
Copyright © 2015 Tech Science Press CMC, vol.47, no.3, pp.179-201, 2015

Research and Improvement on the Accuracy of
Discontinuous Smoothed Particle Hydrodynamics (DSPH)

Method
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Abstract: Discontinuous smoothed particle hydrodynamics (DSPH) method based
on traditional SPH method, which can be used to simulate discontinuous physics
problems near interface or boundary. Previous works showed that DSPH method
has a good application prospect [Xu et al, 2013], but further verification and im-
provement are demanded. In this paper, we investigate the accuracy of DSPH
method by some numerical models. Moreover, to improve the accuracy of D-
SPH method, first order and second order multidimensional RDSPH methods are
proposed by following the idea of restoring particle consistency in SPH (RSPH)
method which has shown good results in the improvement of particle consisten-
cy and accuracy for non-uniform particles. This restoring particle consistency
in DSPH (RDSPH) method has the advantages from both RSPH method and D-
SPH method. In addition, the accuracy of RDSPH methods near the interface,
boundary and in non-uniform interior region are tested in one-dimensional and two-
dimensional spaces.

Keywords: Smoothed particle hydrodynamics; Interface; Boundary; Accuracy;
Kernel consistency.

1 Introduction

Smoothed particle hydrodynamics (SPH) is a meshfree Lagrangian particle method.
It was proposed by Gingold and Monaghan [Gingold and Monaghan (1977)] and
Lucy [Lucy (1977)] for astrophysical problems. Comparing with finite elemen-
t method (FEM), SPH method is easier to perform because the characteristic that
particles can avoid remeshing frequently in large deformation problems. It has
been used in fluid and solid mechanics, such as dam breaks, bodies impacting flu-
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ids, turbulence, hypervelocity impact, etc. [Monaghan (2012); Liu and Liu (2010);
Johnson, Stryk, and Beissel (1996); Jiang, Tang, and Ren (2014)].

SPH is a promising method but still suffers from some inherent numerical problems
that motivate different modifications and corrections. In traditional SPH method,
particles from different materials or objects influence each other and introduce er-
rors when integrate Navier-Stokes equations from different objects. For example,
the case of steel bullet impacting aluminum plate, particles from bullet influence
particles from plate, which results in unacceptable errors near interface and has a
negative effect on whole simulation further. To make it suitable for such kinds of
problems, special algorithms deal with interface are required. The main methods
used to contact algorithm and the major steps include (1) identifying the bound-
ary, (2) detecting the contact and (3) adding repulsive contact forces [Liu and Liu
(2010)]. Antoci, Gallati, and Sibilla (2007) enforced the interface condition be-
tween fluid and solid, which obtained by an approximate SPH evaluation of a sur-
face integral of fluid pressure. Amini et al. (2011) used intermediate particles
to impose the interaction between solid and fluid particles. Other methods can be
found in [Vignjevic and Campbell (1999); Parshikov and Medin (2002); Mehra and
Chaturvedi (2006)]. Different from the methods above, Liu, Liu, and Lam (2003)
proposed discontinuous SPH (DSPH) method by dividing the support domain in-
to smaller continuous domains, which is quite straightforward and simple. The
advantage of DSPH method has been demonstrated in numerical models and simu-
lations of shock waves. Xu, Zhao, Yan, and Furukawa (2013) proposed a technique
to determinate the key particles near interface and extended DSPH method from
one-dimension to multidimension. The simulation of metal penetration shows the
advantage in solving discontinuous problem and the application prospect of DSPH
method. Density, velocity and energy are calculated by SPH formulations when
Navier-Stokes equations are used to control the general dynamic problems [Liu
and Liu (2010)]. In our further work, we tested DSPH method in the calculation of
those characters by simple impact model and found that DSPH method gives better
results near interface [Yan, Xu, and Zhang (2013)].

Numerical inaccuracy is one of the major drawbacks in SPH method, which is
even worse in irregular distributed particles and boundary particles [Liu and Liu
(2010)]. The same challenge is confronted by DSPH method. Therefore, we seek
the improvement of its numerical accuracy in this paper. Chaniotis, Poulikakos,
and Koumoutsakos (2001) researched the stability of viscous flows and proposed
remeshing particle locations periodically. Liu and Chang (2010) found that the
instability resulted from the particle inconsistency through Poiseuille flow, which
also originated from the non-uniform particles. For the improvement of numerical
accuracy, the primary strategy is to obtain higher order approximation and better
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consistency of the kernel function. The approach using renormalization to im-
prove the accuracy of the simulations has been investigated and discussed, which
prevented the tensile instability [Oger, Doring, Alessandrini, and Ferrant (2007)].
Belytschko, Kongrauz, Dolbow, and Gerlach (1998) examined several methods that
restore various levels of completeness by satisfying reproducing conditions on the
approximation or the derivatives of the approximation. Based on Taylor series ex-
pansion, Chen and Beraun [Chen, Beraun, and Carney (1999); Chen and Beraun
(2000)] suggested a corrective smoothed particle method (CSPM), which enhances
the ability of SPH method near boundary. Korzilius [Korzilius, Schilders, and An-
thonissen (2013)] improved the accuracy of CSPM significantly by a normalization
factor. Based on Taylor series expansion, Zhang and Batra (2004) got Modified
SPH (MSPH) method, which has been successfully applied on wave propagation
in elastic bar and transient heat conduction in a plate. Liu [Liu and Liu (2006)]
proposed restoring particle consistency in SPH, as RSPH in this paper. It has better
particle consistency for both boundary and non-uniformly interior particles. Song
et al. [Song, Zhang, Liang, and Li (2009)] got 1D RDSPH method by combining
RSPH method and one-dimensional (1D) DSPH method, which keeps advantages
from both RSPH method and DSPH method. But this method is restricted in one-
dimension and has limited validation on numerical performance.

