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On the Buckling Response of Offshore Pipelines under
Combined Tension, Bending, and External Pressure

Yanbin Wang1,2, Deli Gao1, Jun Fang1

Abstract: In this paper, the buckling and collapse analysis of offshore pipeline
under combined tension, bending moment, and external pressure has been present-
ed with theoretical analysis and FE (finite element) simulation method respectively.
Based on the model initially proposed by Kyriakides, a 2-D theoretical model has
been further developed. To verify the correctness and accuracy of the model pro-
posed in this paper, numerical simulations have been conducted with 3-D FE model
using ABAQUS software. Good consistency has been shown between the calcula-
tion results which validate the availability of the theoretical analysis. On this basis,
the influence of load path, material properties, and diameter-to-thickness ratio on
the buckling behaviors of the pipes have been discussed. Based upon the discussion
mentioned above, some significant conclusions have been drawn.
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1 Introduction

Submarine pipelines are important parts in offshore oil and gas drilling and ex-
ploitation. Severe loads will be induced during the installation of pipelines, which
will result in unpredictable risks and challenges. Combined tension, bending, and
external pressure will cause to happen during installation regardless of the installa-
tion method [Kashani and Young (2005); Li, Wang, He, and Zhao (2008)]. Under
the loads mentioned above, pipelines are vulnerable to ovalization in the cross sec-
tion. Localized deformation caused by pipe-laying operation or initial imperfec-
tion can lead to local buckling, which will, in turn, have the potential of initiating
a propagating buckle, and then the buckling rapidly advances in the longitudinal
direction, resulting the failure of pipelines and causing huge economic loss.
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Due to the importance of the buckling response of the pipes, great efforts have been
devoted to this topic in the past few decades. Gellin (1980) has addressed the effect
of nonlinear material behavior on the bucking behavior of a cylindrical shell under
pure bending. Kyriakides and Shaw (1982) have analyzed the response and stabil-
ity of elastoplastic circular pipes under combined bending and external pressure,
and have figured out the maximum moment and curvature as a function of the ma-
terial and geometric parameters for different pressures. Subsequently, the stability
of tubes under combined bending and external pressure has been studied by Corona
and Kyriakides (1988) who have found that the buckling response of pipes, critical
collapse loads, and the characteristics of instabilities have been strongly affected
by the loading path in their research (bending followed by pressure and pressure
followed by bending). Besides, Kyriakides, and Shaw (1985) have conducted the
inelastic analysis of circular tubes under cyclic bending, in which several nonlinear
hardening plasticity models have been adopted to predict the growth of the oval-
ization. Dyau and Kyriakides (1992) have developed a 2-D model to study the
buckling response of tubes under combined bending and tension. A deterministic
model have been proposed by Al-Sharif and Preston (1996) to calculate the col-
lapse of the pipes under combined bending and pressure, and a numerical model
has been developed to verify the effective of the theoretical analysis. Moreover,
Kyriakides and Corona (2007) have given some analysis on the collapse of thick-
walled pipes under different load combinations, i.e., pressure and bending, presure
and tension, and tension and bending. Numerical studies on the behavior of thick-
walled tubes with simultaneous tension, bending, and external pressure have been
performed by Bai, Igland, and Moan (1997) using ABAQUS. Recently, the buck-
ling characteristics of offshore pipes under pure bending, and combined bending
and external pressure have been investigated by Yuan, Gong, Jin, and Zhao (2009),
who have indicated the buckling performance of the pipes is closely related with
the diameter-to-thickness ratio and the initial curvature.

This paper aims to present a further investigation on the buckling performance of
thick-walled tubes under combined tension, bending, and external pressure based
on the general theory proposed by Kyriakides and his co-workers. We assume that
the buckling behavior is symmetric about the neutral plane and the deformation is
uniform along the axis of the tube. The strain-displacement relationship is obtained
according to the nonlinear ring theory, and then a set of equilibrium equations is
formulated based on virtual work approach. Meanwhile, a 3-D numerical model
is developed to compare the results between the two methods. Furthermore, the
buckling responses under different load paths have been studied, and correspond-
ing parametric study concerning several important influence factors have been con-
ducted. At last, some significant conclusions have been drawn in the end of the
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paper.

