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Fracture Mechanics Approach to Estimate Fatigue Lives
of Welded Lap-Shear Specimens

1Poh-Sang Lam2 and Jwo Pan3

Abstract: A full range of stress intensity factor solutions for a kinked crack with
finite length is developed as a function of weld width and the sheet thickness. When
used with the main crack solutions (global stress intensity factors) in terms of the
applied load and the specimen geometric parameters, the fatigue lives of the kinked
crack can be estimated for the laser-welded lap-shear specimens. The predicted
curve for the load range-fatigue life passes through the cluster of experimental data
and is in good agreement. A classical solution associated with an infinitesimal
kink is also employed. However, its life prediction tends to overestimate the actual
fatigue life. In addition, the traditional fatigue life estimation based on structural
stress is performed for completeness. This non-fracture mechanics approach only
agrees well with the experimental data under high cyclic load conditions.

Keywords: Kinked crack, stress intensity factor, lap-shear, weld, fatigue life,
Paris law.

1 Introduction

This paper is a summary of recent development at the University of Michigan
for estimating fatigue life of laser weld in a lap-shear specimen [e.g., the work
of Sripichai et al. (2011); Asim et al. (2014)]. The specimens were made of
thin sheets of SAE J2340 300Y High Strength Low Alloy (HSLA) steel and were
welded with 6 kW CO2 laser. When a specimen was subjected to cyclic loading
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conditions, two main cracks were formed on each side of the weld. The lap-shear
load is statically equivalent to a combined loading of a membrane force and a bend-
ing moment. The beam theory is used to calculate the structural stress as experi-
enced at the edges of the weld. The structural stress represents the sum of the uni-
form normal stress on the cross-section of the specimen due to the membrane force
and the maximum normal stress on the cross-section due to the bending moment
at the edges of the weld. The principle of superposition is employed to decompose
the loading system into several simpler configurations to facilitate the derivation of
the stress intensity factors in crack opening mode (KI) and sliding mode (KII).

The fatigue lives of the lap-shear specimens can be estimated by three approaches:

(1) With the structural stresses calculated from the beam theory, the fatigue lives
can be estimated with the experimental fatigue data of the material, typically known
as the S−N curve (stress vs. number of cycles);

(2) The fatigue life can be obtained by integrating the empirical Paris law (da/dN =
C(∆K)m), where a is the crack length, N is the number of cycles, ∆K is the loading
characterized by the range of stress intensity factors, and C and m are material
constants obtained by curve-fitting. The key for this approach is that the stress
intensity factor solutions must be known. From the lap-shear specimen fatigue
testing, it is noted that a kinked crack is formed at the main crack tip and propagates
through the sheet thickness leading to failure. Therefore, two sets of stress intensity
factors must be determined: 1) for the main crack and 2) for the kinked crack. The
stress intensity factors for the main crack were obtained by previous work such
as Sripichai et al. (2011). The solution process will be summarized in this paper.
A theoretical solution of the stress intensity factors for a kinked crack has been
derived by Cotterell and Rice (1980). These solutions can be used with the Paris
law and a simple equation for fatigue life can be obtained by direct integration; and

(3) As the kinked crack grows eventually leading to failure, the stress intensity
factor solutions of Cotterell and Rice for an infinitesimal kinked crack become
inadequate. A set of finite element based solutions must be used with the Paris law.

This paper will describe the essential elements of these approaches. The estima-
tions will be compared with the experimental data.

2 Specimen Configuration

A welded lap-shear specimen is schematically shown in Fig. 1, in which W= 27mm,
b= 8 mm, c= 13.5 mm, w= 1 mm, L= 95 mm, V = 30 mm, t= 0.93 mm, r= 10 mm,
and s= 50 mm. The cyclic load F is applied to both ends of the specimen. A
detailed weld configuration is shown in Fig. 2. Figure 3 shows the welded region
of the test specimen prior to final failure by the cyclic load. Note that the kinked



Fracture Mechanics Approach to Estimate Fatigue Lives 3

crack on the right is longer than the one on the left. The Young’s modulus, yield
strength, and tensile strength of the HSLA steel are, respectively, 206 GPa, 315
MPa, and 415 MPa. The hardening exponent is 0.15 and the strength coefficient is
633 MPa.

