrate consumption. Option parameters were introduced to determine the
form of the unstructured model. A double-nested optimization strategy was pro-
posed to optimize the option and kinetic parameters. The proposed unstructured
kinetic model based on the estimated optimal parameters efficiently simulated sodi-
um gluconate fermentation. The obtained option parameters of the kinetic model
indicated that the Monod equation-based unstructured model displayed better per-
formance than the three other specific growth rate equation-based kinetic models.
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1 Introduction

Gluconic acid and its salt sodium gluconate are bulk chemicals with many uses in
the food, pharmaceutical, detergent, leather, and beverage industries [Das and Kun-
du (1987); Milsom and Merers (1985); Sawyer (1964)]. The future of these appli-
cations principally depends on the commercial availability of gluconates. Gluconic
acid is produced via submerged fermentation using strains of Aspergillus niger and

1 Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of
Education, East China University of Science and Technology, Shanghai 200237, P. R. China

2 Corresponding author: Prof. Xuefeng Yan
Email address: xfyan@ecust.edu.cn
Address: P.O. BOX 293, MeiLong Road 130, Shanghai, 200237, P. R. China
Tel/Fax: +86 21 64251036

3 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology,
Shanghai 200237, P. R. China



44 Copyright © 2015 Tech Science Press CMC, vol.48, no.1, pp.43-55, 2015

glucose as the carbon source [Singh and Kumar (2007)]. Gluconic acid production
by A. niger is an aerobic fermentation with a high oxygen demand, and the biotrans-
formation of glucose to gluconic acid represents a simple dehydrogenation reaction
without the involvement of complex metabolic cell pathways [Znad, Markoš, and
Baleš (2004)].

Kinetic models are useful because they enable engineers to design and control
industrial processes [Gianoli, Fisher, Maeder, and Hungerbühler (2007); Salmi,
Murzin, Mäki-Arvela, Kusema, Holmbom, Willför, and Wämå (2014); Zhang,
Yang, Zhu, Li, and Gui (2013)]. The behavior of these processes can be evaluated
more rapidly and accurately with kinetic models than laboratory analytical methods
only. Two types of kinetic models are available for the microbial process: struc-
tured [Mustafa, Elkamel, Lohi, Ibrahim, and Elnashaie (2014)] and unstructured
[Schill, Van Gulik, Voisard, and Von Stockar (1996)]. Structured models consider
certain basic principles of cell structure, function, and composition, whereas un-
structured models describe the biological system only by cell mass [Znad, Blazej,
Bales, and Markos (2004)].

Many scholars have investigated the kinetic modeling of gluconic acid by A. niger.
Takamatsu et al. developed a structured model to describe gluconic acid fermenta-
tion by A. niger [Takamatsu, Shioya, and Furuya (1981)]. Liu et al. proposed a sim-
ple unstructured model in which the logistic equation was used for cell growth, the
Luedeking-Piret equation for gluconic acid production, and the Luedeking-Piret-
like equation for glucose consumption [Liu, Weng, Zhang, Xu, and Ji (2003)].
Znad et al. proposed an unstructured model for gluconic acid fermentation by A.
niger [Znad, Blazej, Bales, and Markos (2004)]. The Contois-type model was used
to simulate growth. The obtained results show that gluconic acid production is
mostly associated with growth.

Although structured models can describe cell activities, they are complicated for
normal use because they require more equations to solve as compared with un-
structured models. Several equations are required to describe cell growth, substrate
consumption, and product formation for unstructured models; thus, these models
are much easier and faster to develop than structured models and can accurately
predict the behavior of fermentation processes [Feng, Zhang, Jia, Yang, Liu, and
Lin (2014); Jang and Barford (2000)].

The most difficult and important step in modeling fermentation is to determine
the form of the specific growth rate expression µ , which can describe the cel-
l growth accurately. The Monod equation is one of the earliest and most widely
used unstructured models to describe cell growth [Monod (1949)]. Much more so-
phisticated models such as the Tessier, Contois, and logistic equations have been
proposed to describe cell growth. In our previous work [Dong, Fan, Yan, Guo,
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and Lu (2014)], a back propagation neural network (BPNN) was used to model the
mycelium growth rate of sodium gluconate fermentation without considering the
mechanism of the process.

