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Analytical Solution of Thermo-elastic Stresses and
Deformation of Functionally Graded Rotating Hollow

Discs with Radially Varying Thermo-mechanical
Properties under Internal Pressure

M.R. Akbari1 and J. Ghanbari1,2

Abstract: Exact analytical solution for functionally graded hollow discs under
internal pressure, thermal load and rotation are provided in this paper. Material
properties of discs, i.e. elastic modulus, density and thermal expansion coefficient
are assumed to vary in radial direction. Two power functions are assumed for prop-
erty dependency to study various types of functional grading of materials in the
discs. Assuming small deformations, a differential equation is obtained and solved
for the Airy stress function. The effects of various grading functions on the stress
and deformation distribution are studied and an optimum value for the power is
obtained.
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1 Introduction

In functionally graded materials (FGMs), usually two different materials, e.g. a
metal and a ceramic, are distributed throughout the body according to a smooth dis-
tribution function. The material properties are thus functions of position, gradually
changing from one specific material, namely a metal to another, a ceramic. FGMs
for their excellent mechanical properties such as high strength impact, creep, ero-
sion and thermal tolerance are highly considered by researchers in extreme loading
environments [Suresh and Mortensen (1998)]. The metal part of an FGM tolerates
mechanical stresses while the ceramic part is a good thermally stable part resist-
ing high erosive conditions [Reddy et al. (1999)]. Because of these properties,
FGMs are an ideal choice for applications with high temperature and severe tem-
perature gradients. By controlling material distribution in the required dimension,
even thin-walled structures are achieved [Niino and Maeda (1990)].
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For better understanding the mechanical behavior of FGMs, various methods are
employed by researchers to achieve an optimal design for the specific application.
Oral and Anlas (2005) have studied mechanical behavior of non-homogeneous
cylindrical bodies assuming a power function dependency of mechanical proper-
ties on the radius. Horgan and Chan (1999) considered hollow cylinders under
internal pressure, also assuming a power function dependency of the mechanical
properties on the radius of the cylinder. Nadeau and Ferrari (1999) studied thermal
stresses in a non-homogeneous plate with through the thickness variation of the
mechanical properties. A closed-form solution for spherical and cylindrical pres-
sure vessels of FGMs is developed by Tutuncu and Ozturk (2001). Liu et al. (2013)
developed an analytical methodology using the averaging technique of composites
to describe the thermo-elastic and thermo-elastoplastic behavior of a triple-layered
FGM system subjected to thermal loadings. Xie and Chi (2014) studied dynamic
response sensitivity of a simply supported functionally graded magneto-electro-
elastic plates by combining analytical method with finite element method. In their
work, the FGM parameters are assumed to obey exponential law in the thickness
direction Also an exact three-dimensional elastic model for the free vibration analy-
sis of functionally graded sandwich simply-supported plates and shells is proposed
by Brischetto (2013).

Rotating discs are common in internal combustion engines, centrifugal compres-
sors, turbine rotors and flywheels and operate in harsh thermal conditions which
require an appropriate material to withstand applied thermal and mechanical loads.
In recent years, FGMs are considered as a good choice of material for these discs
and various studies have been conducted by researches for this purpose. Durodola
and Attia (2000) studied hollow and solid FGM discs reinforced by fibers and em-
ployed the finite element method for their deformation and stress analysis. Bayat
et al. (2009) studied bending of rotating FGM discs using first order shear defor-
mation theory and obtained semi-analytical solution for small deformation case.
Kadkhodayan and Golmakani (2011) used von Karman equations for large defor-
mation case and analyzed bending of rotating hollow and solid FGM discs. As-
ghari and Ghafoori (2010) employed a semi-analytical 3D solution to better study
the stress on thick rotating discs. Hosseini Kordkheili and Naghdabadi (2007) pre-
sented a semi-analytical thermo-elastic solution for constant thickness hollow and
solid rotating FGM discs and compared the results with those of the finite element
analysis. Bayat et al. (2009) presented a thermo-elastic solution for variable thick-
ness FGM discs. Ghorbanpour et al. (2010) studied variable thickness discs using
a magneto-thermo-elastic analysis and obtained a semi-analytical solution.