2 Theoretical formulations

2.1 Kinematics

The geometric parameters and coordinate system is presented in Figure 1. As
shown in Figure 1, the coordinatezis the radial distance from the mid-surface of
the tube wall, and the axial, circumferential and radial coordinates are denoted as x,
θ and z.The displacements of a point on the mid-surface are u, v and w with respect
to x, θ and z respectively. Uniform tension T , bending moment M, curvature κ and
external pressure P are assumed to be applied along the length of the tube. In order
for convenient calculation and formula derivation, the following assumptions are
used to stipulate the present formulation [Gellin (1980)]:

• The plane sections are normal to the mid-surface of the tube cross-section
before and during deformation.

• Small strain and finite rotations about the axes are accepted.

• The pipe is a circular and thick-walled tube with mean radius R and thickness
t.

Figure 1: Geometric parameters and coordinate system ς is the distance from the
neutral axis to the tube wall.

The circumferential tension strain can be denoted as:

ε
0
θ = e+ e2/2+β

2/2 (1)
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Where e and β are defined by:

e =
dv

Rdθ
+

w
R

(2)

and

β =
v
R
− dw

Rdθ
(3)

A finite rotation φ about the axis is defined as:

sinφ = β (4)

Thus, the circumferential curvature can be expressed as:

κθ =
1√

1−β 2

dβ

Rdθ
(5)

The circumferential strain of the deformed cross section can be denoted as:

εθ = ε
0
θ + zκθ (6)

Where ε0
θ

and κθ can be given by:

ε
0
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(
v′+w

R

)
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1
2

(
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)2

+
1
2

(
v′−w

R

)2

(7)

and

κθ =

(
v′−w′′

R2

)/√
1−
(

v−w′

R

)2

(8)

Where ( ′ ) denotes the differentiation with respect to θ .

The axial strain can be described as:

εx = ε
0
x + ςκ (9)

Where ε0
x is the axial strain of the neutral axis and ς can be obtained from Figure

1, which is:

ς = (R+w)cosθ − vsinθ + zcosθ (10)
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2.2 Constitutive model

Due to the good plastic deformation performance of deepwater pipelines, the tube
can be modeled as an elastoplastic material. In this paper, the Ramberg-Osgood
model, as shown in Figure 2, is used to describe the nonlinear stress-strain rela-
tionships of the material, which is given by:

ε =
σ

E

(
1+

3
7

∣∣∣∣ σ

σy

∣∣∣∣n−1
)

(11)

Where E is Young’s modulus, σy is the effective yield stress and n is the hardening
parameter of the material.

Figure 2: Stress-strain relationship for the Ramberg-Osgood constitutive model.

In this paper, the incremental J2 plastic flow theory with isotropic hardening is
adopted to model the plastic behavior of material. The components of radial stress
(σr) and shear stress (σrx,σrθ ,σθx) are disregarded due to the fact that these com-
ponents are quite small as compared with the axial stress and the circumferential
stress. Therefore, the incremental constitutive model can be simplified as follows:{

ε̇x

ε̇θ

}
=

1
E

[
1+Q(2σx−σθ )

2 −µ+Q(2σx−σθ )(2σθ−σx)

−µ+Q(2σx−σθ )(2σθ−σx) 1+Q(2σx−σθ )
2

]{
σ̇x

σ̇θ

}
(12)
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0, σe ≤ σemax
1

4σ2
e

(
E
Et
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)
, σe ≥ σemax

(13)
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Where σe is the equivalent stress and Et = Et (σe) is the tangent modulus of the
material. They are given as follows:

σ
2
e =

3
2

Si jSi j (14)

1
Et

=
1
E

[
1+

3
7

n
(

σe

σy

)n−1
]

(15)

Si j = σi j−
1
3

σkkδi j (16)

Where Si j is the deviatoric stress tensor, σi j is the stress tensor, σkk is the first
invariant stress tensor, and δi j is the Kronecker Delta function.