Figure 1: A schematic of a lap-shear specimen.

Figure 2: Weld details.

3 Principle of Superposition – Global Stress and Stress Intensity Factors

Radaj (1989), Radaj and Zhang (1991a, 1991b, 1992), Lin et al. (2007), and Lin
and Pan (2008) showed that the load F of a lap-shear specimen (Fig. 4a) can be de-
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Figure 3: A partially failed laser weld. Note that the right kinked crack is always
longer and the upper right leg always separates under high cycle fatigue testing.

composed into statically equivalent symmetric and anti-symmetric loads. The dog-
bone area (mid-section) of a lap-shear specimen is modeled as two beams which
are connected by the weld (Fig. 4b). It can be seen that the equivalent loadings are
the membrane force per unit width (F/b) and the bending moment per unit width
(Ft/2b), applied at the middle surfaces of the upper or the lower beams.

The loading in Fig. 4b can further be decomposed into four symmetric and anti-
symmetric loading conditions: counter bending (Fig. 4c), central bending (Fig.
4d), tension (Fig. 4e), and in-plane shear (Fig. 4f). The bending moments per
unit width of the counter bending and central bending loading conditions have a
magnitude of Ft/4b, and the forces per unit width of the tension and in-plane shear
loading conditions are F/2b.

3.1 Global Structural Stress at Weld Edge

From Fig. 4b, the structural stress in the lap-shear specimen can be easily shown as

σ =
F
tb

+
3F
tb

(1)
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Figure 4: Decomposition of the lap-shear loading system. The shaded area is the
weld zone. The two-beam model is subjected to the lap-shear loading as shown in
(a), which is equivalent to the loading in (b). By superposition, (b) is the sum of (c)
counter bending, (d) central bending, (e) tension, and (f) in-plane shear loading.

Note that the first term on the right hand side of Eq. 1 corresponds to the membrane
force per unit width and the second term is from the bending moment per unit width.
With Eq. (1) defined as the cyclic structural stress at the edge of the weld bead and
utilizing the experimental stress-fatigue life data (S−N Curve) of the HSLA steel,
the fatigue lives of laser welds in lap-shear specimens can be estimated.

3.2 Global Stress Intensity Factors for the Main Cracks

In terms of linear elastic fracture mechanics, the crack driving force (G) or the
energy release rate of a crack is the decrease of potential energy per unit crack
extension. In addition, it has been shown that the energy release rate and the stress
intensity factors are related by

G =
K2

I +K2
II

E ′
(2)

where E ′=E/(1−ν2) for plane strain and E ′=E for plane stress, E is the Young’s
modulus, and ν is the Poisson’s ratio. Based on these conditions, Sripichai et al.
(2011) showed that the stress intensity factors with respect to the decomposed con-
figurations are:
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(i) Figure 4c, Counter Bending

KI,B =

√
3

2
F

b
√

t

KII = 0

(ii) Figure 4d, Central Bending

KI = 0

KII,CB =
3
4

F
b
√

t

(iii) Figure 4e, Simple Tension along the Crack Face

KI = KII = 0

(iv) Figure 4f, In-plane Shear

KI = 0

KII,S =
F

4b
√

t

Therefore, by superposition, the “global” stress intensity factors for the main cracks
of the lap-shear specimen subject to load F (Fig. 1) are

KI = KI,B =

√
3

2
F

b
√

t
(3)

KII = KII,CB +KII,S =
F

b
√

t
(4)

Note that Eqs. (3) and (4) are valid only when the weld width w is large compared
to the sheet thickness t. When w becomes smaller, the Westergaard stress function
solutions in Tada et al. (2000) prevail:

KI,TPI = 0

KII,TPI =

√
2F

b
√

πw

To obtain the full range of the global stress intensity factor as a function of w/t, the
finite element analysis was carried out by Sripichai et al. (2011). Their approximate
solutions for KI and KII are given as (also shown graphically in Fig. 5):
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(a) Solution for KI