In this paper, we present an exact closed-form solution for thermo-elastic analy-
sis of hollow rotating FGM discs under internal presser and temperature gradient
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throughout the radial direction of the disc. As mentioned earlier, in previous works
usually a semi-analytical solution is obtained for discs with radial variation in ma-
terial properties. In this work, we employed a power function dependency of prop-
erties with respect to radial distance instead of the volume fraction of materials.
Both internal and external radii are considered as reference position for the grading
function and by choosing different values for the power, an optimal value has been
obtained for near uniform stress distribution throughout the radial axis of the disc.

2 Problem formulation

2.1 Grading function

A power dependency between the properties and radial distance is used in this
paper for the FGM disc. Both inner and outer radius are considered as the reference
position. For disc A, the inner radius is considered as the reference position and the
material properties depend on radial position as,

E(r) = E0

(
r
ri

)n

; α(r) = α0

(
r
ri

)m

; ρ(r) = ρ0

(
r
ri

)b

(1a)

And for disc B, the outer radius is chosen as the reference position,

E(r) = E0

(
r
ro

)n

; α(r) = α0

(
r
ro

)m

; ρ(r) = ρ0

(
r
ro

)b

(1b)

where ri and ro are inner and outer radii of the disc, respectively, and n, m, and b are
arbitrary powers related to the grading of the materials. Note that for these powers
equal to zero, isotropic material properties will be obtained (see Fig. 1)

2.2 Temperature gradient

A temperature gradient is assumed in the radial direction of the rotating disc which
is assumed to vary according to,

T (r) = T0
ro − r
ro − ri

(2)

As can be seen, the temperature on the inner radius is kept as T0 and 0 on the outer
radius.

2.3 Governing equations

The equilibrium equation in the radial direction for an FGM disc rotating with
constant angular velocity of ω assuming a plane stress state can be expressed as,

dσr

dr
+

σr −σθ

r
+ρ(r)rω

2 = 0 (3)
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Figure 1: Schematic of an FG rotating disc subjected to thermal loading  
Figure 1: Schematic of an FG rotating disc subjected to thermal loading.

Since geometry, loadings and material properties have rotational symmetry with
respect to the axis of rotation of the disc, both radial and circumferential stresses are
just functions of r and do not depend on θ . Also, the shear stress τrθ is identically
zero.

Using the general thermo-elastic Hooke’s law, the strain components are,

εr =
1

E(r)
(σr −νσθ )+α(r)T (r); εθ =

1
E(r)

(σθ −νσr)+α(r)T (r) (4)

where T (r) is the temperature given in Eq. 2. Note that the Poisson’s ratio is
assumed to be constant throughout the disc.

To solve the equilibrium equation in Eq. 3, we use the Airy stress function, F , with
stress components defined as,

σr =
F
r

; σθ =
dF
dr

+ρ(r)r2
ω

2 (5)

In axisymmetric plane stress state, the strain-displacement relations are as follows,

εr =
du
dr

; εθ =
u
r

(6)

where u is the displacement component along the radial direction. Combining the
relations in Eq. 6, we have,

εr =
d
dr

(rεθ ) (7)
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Substituting Eq. 5 into Eq. 4 and the results in Eq. 7, we arrive at,

r2 d2F
dr2 + r(1−n)

dF
dr

+(nν −1)F =−mrE(r)α(r)T (r)− r2E(r)α(r)
dT
dr

+(n−b−ν −3)ρ(r)r3
ω

2
(8)

Eq. 8 is a non-homogeneous ordinary differential equation and its solution involves
a general homogeneous solution and a particular non-homogeneous one. To obtain
the solution to the homogeneous equation, we use a substitution of variables like,

Fh =C1r
n+k

2 +C2r
n−k

2 (9)

where C1 and C2 are constants which will be obtained from boundary conditions,
and

k =
√

n2 −4nν +4 (10)

The particular solution may be obtained as

Fp = Grm+n+1 +Hrm+n+2 + Jrb+3 (11)

where G, H, and J are constants. For disc A, these constants are obtained as,

G =
−mE0α0T0ro

rm+n
i (ro − ri)(m2 +mn+2m+(ν +1)n)

H =
(m+1)E0α0T0

rm+n
i (ro − ri)(m2 +mn+4m+(ν +2)n+3)

J =
(n−b−ν −3)ρ0ω2

rb
i (b2 +(6−n)b+(ν −3)n+8)

(12a)

For disc B, similar expressions are obtained as follows,

G =
−mE0α0T0ro

rm+n
o (ro − ri)(m2 +mn+2m+(ν +1)n)

H =
(m+1)E0α0T0

rm+n
o (ro − ri)(m2 +mn+4m+(ν +2)n+3)