2.3 Principle of Virtual Work

According to the principle of virtual work, the equation below must be satisfied
when the tube is in an equilibrium state, which is:∫

V
σi jδεi jdV = δW (17)

Where δW is the virtual work of the external loads, and V is the volume of the
material of the tube. For the case of incremental loads, the equation becomes:

2R
∫

π

0

∫ t/2

−t/2
(σ̂xδ ε̇x + σ̂θ δ ε̇θ )dθdz = (18)

P̂R
∫ 2π

0

[
δ ẇ+

(
2ŵδ ẇ+2v̂δ v̇+ ŵδ v̇′+ v̂′δ ẇ− v̂δ ẇ′− ŵ′δ v̇

)
/(2R)

]
dθ + T̂ δ ε̇

0
x

On the left side of Eq.18 is the increment of virtual work done by the internal
stress, whereas the right side is the increment of virtual work done by the external
pressure. When it comes to the problem of pure bending, external work on the right
side equals zero because of the prescribed curvature. σi j and εi j represent the stress
strain component respectively. (·) denotes an increment in ( ), while (∧) denotes
for the next equilibrium state.

The left side of Eq.18 can be expressed as:

2R
∫

π

0

∫ t/2

−t/2
(σ̂xδ ε̇x + σ̂θ δ ε̇θ )dθdz =

2R
∫

π

0

∫ t/2

−t/2
[(σx + σ̇x)δ ε̇x +(σθ + σ̇θ )δ ε̇θ ]dθdz

(19)
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From Eq. 6, Eq. 9 and Eq. 10, the following equations can be obtained:{
δ ε̂θ = δ ε̂0

θ
+ zδ κ̂θ

δ ε̂x = δ ε̂0
x +(δ ŵcosθ −δ v̂sinθ) κ̂

(20)

Where,

κ̂ = κ + κ̇ (21)

δ ε̂
0
θ =

1
R2

{[
R+

(
v̂′+ ŵ

)](
δ v̂′+δ ŵ

)
+
(
v̂− ŵ′

)(
δ v̂−δ ŵ′

)}
(22)

δ κ̂
0
θ =

1
R2


(δ v̂′−δ ŵ′′)

[
1−(v̂−ŵ′)2/R2

]
+(v̂′−ŵ′′)(v̂−ŵ′)(δ v̂−δ ŵ′)/R2[

1−(v̂−ŵ′)2/R2
]3/2

 (23)

It is assumed that the deformations of the cross section, i.e., the in-plane displace-
ment w and v, are symmetric about the axis θ = 0, and they are the functions of
θ . Therefore, w and v can be approximated by the following expressions [Gellin
(1980)].

w∼= R
N

∑
n=0

an cosnθ , v∼= R
N

∑
n=2

bn sinnθ (24)

Substituting Eq. 24 into Eq. 20∼Eq. 23 and then substituting the results into Eq. 18,
since Eq. 18 is an identical equation for arbitrary δ ân, δ b̂n and δ ε̂0

x , the following
nonlinear algebraic equations can be obtained:

f0 = R
∫
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When 1≤ n≤ N,

fn = R
∫

π

0

∫ t/2

−t/2
σ̂xRκ̂ cosnθ cosθ+

σ̂θ

R

(
R+v̂′+ŵ
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When N +1≤ n≤ 2N−1,

fn = R
∫

π

0

∫ t/2

−t/2
σ̂x (−Rκ̂ sin(n−N +1)θ sinθ)
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1
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[
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f2N = R
∫

π

0

∫ t/2

−t/2
σ̂xdzdθ = 0 (28)

A set of 2N + 1 nonlinear algebraic equations is determined by Eq. 25∼Eq. 28.
The solution of the equations is obtained by Newton-Raphson method. The itera-
tion scheme encompasses nested iterations for the constitutive relations, which is
provided by Shaw and Kyriakides (1985) in detail.