However, how to determine the appropriate form of an unstructured model for a
given fermentation process remains an open issue. Therefore, the present research
aims to develop a modified unstructured kinetic model for gluconic acid produc-
tion by A. niger. Four specific growth rate equations (Monod, Tessier, Contois, and
logistic) were considered in the biomass growth equation. The growth, instanta-
neous biomass concentration, instantaneous product, and substrate concentration
were considered in the equations of product formation and substrate consumption.
Option parameters were introduced to determine the appropriate form of kinetic
model. A double-nested optimization strategy was proposed to search the opti-
mal option and kinetic parameters for the unstructured model. The experimental
fermentation data obtained from a 50 L batch fermenter of sodium gluconate by
A. niger were used to develop and evaluate the performance of the unstructured
kinetic model.

The remainder of the paper is organized as follows. Section 2 describes the experi-
mental setup and procedure. Section 3 introduces the unstructured kinetic model of
sodium gluconate fermentation. In Section 4, a modified unstructured kinetic mod-
el is proposed and optimized using a double-nested optimization strategy. Section
5 contains the results and discussion. Section 6 concludes the paper.

2 Experimental setup and procedure

The experimental setup and procedure are described in detail by our previous work
[Dong, Fan, Yan, Guo, and Lu (2014)]. In brief, they were described in the follow-
ing.

2.1 Culture conditions

A. niger (AN14) with high activities of glucose oxidase and catalase was obtained
from the National Engineering Research Center of Biotechnology, Shanghai, Chi-
na.

The fungus was grown in a 15 L tank with a working volume of 9 L and stirred
with a rotary shaker at 300 rpm and 38◦C for 20 h. The air flow and pressure
were 600 L/h and 0.1 MPa, respectively. The inoculum medium contained 6.0%
glucose, 2.0% agar, 0.3% corn steep liquor, 0.05% CON2H4, 0.03% KH2PO4, and
0.005% MgSO4·7H2O. Mycelium was transferred to the fermentation reactor after
its formation (15% inoculation ratio).

Sodium gluconate fermentation was carried out in a 50 L stirred tank bioreactor
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with a working volume of 33 L. The fermentation medium contained 6.0% glu-
cose, 2.0% agar, 0.1% corn steep liquor, 0.02% CON2H4, 0.013% KH2PO4, and
0.002% MgSO4·7H2O. A defoamer was used to reduce foaming. The fermentation
conditions were as follows: air flow, 1200 L/h; agitation rate, 500 rpm; pressure,
0.1 MPa; and temperature, 38◦C. The pH was controlled at 5.8 using 20% (v/v)
NaOH.

2.2 Analytical methods

During fermentation, the following parameters were measured and recorded online:
dissolved oxygen concentration, pH, temperature, agitation rate, air flow, pressure
of inlet and outlet gas streams, and volume.

The biomass concentration was calculated by mycelial dry weight, which was de-
termined through a gravimetric method. The mycelial suspension was filtered,
washed several times with distilled water, and then dried to a constant weight at
80◦C. The filtrate was subjected to high-performance liquid chromatography (H-
PLC). The gluconic acid concentration was determined by HPLC analysis with a
UV detector. Fehling’s test was performed to determine glucose concentration. The
experimental errors of the measurements are approximately 3% to 5%.

3 Unstructured kinetic model

The rate equations of biomass (X), sodium gluconate (P), and glucose (S) were
used for the model to describe the fermentation process. The material balances of
the biomass, sodium gluconate, and glucose can be written as

dX
dt

= rX (1)

dP
dt

= rP (2)

dS
dt

= rS (3)

with the initial conditions at t = 0,

X = X0 P = P0 S = S0 (4)

where the formation rates rX ,rP, and rS should be described by the appropriate
unstructured kinetic models.

3.1 Biomass growth

The Monod equation is one of the most widely used models to describe cell growth
[Monod (1949)]. This model is deterministic, distributed, and unstructured. The
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biomass growth can be defined as

dX
dt

= rX = µX , (5)

where µ is the specific growth rate and can be given by the Monod equation as

µ = µmax
S

KS +S
, (6)

where µmax is the maximum specific growth rate, and KS is the substrate saturation
constant.

Sophisticated models such as the Tessier, Contois, and logistic equations were also
proposed to describe the specific growth rate. The expressions of these equations
are listed in Table 1.

Table 1: Expressions of specific growth rate equations.