In this paper, we introduce DSPH method and analyze its idea that deals with dis-
continuous problems first. Then, first order and second order multidimensional
RDSPH methods are proposed to improve the accuracy of DSPH method. Finally,
several numerical examples are described to validate and demonstrate the ability of
RDSPH methods, via comparative studies.

2 Basic theory of SPH method

2.1 Principle of SPH method

The principle of SPH method is the integral expression of a function f (x) as follows

f (x) =
∫

∞

−∞

f (x′)δ
(
x− x′

)
dx′ (1)

where δ is Dirac function. This representation is mathematically correct. For nu-
merical analysis, f (x) should be approximated by a finite integral form in the do-
main of Ω:

〈 f (x)〉=
∫

Ω

f (x′)W (x− x′,h)dx′ (2)

where 〈 f (x)〉 represents the discrete approximation of f (x), W (x− x′,h) is called
the kernel function (or weight function or smoothing function), h is the smoothing
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length, which controls the size of support domain (or influence domain, or smooth-
ing domain) Ω. This discrete integral representation converges when the kernel
function satisfies certain conditions such as normalization, Dirac function property
and local support. In accordance with the discrete integration, the function and its
partial derivatives can also be expressed in a discrete manner. The function and its
partial derivative in the discrete form for particle simulation are described as

f (xi) =
N

∑
j=1

m j

ρ j
f (x j) ·Wi j (3)

∂ f (xi)

∂x
=

N

∑
j=1

m j

ρ j
( f (x j)− f (xi))

∂Wi j

∂xi
(4)

Here xi, x j, m j, ρ j and N are position vectors of particles i and j, mass of particle
j, density of particle j and the total particle number in support domain of particle i
respectively.

2.2 Principle of DSPH method

Interface

A

B

Figure 1: Discontinuous problems.

When two objects A and B are in contact, the integral domain Ω near their interface
includes sub-domain Ω1 from A and sub-domain Ω2 from B. Sub-domains Ω1 and
Ω2 are divided by the interface Γ as shown in Figure 1. DSPH method is proposed
to deal this kind of problems. The most important work of multidimensional DSPH
is to determine key particles, which is performed by using the following method
[Xu, Zhao, Yan, and Furukawa (2013)]. The domain Ω2 is divided into the smallest
sub-domains within each of which only one particle is contained. Suppose that
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there are p particles (x2,1,x2,2, . . . ,x2,p) in the domain Ω2, accordingly the integral
function of SPH can be written as∫

Ω

f (x)Wi(x)dx =
∫

Ω1

f (x)Wi(x)dx+
∫

Ω2,1

f (x)Wi(x)dx

+
∫

Ω2,2

f (x)Wi(x)dx+ · · ·+
∫

Ω2,p

f (x)Wi(x)dx (5)

where Wi(x) is kernel function. The Taylor series expansions of the equation about
particle xi and x2,1,x2,2, . . . ,x2,p are as follows respectively∫

Ω1

f (x)Widx = f (xi)
∫

Ω1

Widx+ fα(xi)
∫

Ω1

(xα − xα
i )Widx

+
fαβ (xi)

2!