2.4 Numerical solution

A set of 2N + 1 nonlinear algebraic equations is included in the present solution.
Some parameters should be prescribed, namely geometric dimensions, material pa-
rameters, as well as initial imperfections and initial stress of tube. In the numerical
calculation, the numbers of integration points, for the half cross section of the tube,
along the circumferential direction and through the thickness are k and l, respective-
ly. In the case of pure bending, the calculation procedure is controlled by curvature
κ . By the specification of the curvature increment κ̂ , the converged solution of
the previous step is regarded as the initial estimate of the nodal displacements for
the next step. Subsequently, strain increment can be obtained through nodal dis-
placements and curvature, and then the stress increment can be achieved according
to the constitutive model. After obtaining the stress components of each integra-
tion points, Eq. 25∼Eq. 28 can be solved by the Newton-Raphson method. Strains,
stresses as well displacements are updated when the converged solution is achieved.

It is found that the solution can meet the precision requirements when N ranges
from 4 to 6. In the case of pure bending, k = 12 and l = 5 are appropriate. While for
the combined case, the mesh should be finer, therefore, integration points through
the thickness, i.e. l = 7 would be more reasonable.

In the case of the combined loads, the calculation procedure is controlled by pre-
scribing curvature κ̂ as well pressure increment P̂ or the increment of the displace-
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ment coefficient a2 (mainly concerned with the ovality) .The control of displace-
ment is required to identify the limit pressure more accurately. As to the value
of the parameters, the pressure increment P̂ should not exceed 0.1 MPa, and the
ellipticity increment (∆D/D) should not exceed 0.01%.

After the solution of each load increment being calculated, the moment can be
expressed as follows:

M = 2R
∫

π

0

∫ t/2

−t/2
σxςdzdθ (29)

The main steps of solution procedure for the combined loading case are shown in
the flow chart in Figure 3. If the prescribed P in the flow chart equals zero, it would
be reduce to the pure bending case.

Figure 3: Flow chart of numerical solution procedure.



34 Copyright © 2015 Tech Science Press CMC, vol.48, no.1, pp.25-42, 2015

3 Numerical simulations

A finite element model is developed within the framework of the software ABAQUS
to simulate the buckling behavior of pipes under simultaneous tension, bending,
and external pressure. 3D, eight-node incompatible solid element, C3D8I, is cho-
sen to model the pipe. Since this type of element is enhanced by incompatible
modes to bending behavior, it is best suited for the present problem [Simo and
Armero (1992); Hibbitt, Karlsson, and Sorensen 2006]. The J2 flow theory of plas-
ticity with isotropic hardening proposed by Cotuna, Lee, and Kyriakides (2006)
is adopted to describe the plastic behavior of material, and the Ramberg-Osgood
constitutive model is used by multi-linear approximations of the stress-strain curve
shown in Figure 2.

The symmetry of the loads and deformations reduces the problem to a quarter of
a pipe. As a result, symmetrical boundary conditions are applied at the mid-span
(X = 0) and Z = 0 planes (Figure 4). Besides, additional spring constraints a-
long vertical direction (Y ) are applied at the mid-span plane. This kind of elastic
constraints is desirable for this problem since it can avoid the stress concentration
phenomenon which is inevitable if rigid constraints are applied.

Figure 4: Finite element mesh and loadings.

Kinematic coupling relationship is imposed between the nodes on the right end of
the tube and a reference point (the central node or the bottom one are both suitable).
The right end plane is constrained to remain plane in the loading process, and at the
same time the cross-section should be free to deform. The curvature is applied by
prescribing the angle of rotation at the reference point, ϕ , Likewise, uniform ten-
sion is applied to the model through this reference point, and hydrostatic pressure
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is implemented on the external surface of the pipe. Thus, the average curvature of
the section can be given by:

κ = ϕ/L (30)

To facilitate the development of buckling deformation, the length of the pipe, L =
3D is considered to be suitable. The pipe model is meshed into 6 parts through the
thickness, 100 parts around the half circumference and 100 parts along the length,
which is found to be adequate. Figure 4 illustrates a typical finite element mesh
used in the analyses. Furthermore, the Nlgeom option is selected for the nonlinear
calculation, and the Riks algorithm (arch length method) is adopted here.