Model Specific growth rate, µ

Monod µmond = µmax
S

KS +S

Tessier µTeissier = µmax(1− e−S/KS)

Contois µContois = µmax
S

KS ·X +S

Logistic µLogistic = µmax(1−
X

Xmax
)

3.2 Product formation

The kinetics of gluconic acid formation was based on the Luedeking-Piret equation
[Luedeking and Piret (1959)]. This model was first developed for lactic acid for-
mation. This unstructured model shows that product formation is associated with
growth and non-growth contributions. The product formation can be described as

dP
dt

= rP = α
dX
dt

+βX , (7)

where α and β are the kinetic parameters for growth- and non-growth-associated
product formation, respectively.

3.3 Substrate consumption

Glucose is used in the formation of cell materials and metabolic products, as well
as in the maintenance of cells. The kinetics of glucose consumption was based on
a Luedeking-Piret-like equation. The substrate consumption can be described as
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dS
dt

=− 1
YX/S

dX
dt

−mSX , (8)

where YX/S is the yield coefficient, and mS is the maintenance coefficient.

4 Kinetic model optimization

4.1 Modified unstructured kinetic model

On the basis of the unstructured model of sodium gluconate fermentation provided
in Section 3, a modified unstructured kinetic model was proposed and described as

dX
dt

= rX = k1 ·µMond ·X + k2 ·µTeissier ·X + k3 ·µContois ·X + k4 ·µLogostic ·X (9)

dP
dt

= rP = m1 ·a1 ·
dX
dt

+m2 ·a2 ·X +m3 ·a3 ·S+m4 ·a4 ·P (10)

dS
dt

= rS = m5 ·a5 ·
dX
dt

+m6 ·a6 ·X +m7 ·a7 ·P+m8 ·a8 ·S, (11)

where k1,k2,k3,k4 are the introduced option parameters to determine the form of the
biomass growth; m1,m2, · · · ,m8 are the introduced option parameters to determine
the form of product formation and substrate consumption; and a1,a2, · · · ,a8 are the
kinetic parameters of the unstructured model.

Four specific growth rate equations (Monod, Tessier, Contois, and logistic) were
considered in the biomass growth equation for the proposed modified unstructured
model. The option parameters of k1,k2,k3,k4 were used to select one that can de-
scribe the biomass growth. The values of k1,k2,k3,k4 are 0 or 1, and ∑

4
i=1 ki = 1.

The growth dX
dt , instantaneous biomass concentration X , instantaneous product P,

and substrate concentration S were considered in the equations of product forma-
tion and substrate consumption. The option parameters m1,m2, · · · ,m8 were used to
determine the appropriate form that can accurately describe the product formation
and substrate consumption. The values of m1,m2, · · · ,m8 are random 0 or 1.

4.2 Model parameter optimization

For the unstructured model proposed in Section 4.1, two types of parameters (i.e.,
option and kinetic) need to be determined before the kinetic model can be used
to describe fermentation. The option parameters were used to determine the form
of the unstructured model, and their values should be the integer 0 or 1. If the
value of the option parameter is 1, then the influence of this part multiplied by it
is considered in the kinetic model equation. If the value of the option parameter
is 0, then its influence is ignored. To obtain a relevant kinetic model, the kinetic
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Figure 1: Flowchart of the double-nested optimization strategy.
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parameters should be estimated by comparing the assumed kinetic model with the
experimental data after the option parameters are determined.

In the present study, a double-nested optimization strategy was proposed to opti-
mize the unstructured kinetic model. In the first step, the option parameters were
determined with the 0-1 programming method. In the second step, the kinetic pa-
rameters were estimated by minimizing the difference between the model simula-
tion results and the experimental data. The second process is similar to the estima-
tion process in the reference [Praveen and Sinha (2009)]. Iterations were performed
between two steps until the convergence. The simplex method was employed as an
optimizer to estimate the kinetic parameters. The optimization objective was de-
fined as follows:

min MSRE =
1
n

n

∑
i=1

Ei =
1
n

n

∑
i=1

((
X̂i −Xi

Xi

)2

+

(
P̂i −Pi

Pi

)2

+

(
Ŝi −Si

Si

)2)
, (12)

where X̂i, P̂i, Ŝi are the ith calculated values of the kinetic model; Xi,Pi,Si are the
ith experimental analytical values; and n is the number of the sample data collected
from the experiment. The flowchart of the double-nested optimization strategy is
shown in Figure 1.

After the optimal option and kinetic parameters were determined by the double-
nested optimization strategy, the optimal form of the proposed unstructured kinetic
model was developed, and the obtained kinetic model was used to simulate the
fermentation process.