∫
Ω1

(xα − xα
i )(x

β − xβ

i )Widx+ . . . (6a)

∫
Ω2,1

f (x)Widx = f (x2,1)
∫

Ω2,1

Widx (6b1)

. . .∫
Ω2,p

f (x)Widx = f (x2,p)
∫

Ω2,p

Widx (6bp)

Where α and β are the dimensional indexes that take values of 1 to 3. By neglecting
the derivative terms in Equation (6) and replacing the terms in Equation (5), we
obtain∫

Ω1

f (x)Widx = f (xi)
∫

Ω1

Widx+ f (x2,1)
∫

Ω2,1

Widx

+ f (x2,2)
∫

Ω2,2

Widx+ . . .++ f (x2,P)
∫

Ω2,P

Widx (7)

and rearrangement Equation (7) yields the multidimensional discontinuous func-
tion as

f (xi) =

∫
Ω

f (x)Widx∫
Ω

Widx
−

 [ f (x2,1)− f (xi)]
∫

Ω2,1

Widx∫
Ω

Widx
+ . . .+

[ f (x2,P)− f (xi)]
∫

Ω2,P

Widx∫
Ω

Widx


(8)

In order to find the derivative of the multidimensional discontinuous function, the
replacement of Wi(x) by Wi,β (x) in Equation (5) gives∫

Ω1

f (x)Wi,β dx =
∫

Ω1

f (x)Wi,β dx+
∫

Ω2,1

f (x)Wi,β dx
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+
∫

Ω2,2

f (x)Wi,β dx+ . . .+
∫

Ω2,P

f (x)Wi,β dx (9)

Substituting Equation (6) into Equation (9) and neglecting the terms higher than
two orders, the derivative of the multidimensional discontinuous function can be
obtained as

fα(xi) =

∫
Ω

[ f (x)− f (xi)]Wi,β dx∫
Ω

(xα − xα
i )Wi,β dx

−

 [ f (x2,1)− f (xi)]
∫

Ω2,1

Wi,β dx∫
Ω

(xα − xα
i )Wi,β dx

+ . . .+

[ f (x2,P)− f (xi)]
∫

Ω2,P

Wi,β dx∫
Ω

(xα − xα
i )Wi,β dx



−


∫

Ω2,1

[
(xα − xα

2,1) fα (x2,1)− (xα − xα
i ) fα(xi)

]
Wi,β dx∫

Ω

(xα − xα
i )Wi,β dx

+ . . .

+

∫
Ω2,p

[
(xα − xα

2,p) fα (x2,p)− (xα − xα
i ) fα(xi)

]
Wi,β dx∫

Ω

(xα − xα
i )Wi,β dx

 (10)

Where fi = f (xi), fi,α = fα(xi) = (∂ f/∂xα)i. Based on the theory of SPH method
combining the items in Ω2, the multidimensional discontinuous function (8) and its
derivative (10) can be written in discrete form respectively,

fi =

∑
j∈Ω

(
m j

ρ j
) f jWi j

∑
j∈Ω

(
m j

ρ j
)Wi j

(I)

−
∑

j∈Ω2

( f j− fi)(
m j

ρ j
)Wi j

∑
j∈Ω

(
m j

ρ j
)Wi j

(II)

(11)

fi,α =

∑
j∈Ω

(
m j

ρ j
)( f (x)− f (xi))Wi j,β

∑
j∈Ω

(xα − xα
i )(

m j

ρ j
)Wi j,β

−

 ∑
j∈Ω2

(
m j

ρ j
)( f (x)− f (xi))Wi j,β

∑
j∈Ω

(xα − xα
i )(

m j

ρ j
)Wi j,β

−
fα(xi) ∑

j∈Ω2

(
m j

ρ j
)(xα − xα

i )Wi j,β

∑
j∈Ω

(xα − xα
i )(

m j

ρ j
)Wi j,β

 (12)
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In these two formulations of the multidimensional DSPH method, Equations (11)
and (12), the leftmost terms are identical to the CSPM while the remaining terms
are supplementary for considering discontinuity [Chen and Beraun (2000)].

3 The accuracy of DSPH method

We test the accuracy of DSPH method in this section, including the function and
its derivate.

3.1 The accuracy of function

7   8   9   10

m

    11  1 2

n

  13
Figure 2: The distribution of particles.

The distribution of particles is shown in Figure 2 and all the distances between
neighbor particles are equal to 1 initially. The numbers under the particles show
their serial number and initial value (x). The positions of particles 11 and 12 are
varied: the moving distance of particle 11 is m: −0.5 ≤ m < 0.5 and the moving
distance of particle 12 is n: −0.5 ≤ n < 1. So the non-uniform particles can be il-
lustrated by the varied m and n. The other particles keep their positions. The kernel
function is cubic spline function and the detail can be found in reference [Liu and
Liu (2003)]. The smoothing length h is chosen as 1.5. The accuracy and sensitiv-
ity on non-uniform particles of DSPH method are researched by a discontinuous
function given by

f (x) =

100 0.5≤ x≤ 10.5

−x2 10.5 < x≤ 20.5
(13)

All the errors from the calculation are 0 when different m and n are used (as shown
in Figure 3), which illustrate that the value and distribution of particles 11 and 12
have no influence on the calculation of f (10).