4 Results and discussion

4.1 Illustrative example using theoretical formulations

The maximum curvature in the sag-bend region of marine pipelines often occurs
close to the seabed where the maximum water depth is reached. Considering that
the curvature and hydrostatic pressure exerted on the pipes increases with the depth
of the water, while axial tension is nearly maintained constant, the case of T →
Radial(κ,P) loading path is examined.

The pipe is first tensioned incrementally to a chosen value T = 1000 KN, and then
curvature and external pressure are increased proportionately until the values of κ =
0.15 and P= 10 MPa are reached. The main features of the pipe response subjected
to the combined loads are illustrated in Figure 5 for a pipe with its diameter D =
254 mm (10 inch) and D/t = 20. The predicted ellipticity-water depth, ellipticity-
curvature, axial strain-curvature, and moment-curvature curves are shown in this
figure. The increase of ellipticity is approximately proportional to the curvature and
water depth at the beginning. However, the nonlinearity becomes more and more
notable as the loads augment. As to the axial strain of the pipe, it nearly experiences
a linear growth with curvature. In addition, it can be seen from moment-curvature
response that there exhibits a limit moment before collapse. Once attaining the
limit moment, localized deformation would quickly develop in a region of about 5
to 6 times of the tube diameters, which can be taken as the critical state of buckling.

4.2 Comparisons of finite element analysis results with theoretical solutions

Numerical simulations and theoretical calculations are carried out respectively for
the scenario of Radial (T,P,κ) loading path. In other words, three loading pa-
rameters {∆T,∆P,∆κ} are simultaneously applied to the model. The analyses are
performed for the pipe model based on the parameters of D = 254 mm, D/t = 20,
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Figure 5: Predicted responses for T → Radial (κ,P) loading path. σy = 400 MPa,
D/t = 20, n = 10.7.

σy = 400 MPa, T = 600 kN, P = 35 MPa and κ = 0.013. The sequences of de-
formed configuration and stress distribution during the loading process are depicted
in Figure 6.

The comparison of responses calculated by the two methods is shown in Figure 7.
The predicted ellipticity of two models is quite close in the elastic range. How-
ever, the increase of theoretical result slightly lags behind that of finite element
simulation at high values of loadings.

The main reason for the difference is that ABAQUS uses a finite deformation J2
flow theory of plasticity whereas the theoretical formulation in Eqs. (12)∼(16) is
small deformation. In addition, the theoretical model simplifies this 3D problem to
a 2D one, which only takes into account the stresses along the axial and circumfer-
ential directions. The disregard of the secondary radial stress and shear stress will
not generate much error in the elastic range. However, with the increase of stress
in the radial direction, the discrepancies become more and more notable. More-
over, due to the disregard of radial stress and shear stress, the equivalent stress will
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Figure 6: Deformed configuration and stress Distribution during loading process.

Figure 7: Comparisons of finite element analysis results with theoretical solutions.
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be smaller compared with the practical situation, hence, later occurrence of plastic
plateau. Likewise, the growth of ellipticity is somewhat delayed. The suitability of
the theoretical method used in predicting the buckling response of deepwater pipes
has been validated herein.

4.3 Parametric study

The theoretical model is adopted to examine the effects of several important fac-
tors including tension T , strain-hardening parameter n, yield stress σy as well as
diameter-to-thickness ratio D/t. T → Radial (κ,P) is the loading path considered
in the present section. Besides, some discussions and comparisons are made con-
cerning the design of pipes in engineering practice.

The buckling of tube is related to several factors, such as the diameter D, wall-
thickness t, material properties, initial ellipticity ∆D/D, and load history. In addi-
tion, residual stress induced in the manufacturing process as well as yield anisotropy
play an important role in the occurrence of tube buckling. For offshore applications,
a D/t value ranging from 10 to 70 is recommended. While for deepwater applica-
tion, a D/t value ranging from 10 to 35 is more suitable. In addition, the yield
strength of steel for typical offshore pipelines is commonly between 276 MPa and
448 MPa. Besides, the tubes, with initial ellipticity exceeding 0.5%, should be
avoided in the deepwater applications [Ju and Kyriakides (1991)].