(i) For 0≤ w/t < 2, KI =

√
3

2
F

b
√

t
w
2t

(ii) For w/t ≥ 2, KI =

√
3

2
F

b
√

t

(5)

(b) Solution for KII

(i) For 0≤ w/t < 0.37, KII = KII,TPI =

√
2F

b
√

πw

(ii) For 0.37≤ w/t < 1.12, KII = 1.0285
(w

t

)−0.242 F
b
√

t

(iii) For w/t ≥ 1.12, KII =
F

b
√

t

(6)
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(ii) For w/t  2, 
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(b) Solution for IIK  

(i) For 0  w/t < 0.37, 
wb

F
KK




2
TPI II,II  
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(iii) For w/t  1.12, 
tb

F
K II  

 

 
Figure 5. The global stress intensity factors as functions of tw/  

(all IK ’s and IIK ’s are normalized by Eq. (4)) 

 
3.3  Stress Intensity Factors for the Kinked Crack  

3.3.1  Analytical Solution  

In reality, the experimental observation suggested that the fatigue cracks of the lap-shear 

specimens never follow the direction of the main cracks (formed by the two sheets and the weld).  

Instead, as shown in Fig. 3, a kinked crack was initiated at each of the main crack tips.  Figure 6 is 

Figure 5: The global stress intensity factors as functions of w/t (all KI’s and KII’s
are normalized by Eq. (4)).
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3.3 Stress Intensity Factors for the Kinked Crack

3.3.1 Analytical Solution

In reality, the experimental observation suggested that the fatigue cracks of the lap-
shear specimens never follow the direction of the main cracks (formed by the two
sheets and the weld). Instead, as shown in Fig. 3, a kinked crack was initiated at
each of the main crack tips. Figure 6 is a schematic of a kinked crack with length
a and a kink angle α . Denoting KI and KII as the global stress intensity factors for
the main crack, the solutions for the local stress intensity factors kI and kII for the
kinked crack are given by Bilby et al. (1978) and Cotterell and Rice (1980):

(kI)0 =
1
4

(
3cos

α

2
+ cos

3α

2

)
KI−

3
4

(
sin

α

2
+ sin

3α

2

)
KII (7)

(kII)0 =
1
4

(
sin

α

2
+ sin

3α

2

)
KI +

1
4

(
cos

α

2
+3cos

3α

2

)
KII (8)

where (kI)0 and (kII)0 represent the local kI and kII solutions for the kinked crack
with its length a approaching to 0 (i.e., an infinitesimal kink). Note that the arrows
in Fig. 6 indicate the positive sense of the stress intensity factors KI, KII, kI, and kII.
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Figure 6.  A schematic of a main crack and a kinked crack with kink length a  and kink angle   
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Figure 6: A schematic of a main crack and a kinked crack with kink length a and
kink angle α .

3.3.2 Numerical Solutions for a finite kinked Crack

Note that the theoretical solutions for a kinked crack in Eqs. (7) and (8) are func-
tions of the kink angle α and the specimen overall geometry (through the global
stress intensity factors KI and KII), and is independent of the kink length a. How-
ever, as the kinked crack continues to grow under fatigue load, it is expected that the
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local stress intensity factors (kI and kII) will increase with the kink length. There-
fore, finite element analysis was conducted by considering that the kinked crack has
a finite length. In addition, for the particular lap-shear specimens discussed in this
paper, the kink is assumed to be perpendicular to the main crack (i.e., α = −90◦)
as shown in Fig. 3. The finite element model is schematically shown in Fig. 7 and
the calculated stress intensity factors kI and kII, which both are normalized by (kI)0
for convenience, are plotted in Figs. 8 and 9.
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Figure 7: A schematic of a two-dimensional finite elemental model of a lap-shear
specimen with two kinked cracks.
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Figure 9: The values of kII/(kI)0 for w/t=0.5, 1, and 2 with α =−90◦.

4 Estimation of Fatigue Life

The fatigue life of a structural component can be estimated based on: 1) structural
stress, using the fatigue data from material testing, typically known as the S−N
Curve, and 2) fracture mechanics, using the stress intensity factor solutions at the
tip of a fatigue crack.