It is necessary to consider the real reason of the exact results from DSPH. Based on
the method of dividing domains in section 1, we get Equation (14) through replace
by Ω1 and Ω2 in the numerator of Equation (11) and rearranging it.
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Figure 3: The results from DSPH method for f (10).

fi =

∑
j∈Ω1

(
m j

ρ j
) fiWi j+ ∑

j∈Ω2

(
m j

ρ j
) fiWi j

∑
j∈Ω

(
m j

ρ j
)Wi j

(14)

From Equation (14), we know that: the result of function for particle i has no re-
lationship with the particles on the other side of the interface, and it is determined
by the particles in the same side; in addition, the percentage of contribution from
itself, which determined by the mass, density and distribution of particles in Ω2, is
stronger than SPH method. DSPH method is equal to CSPM when no particles in
Ω2. In physic problems, the result has high precision if the function in computa-
tional domain Ω1 is a constant function.

3.2 The accuracy of function’s derivate

In this section, the accuracy of function’s derivate is researched. We still use the
model shows in Figure 2 but different discontinuous function,

f (x) =

10x 0.5≤ x≤ 10.5

−x2 10.5 < x≤ 20.5
(15)

Similar with the works in section 3.1, we calculate f ′(10) in different m and n. The
result is accurate no matter where the particles move. Rewriting the Equation (12)
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to Equation (16),

fi,α = Bi,αβ ∑
j∈Ω1

(
m j

ρ j
)( f j− fi)Wi j,β+Bi,αβ ∑

j∈Ω2

(
m j

ρ j
)(Fj−Fi)Wi j,β (16)

Where, Bi,αβ = ( ∑
j∈Ω

(
m j
ρ j
)(xα

j − xα
i )Wi j,β )

−1, Fi = xi fi,α + fi and Fj = x j fi,α + f j.

Equation (16) shows the value of fi,α has no relationship with the original func-
tion in Ω2, but the particles’ position, mass and density in Ω2 are used. In physic
problems, the result of function’s derivate would be accurate when the function is
similar to linear function in computational domain Ω1.

According to the discussion above, DSPH method shows its advantage in the cal-
culation of discontinuous constant function and linear function. But the models are
much more complicate in physic problems, so higher order method is needed.

4 Principle of RDSPH method

The RSPH method in reference [Liu and Liu (2006)] provided a reasonable method
to improve the accuracy of SPH method, which will be used in this section to
improve the accuracy of DSPH method.

4.1 First order RDSPH method

Similar with DSPH method, expanding function f (x) into Taylor series expansion
about the point xi and x2,1,x2,2, . . . ,x2,p in different domain and multiplying both
sides of the function with conventional smoothing function Wi(x) and its first order
derivatives Wi,β (x) respectively, neglecting the terms higher than one order deriva-
tives, we have∫

Ω

f (x)Wi(x)dx =
∫

Ω1

f (xi)Wi(x)dx+ fi,α

∫
Ω1

(xα − xα
i )Wi(x)dx

+
∫

Ω2,1

f (x2,1)Wi(x)dx+ . . .+
∫

Ω2,p

f (x2,p)Wi(x)dx

(17)∫
Ω

f (x)Wi,β (x)dx = f (xi)
∫

Ω1

Wi,β (x)dx+ fi,α

∫
Ω1

(xα − xα
i )Wi,β (x)dx

+
∫

Ω2,1

f (x2,1)Wi,β (x)dx+ . . .+
∫

Ω2,p

f (x2,p)Wi,β (x)dx

(18)

Again α and β are the dimensional indexes repeated from 1 to 3. The approxi-
mations of fi and fi,α in continuous form (kernel approximation) are obtained by
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solving with respect to fi and fi,α .

fi =

∣∣∣∣∣∣∣∣∣
∫

Ω

f (x)Wi(x)dx−
(

f (x2,1)
∫

Ω2,1

Wi(x)dx− f (x2,p)
∫

Ω2,p

Wi(x)dx
) ∫

Ω1

(xα − xα
i )Wi(x)dx∫

Ω

f (x)Wi,β (x)dx−
(

f (x2,1)
∫

Ω2,1

Wi,β dx− f (x2,p)
∫

Ω2,p

Wi,β dx
) ∫

Ω1

(xα − xα
i )Wi,β (x)dx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∫

Ω1

Wi(x)dx
∫

Ω1

(xα − xα
i )Wi(x)dx∫

Ω1

Wi,β (x)dx
∫

Ω1

(xα − xα
i )Wi,β (x)dx

∣∣∣∣∣∣∣∣
(19)

fi,α =

∣∣∣∣∣∣∣∣∣
∫

Ω1

Wi(x)dx
∫

Ω

f (x)Wi(x)dx−
(

f (x2,1)
∫

Ω2,1

Widx− f (x2,p)
∫

Ω2,p

Widx
)