Figure 8 and Figure 9 show that axial tension has a significant effect on bending
moment carrying capacity of a pipe. The tension is prescribed to 500 kN, 1000 kN,
1500 kN respectively, and the ratio of (P/P0) : (κ/κ0) ranges from 5 : 1,1 : 1,1 : 3 to
1 : 8, respectively denoted as Radial 1-Radial 4, which consists of 12 different load
combinations. The result indicates that the presence of tension impairs bending

Figure 8: Limit moment versus applied
tension.

Figure 9: Effects of tension on critical
pressure and curvature.
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moment carrying capacity greatly. With the increase of tension applied, the limit
moment Mc drops. Furthermore, it can also be observed that the increase of external
pressure will cause the value of limit moment to decrease. Additionally, as can be
seen in Fig. 9, the predicted critical pressure Pc and critical curvature κc become
smaller when the value of tension increases. It is important to note that the results
are normalized to dimensionless factors by the following variables:

M0 = σ0D2
0t, P0 = 2σ0t/D0, κ0 = t/D2

0 (31)

Where mean diameter D0 = D− t, and σ0 is API yield stress [API (2004)], i.e., the
stress at a strain of 0.005.

Figure 10 shows how the critical pressure and critical curvature vary with the ma-
terial yield stress σy with other parameters kept constant. Clearly, the tubes with
larger yield stress possess higher critical pressure and curvature. In addition, it is al-
so worth noting that at higher curvatures the effect of yield stress is less pronounced
compared with the cases of lower curvatures.

Larger strain-hardening parameter n means larger strain-hardening effect. Fig-
ure 11 presents the variation of critical pressure and critical curvature with the
strain-hardening parameter n. It can be observed that tubes with larger n can sus-
tain larger critical pressure and curvature, i.e., higher load-carrying capacity.

Figure 10: Effects of yield stress on crit-
ical pressure and curvature.

Figure 11: Effects of strain-hardening
parameter on critical pressure and cur-
vature.

The effect of diameter-to-thickness ratio D/t on the critical pressure and curvature
is examined in Figure 12. Three D/t values 15, 20 and 25 are adopted, while
keeping other parameters constant. Just as expected, the limit values corresponding
to lower D/t tubes are higher than those of larger D/t ones. In addition, note that
the degree of its influence varies with different combinations of loads applied.
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Figure 12: Effects of D/t on critical pressure and curvature.

5 Conclusions

1. The load-carrying capacity of the tube is significantly affected by the tension
applied. With the increase of tension, the limit moment obviously drops, and
the predicted critical pressure and curvature would become smaller. In the case
of equal proportional loading between external pressure and curvature, the effect
of tension on load-carrying capacity of the tube is less conspicuous compared
with other loading ratio.

2. The buckling behavior and load-carrying capacity of pipes is quite sensitive to
material properties. Larger yield stress σy and strain-hardening parameter n
always lead to higher limit pressure and curvature, i.e., stronger resistance to
pipe buckling. The critical pressure of the pipe is more susceptible to yield
stress rather than strain-hardening parameter, whereas the critical curvature is
just the contrary. Therefore, the high strength steel is preferred to improve the
resistance to external pressure for deepwater pipes in the practical engineering.

3. Diameter-to-thickness ratio D/t plays a very important role in buckling response
of pipes. In general, pipes with lower D/t values possess stronger capability to
resist the buckling deformation. But, the degree of its influence varies with dif-
ferent combination of loads applied. In summary, it can be concluded that the
theoretical formulation and solution method described in this context could pro-
vide a reasonably-accurate estimate of the buckling and collapse of deepwater
pipes. In addition, it should be mentioned that experiments under simultaneous
tension, bending, and external pressure should be carried out, and thus, effec-
tiveness of this theoretical method can be carefully examined.
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