5 Results and discussion

5.1 Model performance evaluation indices

Two model evaluation indices were used to analyze the obtained unstructured mod-
el statistically. These indices were described as

Root mean squared error:

RMSE =

√
∑

n
i=1 (ypred − yexp)

2

n
(13)

Relative error:

RE =
1
n ∑

n
i=1

∣∣∣∣ypred − yexp

yexp

∣∣∣∣ (14)
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Table 2: Optimal values of the option and kinetic parameters of the four unstruc-
tured kinetic models.

K = [k1 k2 k3 k4] M =

[
m1 m2 m3 m4
m5 m6 m7 m8

]
µmax KS Xmax A =

[
a1 a2 a3 a4
a5 a6 a7 a8

]
[1 0 0 0]

[
1 0 1 1
1 1 0 1

]
0.1321 18.1253 —

[
8.6366 −− 0.0379 0.0078

−19.6801 −10.9213 −− −0.0214

]
[0 1 0 0]

[
1 0 1 1
1 0 1 1

]
0.0664 1.9714 —

[
0.4599 −− 0.0384 0.0088
2.5197 −− −0.0361 −0.0206

]
[0 0 1 0]

[
1 0 1 0
1 1 0 1

]
0.0929 153.5282 —

[
112.8473 −− 0.0315 −−
23.0282 −12.0533 −− −0.0243

]
[0 0 0 1]

[
1 1 1 1
1 0 0 1

]
0.0708 — 0.5163

[
−1.4219 0.3138 0.0433 0.0056
0.2513 −− −− −0.0465

]
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Figure 2: Simulation results of the obtained optimal unstructured kinetic model
based on the Monod equation.

5.2 Kinetic model performance

In accordance with the 0-1 programming method, four biomass growth models
were obtained when one of ki (i = 1,2,3,4) is equal to 1. The four biomass growth
models were based on the Monod, Tessier, Contois, and logistic equations. With
the double-nested optimization strategy, the optimal values of the option and kinet-
ic parameters of these four unstructured kinetic models were obtained and are listed
in Table 2. The simulation results of the four unstructured kinetic models with the
obtained optimal parameters are shown in Figures 2 to 5. The figures show that
the obtained unstructured kinetic models displayed satisfactory performances. The
evaluation indices RMSE and RE were calculated to evaluate further the perfor-
mances of the four unstructured kinetic models. The results are listed in Table 3,
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Figure 3: Simulation results of the obtained optimal unstructured kinetic model
based on the Tessier equation.
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Figure 4: Simulation results of the obtained optimal unstructured kinetic model
based on the Contois equation.

and the best results are shown in bold. Table 3 shows that the Monod-based un-
structured kinetic model with the obtained optimal option and kinetic parameters
had the least RMSE and RE values. These results show that the optimal option
and kinetic parameters can be determined using the proposed double-nested opti-
mization strategy and that the developed unstructured kinetic model based on the
Monod equation demonstrated a good performance in simulating gluconate acid
fermentation.
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Figure 5: Simulation results of the obtained optimal unstructured kinetic model
based on the logistic equation.

Table 3: RMSE and RE of the four unstructured kinetic models.
Biomass growth RMSE RE

equation X P S X P S
Monod 0.0042 0.2724 0.6259 0.0741 0.0185 0.0504
Tessier 0.0059 0.2875 0.7767 0.1124 0.0199 0.0427
Contois 0.0046 0.4815 0.6561 0.0743 0.0223 0.0525
Logistic 0.0056 0.4590 3.3073 0.1078 0.0321 0.8724

6 Conclusions

This study proposed a modified unstructured kinetic model for sodium gluconate
fermentation by A. niger. Four specific growth rate equations were considered in

the biomass growth equation. The growth
dX
dt

, the instantaneous biomass con-
centration X , the instantaneous product P, and the substrate concentration S were
considered in the equations of product formation and substrate consumption. A
double-nested optimization strategy was proposed to optimize the unstructured ki-
netic model option and kinetic parameters. Results showed that the optimal pa-
rameters can be determined by the proposed optimization strategy. The modified
unstructured kinetic model with the obtained optimal parameters efficiently simu-
lated sodium gluconate fermentation. The Monod equation-based unstructured ki-
netic model demonstrated better performance than the three other biomass growth
equation-based models.
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