∫
Ω1

Wi,β (x)dx
∫

Ω

f (x)Wi,β (x)dx−
(

f (x2,1)
∫

Ω2,1

Wi,β dx− f (x2,p)
∫

Ω2,p

Wi,β dx
)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ω1

Wi(x)dx
∫

Ω1

(xα − xα
i )Wi(x)dx∫

Ω1

Wi,β (x)dx
∫

Ω1

(xα − xα
i )Wi,β (x)dx

∣∣∣∣∣∣∣∣
(20)

The multi-dimensional discontinuous function (19) and its derivative (20) can be
written in discrete form respectively. The equations can be written in a simple way
when we combine the items.

fi =

∣∣∣∣∣∣∣∣
∑

j∈Ω1

f jWi j
m j

ρ j
∑

j∈Ω1

(xα
j − xα

i )Wi j
m j

ρ j

∑
j∈Ω1

f jWi j,β
m j

ρ j
∑

j∈Ω1

(xα
j − xα

i )Wi j,β
m j

ρ j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∑

j∈Ω1

Wi j
m j

ρ j
∑

j∈Ω1

(xα
j − xα

i )Wi j
m j

ρ j

∑
j∈Ω1

Wi j,β
m j

ρ j
∑

j∈Ω1

(xα
j − xα

i )Wi j,β
m j

ρ j

∣∣∣∣∣∣∣∣
(21)

fi,α =

∣∣∣∣∣∣∣∣
∑

j∈Ω1

Wi j
m j

ρ j
∑

j∈Ω1

f jWi j
m j

ρ j

∑
j∈Ω1

Wi j,β
m j

ρ j
∑

j∈Ω1

f jWi j,β
m j

ρ j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∑

j∈Ω1

Wi j
m j

ρ j
∑

j∈Ω1

(xα
j − xα

i )Wi j
m j

ρ j

∑
j∈Ω1

Wi j,β
m j

ρ j
∑

j∈Ω1

(xα
j − xα

i )Wi j,β
m j

ρ j

∣∣∣∣∣∣∣∣
(22)
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First order RDSPH method would as same as CSPM when we calculate inner uni-
form particles, which is known by simplifying Equations (21) and (22).

4.2 Second order RDSPH method

In some complicate problems, the higher precision is needed, so we provide sec-
ond order method for reference. Neglecting the third and higher order derivatives
and multiplying both sides of the function with a conventional smoothing func-
tion Wi(x), its first order derivatives Wi,χ(x) and second order derivatives Wi,χδ (x)
respectively, we obtain∫

Ω

f (x)Wi(x)dx =
∫

Ω1

f (xi)Wi(x)dx+ fi,α

∫
Ω1

(xα − xα
i )Wi(x)dx

+
1
2

fi,αβ

∫
Ω1

(xα − xα
i )
(

xβ − xβ

i

)
Wi(x)dx (23)

+
∫

Ω2,1

f (x2,1)Wi(x)dx+ . . .+
∫

Ω2,p

f (x2,p)Wi(x)dx∫
Ω

f (x)Wi,χ(x)dx = f (xi)
∫

Ω1

Wi,χ(x)dx+ fi,α

∫
Ω1

(xα − xα
i )Wi,χ(x)dx

+
1
2

fi,αβ

∫
Ω1

(xα − xα
i )
(

xβ − xβ

i

)
Wi,χ(x)dx (24)

+
∫

Ω2,1

f (x2,1)Wi,χ(x)dx+ . . .+
∫

Ω2,p

f (x2,p)Wi,χ(x)dx∫
Ω

f (x)Wi,χδ (x)dx = f (xi)
∫

Ω1

Wi,χδ (x)dx+ fi,α

∫
Ω1

(xα − xα
i )Wi,χδ (x)dx

+
1
2

fi,αβ

∫
Ω1

(xα − xα
i )
(

xβ − xβ

i

)
Wi,χδ (x)dx (25)

+
∫

Ω2,1

f (x2,1)Wi,χδ (x)dx+ . . .+
∫

Ω2,p

f (x2,p)Wi,χδ (x)dx

Where α , β , χ and δ are the dimensional indexes repeated from 1 to 3. The ap-
proximations of fi, fi,α and fi,αβ in continuous form (kernel approximation) are
obtained by solving with respect to fi, fi,α and fi,αβ . Equations (26)–(28) show the
second order RDSPH method in two-dimension, which are used in the numerical
calculation in Section 4.
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fi =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ω1

f (x)Wi(x)dx
∫

Ω1

(xα − xα
i )Wi(x)dx

∫
Ω1

(xα − xα
i )(x

β − xβ

i )

2
Wi(x)dx∫

Ω1

f (x)Wi,χ(x)dx
∫

Ω1

(xα − xα
i )Wi,χ(x)dx

∫
Ω1

(xα − xα
i )(x

β − xβ

i )

2
Wi,χ(x)dx∫

Ω1

f (x)Wi,χδ (x)dx
∫

Ω1

(xα − xα
i )Wi,χδ (x)dx

∫
Ω1

(xα − xα
i )(x

β − xβ

i )