J =
(n−b−ν −3)ρ0ω2

rb
o(b2 +(6−n)b+(ν −3)n+8)

(12b)

Now, the solution to the Eq. 8 is the sum of the homogeneous and non-homogeneous
solutions, Eqs. 9 and 11,

F = Fh +Fp =C1r
n+k

2 +C2r
n−k

2 +Grm+n+1 +Hrm+n+2 + Jrb+3 (13)
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Using Eq. 5, the stress components are derived. For disc A,

σr =C1r
n+k−2

2 +C2r
n−k−2

2 +Grm+n +Hrm+n+1 + Jrb+2

σθ =

(
n+ k

2

)
C1r

n+k−2
2 +

(
n− k

2

)
C2r

n−k−2
2

+G(m+n+1)rm+n +H(m+n+2)rm+n+1 +(
ρ0ω2

rb
i

+(b+3)J)rb+2

(14a)

Similarly, for disc B,

σr =C1r
n+k−2

2 +C2r
n−k−2

2 +Grm+n +Hrm+n+1 + Jrb+2

σθ =

(
n+ k

2

)
C1r

n+k−2
2 +

(
n− k

2

)
C2r

n−k−2
2

+G(m+n+1)rm+n +H(m+n+2)rm+n+1 +(
ρ0ω2

rb
o

+(b+3)J)rb+2

(14b)

Using Eq. 4, the strain components can be obtained. For disc A,

εr =
1

E(r)
[(1−ν

n+ k
2

)C1r
n+k−2

2 +(1−ν
n− k

2
)C2r

n−k−2
2

+(1−ν(m+n+2))Hrm+n+1 +(1−ν(m+n+1))Grm+n

+(−νρ0ω2

rb
i

+(1−νb−3ν)J)rb+2]+α(r)T (r)

εθ =
1

E(r)
[(

n+ k
2

−ν)C1r
n+k−2

2 +(
n− k

2
−ν)C2r

n−k−2
2

+(m+n+2−ν)Hrm+n+1 +(m+n+1−ν)Grm+n

+(
ρ0ω2

rb
i

+(b+3−ν)J)rb+2]+α(r)T (r)

(15a)

And for disc B,

εr =
1

E(r)
[(1−ν

n+ k
2

)C1r
n+k−2

2 +(1−ν
n− k

2
)C2r

n−k−2
2

+(1−ν(m+n+2))Hrm+n+1 +(1−ν(m+n+1))Grm+n

+(−νρ0ω2

rb
o

+(1−νb−3ν)J)rb+2]+α(r)T (r)
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εθ =
1

E(r)
[(

n+ k
2

−ν)C1r
n+k−2

2 +(
n− k

2
−ν)C2r

n−k−2
2

+(m+n+2−ν)Hrm+n+1 +(m+n+1−ν)Grm+n

+(
ρ0ω2

rb
o

+(b+3−ν)J)rb+2]+α(r)T (r)

(15b)

Substituting Eqs. 15-a and 15-b into Eq. 6, the radial displacement is obtained as,

u =
1

E(r)
[(

n+ k
2

−ν)C1r
n+k

2 +(
n− k

2
−ν)C2r

n−k
2 +(m+n+2−ν)Hrm+n+2

+(m+n+1−ν)Grm+n+1 +(
ρ0ω2

rb
i

+(b+3−ν)J)rb+3]+ rα(r)T (r)

(16a)

For disc A; and for disc B as follows,

u =
1

E(r)
[(

n+ k
2

−ν)C1r
n+k

2 +(
n− k

2
−ν)C2r

n−k
2 +(m+n+2−ν)Hrm+n+2

+(m+n+1−ν)Grm+n+1 +(
ρ0ω2

rb
o

+(b+3−ν)J)rb+3]+ rα(r)T (r)

(16b)

2.4 Boundary conditions

To fully determine displacements and the stress components of the discs, we need
to apply the boundary conditions on the inner and outer radii of the discs. As we
mentioned earlier, we assumed that the discs are under internal pressure and the
outer surface is traction-free. So, we have{

σr =−P;r = ri

σr = 0;r = ro
(17)

Applying these conditions, constants C1 and C2 are determined,

C1 =−r
2−n−k

2
i (C2r

n−k−2
2

i +P+Hrm+n+1
i +Grm+n

i + Jrb+2
i )

C2 =
( ro

ri
)

n+k−2
2 (P+Hrm+n+1

i +Grm+n
i + Jrb+2

i )− (Hrm+n+1
o +Grm+n

o + Jrb+2
o )