4.1 Structural Stress Model

The structural stress for the welded lap-shear specimen was derived in Section 3.1
as σ = F/tb+3F/tb = 4F/tb (Eq. (1)). With the applied stress (σ ) and the S−N
fatigue curve for HSLA steel, the fatigue life curve can be constructed. However,
the stress-life data for the SAE 300Y HSLA (with the tensile yield strength of 315
MPa) are not available, and the stress-life data for R =−1 of SAE 950X (with the
tensile yield strength of 350 MPa) are used instead. The fatigue life estimations
with the structural stress are plotted against the experimental data in Fig. 10.

4.2 Fatigue Crack Growth Model

Here the Paris law (da/dN = C(∆K)m) is adopted to describe the fatigue crack
propagation for kinked cracks emanating from the main cracks in the lap-shear
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specimens. Because both kI and kII exist at the crack tip, an equivalent stress inten-
sity factor range (∆keq) is used. The Paris law is rewritten as

da
dN

=C
(
∆keq (a)

)m (9)

where

∆keq (a) =
√

∆kI (a)
2 + γ∆kII (a)

2 (10)

In the above equation, γ is an empirical constant to account for the sensitivity of
material to the Mode II loading conditions. In the absence of information, the
value of γ is simply taken as unity (1). By substituting Eq. (10) into Eq. (9) and
integrating, the fatigue life of a laser weld in lap-shear specimens can be expressed
as

N =
1
C

 0.025t ′∫
0

[
∆keq (a)

]−mda+
0.05t ′∫

0.025t ′

[
∆keq (a)

]−mda+ . . .+

t ′∫
0.7t ′

[
∆keq (a)

]−mda


(11)

where 0, 0.025, 0.05, . . . , and 0.7, are arbitrarily chosen and represent the values
of the normalized kink length a/t, at which the local stress intensity solutions are
available (e.g., by referencing Figs. 8 and 9). The variable t ′ is the actual crack
growth distance (t ′ = t/sin |α|). In the case of α =−90◦such as in Fig. 7, t ′ = t.

The material constants, C = 6.89× 10−9 mm/cycle
(MPa

√
m)m and m =3, for ferritic-pearlitic

steels listed in Dowling (1998) are used to estimate the fatigue lives. The fatigue
lives predicted by Eq. (11) with the use of the complete solutions kI (Fig. 8) and
kII (Fig. 9) are shown in Fig. 10. Note that the global stress intensity factors KI
and KII are implicit in Figs. 8 and 9 through the normalization factor (kI)0 (Eq.
(7)). In addition, the effect of the load ratio (R) is ignored when the range of the
stress intensity factor (∆keq) is used in Eqs. (9) and (11). The load ratio is actually
0.2 in the fatigue experiments but is not expected to have significant impacts on the
fatigue life estimations of these laser welds.

4.3 Simplified Fatigue Crack Growth Model

In a simplified model, the local stress intensity factors (kI)0 and (kII)0 in Eqs. (7)
and (8) are used with the Paris law (Eq. 9). Note that the stress intensity factor so-
lutions are valid only as the kink length a approaching to 0. As treated by Newman
and Dowling (1998) and Lin et al. (2006), the ranges of the equivalent local stress
intensity factors are assumed to be constant for all kink lengths and are assumed to
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be equal to those for the kinked cracks with vanishing length (a→ 0). For this sim-
plified model, the fatigue life of a laser weld can then be obtained by substituting
Eqs. (7) and (8) into Eq. (9). By direct integration,

N =
t ′

C
((

∆keq
)

0

)m (12)

where
(
∆keq

)
0 is the range of the equivalent stress intensity factors at vanishing

kink length. The fatigue life prediction curve (i.e., Eq. (12)) obtained from this
simple approach is plotted in Fig. 10. Again, the effects of the load ratio (R) are
ignored.
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Figure 10: The experimental results and the fatigue life estimations based on the (1)
structural stress model, (2) fatigue crack growth model, and (3) simplified fatigue
crack growth model.