2
Wi,χδ (x)dx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ω1

Wi(x)dx
∫

Ω1

(xα − xα
i )Wi(x)dx

∫
Ω1

(xα − xα
i )(x

β − xβ

i )

2
Wi(x)dx∫

Ω1

Wi,χ(x)dx
∫

Ω1

(xα − xα
i )Wi,χ(x)dx

∫
Ω1

(xα − xα
i )(x

β − xβ

i )

2
Wi,χ(x)dx∫

Ω1

Wi,χδ (x)dx
∫

Ω1

(xα − xα
i )Wi,χδ (x)dx

∫
Ω1

(xα − xα
i )(x

β − xβ

i )

2
Wi,χδ (x)dx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(26)

fi,x =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ω1

Wi(x)dx
∫

Ω1

f (x)Wi(x)dx
∫

Ω1

(y− yi)Wi(x)dx
∫

Ω1

(xα − xα
i )(x

β − xβ

i )

2!
Wi(x)dx∫

Ω1

Wi,χ(x)dx
∫

Ω1

f (x)Wi,χ(x)dx
∫

Ω1

(y− yi)Wi,χ(x)dx
∫

Ω1

(xα − xα
i )(x

β − xβ

i )

2!
Wi,χ(x)dx∫

Ω1

Wi,χδ (x)dx
∫

Ω1

f (x)Wi,χδ (x)dx
∫

Ω1

(y− yi)Wi,χδ (x)dx
∫

Ω1

(xα − xα
i )(x

β − xβ

i )

2!
Wi,χδ (x)dx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ω1

Wi(x)dx
∫

Ω1

(xα − xα
i )Wi(x)dx

∫
Ω1

(xα − xα
i )(x

β − xβ

i )

2!
Wi(x)dx∫

Ω1

Wi,χ(x)dx
∫

Ω1

(xα − xα
i )Wi,χ(x)dx

∫
Ω1

(xα − xα
i )(x

β − xβ

i )

2!
Wi,χ(x)dx∫

Ω1

Wi,χδ (x)dx
∫

Ω1

(xα − xα
i )Wi,χδ (x)dx

∫
Ω1

(xα − xα
i )(x

β − xβ

i )

2!
Wi,χδ (x)dx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(27)

fi,y =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ω1

Wi(x)dx
∫

Ω1

(x− xi)Wi(x)dx
∫

Ω1

f (x)Wi(x)dx
∫

Ω1

(xα − xα
i )(x

β − xβ

i )

2!
Wi(x)dx∫

Ω1

Wi,χ(x)dx
∫

Ω1

(x− xi)Wi,χ(x)dx
∫

Ω1

f (x)Wi,χ(x)dx
∫

Ω1

(xα − xα
i )(x

β − xβ

i )

2!
Wi,χ(x)dx∫

Ω1

Wi,χδ (x)dx
∫

Ω1

(x− xi)Wi,χδ (x)dx
∫

Ω1

f (x)Wi,χδ (x)dx
∫

Ω1

(xα − xα
i )(x

β − xβ

i )

2!
Wi,χδ (x)dx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ω1

Wi(x)dx
∫

Ω1

(xα − xα
i )Wi(x)dx

∫
Ω1

(xα − xα
i )(x

β − xβ

i )

2!
Wi(x)dx∫

Ω1

Wi,χ(x)dx
∫

Ω1

(xα − xα
i )Wi,χ(x)dx

∫
Ω1

(xα − xα
i )(x

β − xβ

i )

2!
Wi,χ(x)dx∫

Ω1

Wi,χδ (x)dx
∫

Ω1

(xα − xα
i )Wi,χδ (x)dx

∫
Ω1

(xα − xα
i )(x

β − xβ

i )

2!
Wi,χδ (x)dx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(28)

From the formula derivation, we know that both RDSPH method and DSPH method
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use Taylor series expansion. First order RDSPH method and DSPH method would
as same as CSPM when inner uniform particles are calculated. At the same time,
those two methods have some differences. The Equations (21)–(22) and (26)–(28)
reveal that the essential idea of RDSPH methods to solve discontinuous problems
is neglecting the particles in different domains. In other words, there is no relation-
ship between the particles in different domains, which distinguishes RDSPH from
DSPH method. As we mentioned in section 3, the mass, density and distribution of
particles in Ω2 determine the contribution of particle i in the calculation of DSPH
method.

If derivatives up to kth are retained in the Taylor series expansion, the resultant
kernel and particle approximations of RDSPH method should have kth consistency,
which is verified in section 5 by first and second order RDSPH method.

5 The accuracy of different methods

We obtained the functions and their derivate of first and second order RDSPH
method in section 4, the accuracy and sensibility near interface and boundary as
well as for non-uniform particles are verified in this section.

5.1 The accuracy near interface

The DSPH method is proposed initially to solve the problems near interface, so we
start the testing from interface. The value of linear function (29), quadratic function
(30) and thrice function (31) and their derivative are calculated by DSPH method,
first order RDSPH method and second order RDSPH method, respectively. The
one-dimensional model is studied first and the distribution of particles is uniform
as shown in Figure 4. The numbers under the particles shows their serial number
and the value of x in Equations (29)–(31). The kernel function is cubic spline
function and the smoothing length h is chosen as 1.5.

7     8    9   10   11   12    13   14

Figure 4: The distribution of particles with interface.

The results of f (11) and f ′(11) for Equations (29)–(31) obtained by using differ-
ent methods are shown in Table 1. RDSPH methods calculate both function and
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derivative accurately for linear function. Comparing with DSPH method, first or-
der RDSPH method has worse results in derivative of quadratic function and thrice
function, but has better results in the calculation of function. Second order RDSPH
method shows its advantage in both of the calculation of function and derivative.
Those results demonstrate the advantage of RDSPH method in the improvement of
accuracy. f (x) = x x≤ 10

f (x) = x+5 x > 10
(29)

 f (x) = x2 x≤ 10

f (x) = x2 +10x x > 10
(30)

 f (x) = x3 x≤ 10

f (x) = x3 +10x2 x > 10
(31)

Table 1: Errors from different methods for particle 11 (h = 1.5).

DSPH
first order
RDSPH

second order
RDSPH

Exact

Linear
Function 16.3115 16 16 16
Derivative 1 1 1 1

Quadratic
Function 241.3443 230.8750 231 231
Derivative 32.7 33.5000 32 32

Thrice
Function 2739.3 2535.3 2541 2541
Derivative 614.2 650 581 583

Different smoothing lengths produce different results due to the distribution of par-
ticles in support domain. Smoothing length h is chose as 1.2 in Table 2 to compare
with the results in Table 1. Similar conclusion can be found in table 2. Howev-
er, it is shown better results by DSPH and first order RDSPH because the smaller
support domain enhances the influence of particle 11 in equations (11), (12), (21)
and (22). Both smooth length 1.2 and 1.5 have the same results in second RDSPH
method, which illustrate that the varied smooth lengths have little influence on high
accuracy method.

5.2 The accuracy near the boundary

Besides interface, the accuracy near boundary is also important in SPH simulation.
The distribution of particles near boundary is shown in Figure 5 and particles 7
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Table 2: Errors from different methods for particle 11 (h = 1.2).

DSPH
first order
RDSPH

second order
RDSPH

Exact

Linear
Function 16.2279 16 16 16
Derivative 1 1 1 1

Quadratic
Function 238.5295 230.9574 231 231
Derivative 32.5755 33.1903 32 32

Thrice
Function 2684.3 2539.0 2541 2541
Derivative 608.4717 635.7540 581 583

7   8   9 

Bo

 
  10  11 

undary part

 12  13   

ticles

14 
Figure 5: The distribution of particles near boundary.

and 14 are boundary particles. Furthermore, we should take notice that there is
no interface in this model consequently we use continuous function in this part.
The quadratic function (32) is chosen for this model. The reason is that all the
methods have good results in the calculation of linear function and it is difficult to
judge the better one from the calculation of thrice function since all of them have
errors. The smoothing length h is chosen as 1.5. The values of Equation (32) for
particles 12, 13 and 14 are calculated in Table 3, respectively. The errors from
DSPH method are increasing when the particle is approaching the boundary. The
error of derivative calculated by first order RDSPH method is increasing, but the
error of function calculated by it is decreasing. The results from DSPH method and
first order RDSPH method are same for particle 12, as mentioned in section 3 and
4, they are equal to CSPM when they calculate the inner uniform particles. Second
order RDSPH method has higher precision and has no error near the boundary.

f (x) = x2 (32)

77 1

m

   8    9 

n

 10  11  2  13  14
Figure 6: The non-uniform particles.
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Table 3: Errors from different methods for boundary particles.

DSPH first order RDSPH second order RDSPH exact

12
Function 144.7541 144.7541 144 144
Derivative 24.0000 24.0000 24 24

13
Function 167.8814 169.6154 169 169
Derivative 25.5000 25.5769 26 26

14
Function 184.4318 195.8750 196 196
Derivative 26.6000 26.5000 28 28

5.3 The sensibility on non-uniform particles

5.3.1 One-dimensional domain

Particles move non-uniformly by large deformations, which affect the simulation
obviously. This section investigates the sensitivity of those methods for non-uniform
particles. Only quadratic function (30) is tested in this part. The distribution of par-
ticles is shown in Figure 6, all the initial distances between neighbor particles are
equal to 1. The numbers under the particles are serial number as initial value (x) in
Equation (30). The positions of particles 11 and 12 are varied: the moving distance
of particle 8 is m: −0.5 < m < 0.5 and the moving distance of particle 12 is n:
0 < n < 0.5. So the non-uniform particles can be illustrated by the varied m and
n, at the same time, the positions of other particles keep constant. The smoothing
length is also chosen as 1.5.