5 Discussions

Figure 10 shows the experimental results of the CO2 laser welded lap-shear speci-
mens made from SAE J2340 300Y HSLA steel. It also includes the fatigue life esti-
mations based on (1) the structural stress (Section 4.1), (2) the fatigue crack growth
model (Section 4.2), and (3) the simplified fatigue crack growth model (Section
4.3). It can be seen that the fatigue life estimations based on the fatigue crack
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growth model (with the global and the local stress intensity factor solutions for
w/t= 0.86) are in agreement with the experimental results, while the fatigue lives
estimated with the simplified fatigue crack growth model are consistently higher
than the experimental data. This is understandable because the value of the equiv-
alent local stress intensity factor increases as the kink length becomes longer, but
in the simplified model this quantity is assumed to remain at its initial value evalu-
ated at nearly zero kink length and is lower than the realistic value, which implies
a slower crack growth rate and a longer fatigue life.

The solutions of kI and kII in Section 3.3.2 for a finite kinked crack can be further
improved by considering the actual weld configuration (Fig. 2) to include the weld
bead in the finite element model (Fig. 11). As shown in Asim et al. (2014), with
the weld bead, the solution for kI for the right main crack becomes higher than that
for the left main crack, but on the other hand, kII is higher on the left side. Because
the absolute value of kII is only about 10% of kI, the range of the equivalent stress
intensity factor ∆keq remains higher at the right kinked crack. This suggests that
the right kinked crack should grow faster and the failure would occur first in the
right side of the lap-shear specimen. Indeed this is consistent with the experimental
observation for high cycle fatigue testing [Asim et al. (2014)] and is shown in Fig.
3.
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Figure 11: A schematic of a two-dimensional finite element model of a lap-shear
specimen with a weld bead.

It is well known that the Paris Law typically well represents the fatigue crack
growth behavior in most of the stress intensity factor (∆K) range, however, it would
overestimate da/dN at the initial or threshold ∆K and underestimate it at large ∆K.
An alternative formulation based on the method of Moving Least Squares, or MLS,
[e.g., see Atluri and Zhu (1998); Kim and Atluri (2000)] to model fatigue behavior
in terms of ∆K was proposed by Dong et al. (2015). These researchers demon-
strated that only very few MLS nodes were needed to predict the a vs. N or the
da/dN vs. ∆K curves very accurately for 7075-T6 aluminum alloy, where ∆K was
obtained by the Finite Element Alternating Method (FEAM) as was shown by Nish-
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ioka and Atluri (1983) and Dong and Atluri (2013a; 2013b). In a more recent work
by Wang et al. (2015), they introduced probabilistic frame work with Kalman and
particle filters to remove the errors caused by experimental noises, for example,
from the experimental a vs. N data set. Such treatment allows the mean value and
probabilistic distribution of the remaining useful life be calculated. It would be
interesting to implement MLS in the study of the kinked fatigue crack growth such
as the present work in the case of a lap-shear joint.

6 Conclusions

This paper summarizes part of the research at the University of Michigan on pre-
dicting the fatigue lives of lap-shear specimens based on fracture mechanics. A
full range of approximate closed-form solutions for global stress intensity factors
are first developed for the main crack based on the results of (1) finite element
analyses in conjunction with (2) analytical solutions with beam bending theory and
(3) Westergaard stress function solutions for two semi-infinite solids which share a
common boundary with a length equal to the size of the weld. It is followed by a
series of finite element analysis to calculate the local stress intensity factors at the
tip of the kinked crack emanating from the main crack tips. The computational re-
sults indicate that the kinked cracks are under dominant Mode I loading (kI >> kII).
Combining the calculated local stress intensity factors with the global stress inten-
sity factors (KI and KII), the fatigue life of laser welded lap-shear specimen can be
estimated. In addition, a standard engineering practice of using the structural stress
and the S−N curve to predict the fatigue lives is also presented. Comparing with
the fatigue test data of the lap-shear specimens, it can be concluded that the fatigue
lives estimated with the kinked fatigue crack growth model agree well with the ex-
perimental results, whereas the estimations based on the structural stress agree only
at higher fatigue loads.
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