We get Figure 7 from DSPH method and Table 4 from RDSPH method because
the particles in different domain have no influence on the calculation of RDSPH
method. First order RDSPH has a better result than DSPH method in the calcu-
lation of function but has a worse result in derivative, which is accordant with the
conclusion in Section 4.1. The result from second RDSPH is accurate.

Table 4: Errors from RDSPH methods for particle 11.

first order RDSPH second order RDSPH Exact
Function 230.875 231 231
Derivative 33.5 32 32

5.3.2 Two-dimensional domain

When we solve the physical problems, the particles are always in two-dimensional
(2D) space. So the accuracy and sensibility on non-uniform particles must be stud-
ied in 2D space. The distribution of particles in 2D is shown in Figure 8. Along
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Figure 7: The results from DSPH method.

y-axis, the distances between particles are same, all of which are 0.25; along x-axis,
from 0 to 5 and from 0 to −5, the distances are 0.25, 0.5, 0.25 . . . , respectively. E-
quation (33) is used in this part. Same as previous models, the kernel function is
cubic spline function and the smoothing length h is 1.5. f (x,y) = x2 + y2 x < 0

f (x,y) = x2 + y2 +10 x≥ 0
(33)

x

y 

Figure 8: The model in 2D space.
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Figure 9: The errors from the calculation of f (x,y).

The errors from DSPH method, first order RDSPH method and second order RD-
SPH method in the calculation of f (x,y) are shown in Figure 9 and the results are
encouraging that both first order RDSPH method and second order RDSPH method
have much better precision than DSPH method. The maximum error from DSPH
reaches to 5.25 while the error from first order RDSPH is less than 0.2 and the
results from second order RDSPH method are accurate. DSPH method has accept-
able accuracy near interface but the errors near boundary cannot be neglected.

Figure 10 shows the errors from the first order partial derivative of f (x,y) with
respect to x and y. The errors from RDSPH method are also much smaller than
DSPH method. DSPH method is sensitive to the non-uniform particles and the
maximum error of derivative reaches to 4. First order RDSPH method has accurate
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Figure 10: The errors from first order partial derivative of f (x,y) about x (a, c, e)
and y (b, d, f).
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results and low sensitive to non-uniform particles inside the domain while has small
errors near interface and boundary. The errors from partial derivative with respect
to y is smaller than the errors from the derivative to x near interface in first order
RDSPH, in other words, the direction could affect the errors of partial derivative
when the particles have different distributions in different directions. Both first
order RDSPH and DSPH methods have worse results near boundary and interface,
which is consistent with the 1D results. The results from second order RDSPH are
accurate.

We have tested DSPH method in impact dynamics and used DSPH particle approx-
imations in the calculation of Navier-Stokes equations including density, accelera-
tion and energy [Yan, Xu, and Zhang (2013)]. We found that density was the most
important parameter that should have high precision in simulation. Density is cal-
culated by the velocity gradient, which knows from Navier-Stokes equations. The
huge difference in velocity near the interface of two objects causes the inaccurate
of density near the interface, which has a negative effect on whole simulation fur-
ther. DSPH method improves the precision of density near interface dramatically.
The RDSPH methods have similar application area, which need more validation
in future work. To be mentioned, this method is applied easily in multi-dimension
system and will be applied conveniently in physical problems.

6 Conclusions

This paper reviewed DSPH method and explored the idea to deal with discontinu-
ous problem. DSPH method shows its advantage in the discontinuous function. It
has accurate results when calculates constant function or derivative of linear func-
tion. In order to calculate higher-order functions and their derivate accurately, we
proposed multidimensional RDSPH method including first order RDSPH and sec-
ond order RDSPH based on DSPH method.

We tested those methods by 1D model firstly. Comparing with DSPH method,
first order RDSPH method has worse results in derivative of quadratic function and
thrice function, but has better results in the calculation of function near interface.
For the calculation of inner uniform particles, DSPH shows same results with C-
SPM. Second order RDSPH method shows high accuracy in calculations of both
function and derivative.

In the end of this paper, a 2D model was set up and the results were encouraging. D-
SPH method has low accuracy in non-uniform particles. Both first and second order
RDSPH methods have much better results. Although the extra matrix calculation
in RDSPH methods makes computing time slightly increasing, it is acceptable to
gain the huge accuracy improvement. Furthermore, this method is easy to use as
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well. It is convenient to choose one of those methods according to the accuracy
demand.

This paper has focused on the development of the accuracy of multidimensional
DSPH method by proposing RDSPH method that is tested by numerical model.
The RDSPH method should be tested in large deformation physical model with
interface in future work.
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