(r
n−k−2

2
o − r

n+k−2
2

o r−k
i )

(18)
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3 Results and discussions

For better illustration and interpretation of the results, we first define dimensionless
parameters for material properties, stress, and strains as follows,

E =
E(r)
E0

, α =
α(r)
α0

, ρ =
ρ(r)
ρ0

σr =
σr

E0α0 T0
, σθ =

σθ

E0α0 T0

εr =
εr

α0 T0
, εθ =

εθ

α0 T0
, u =

u
roα0 T0

(19)

To plot the results, we have used the following numerical values for the geometry
and mechanical properties of the discs,

ri = 300mm, ro = 500mm, ν = 0.3, α0 = 23×10−6(1/◦C), P = 100MPa,

E0 = 150GPa, ρ0 = 5600kg/m3, ω = 650 rad/s, T0 = 300◦C
(20)

Figs. 2.a and 2.b show the dimensionless Young’s modulus of disc A and B for
different values of the power nwith respect to radial distance. Both positive and
negative values for n have been considered in the analysis. The variation of thermal
expansion coefficient α is shown in Figs 2.c and 2.d for discs A and B, respectively.
Similar behavior for the density of the discs can be seen in Figs 2.e and 2.f.

By choosing different relations for describing the dependency of properties on the
radial distance, we are able to tune the power values in these relations to match
those of experimental data or more accurate modeling of merely the mechanical
properties of FGM discs, while maintaining the solvability of the derived equations
and yielding a closed form solution for the problem.

The results for stress and strain components are illustrated on Figs 3 and 4 Figs 3.a
and 3.b show the variation of radial stress through the radial distance of both discs
for various values of n. Disc A shows more sensitivity to the value of n than disc B.
For decreasing values of n, the stress distribution on the disc tends to be uniform,
especially for disc A. This is also the case for the circumferential stress component
shown in Figs 3.c and 3.d. Again, disc A is more sensitive to the value of power n.
For n = 1,2, minimum values for the radial stress component occur at the middle
of the discs, while for n = 0,−1,−2, internal radius has the minimum value for
the radial stress, which is equal to the applied internal pressure. Disc B does not
show this behavior and the minimum value of the radial stress is always occur on
the internal radius of the disc corresponding to the applied pressure.
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Figure 2: Material property distribution on the discs: (a) and (b) elastic modulus
on discs A and B; (c) and (d) thermal expansion coefficient on discs A and B; (e)
and (f) density on discs A and B, respectively with respect to various values for the
power in the grading function.
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Figure 3: Stress distribution in the radial direction: (a) and (b) radial stress component 
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Figure 3: Stress distribution in the radial direction: (a) and (b) radial stress com-
ponent for discs A and B; (c) and (d) circumferential stress component for discs A
and B, respectively.

Considering the circumferential stress component, in disc A, there is a smoother
variation along the radius for n = −1,−2 compared to other values of n. The
maximum value of the stress always occur on the outer radius, except for the case
of n=−2 for which internal radius of the disc has the maximum value of the stress.
Disc B always has the maximum stress on its outer radius. For decreasing value of
n, stress gradient decreases along the radial direction.

Contrary to the stress components, the strain components tend to decrease with
respect to radial distance, as shown in Fig. 4. For increasing values of n, circumfer-
ential strain values decrease throughout disc A, but increase in disc B. On the other
hand, the radial strain component increases for disc A and decreases for disc B for
increasing values of n. Fig. 5 shows the variation of radial displacement for discs
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Figure 4: Strain distribution in the radial direction: (a) and (b) radial strain component 

for discs A and B; (c) and (d) circumferential strain component for discs A and B, 
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Figure 4: Strain distribution in the radial direction: (a) and (b) radial strain com-
ponent for discs A and B; (c) and (d) circumferential strain component for discs A
and B, respectively.

A and B for various values of n. For increasing values of n, radial displacement
decreases for disc A, while increases for disc B.

The effects of angular velocity on the stress and deformation components are de-
picted in Fig. 6 for disc A and for the case n = 2. For increasing angular velocity,
both stress components and radial displacement increase throughout the disc.

For better understanding the effects of temperature gradient on the stresses and
displacement of the disc A, various cases are illustrated in Fig. 7. For increasing
temperature on the inner radius, the radial stress component shows more intensive
gradient in the radial direction. The circumferential stress component decreases
on the inner radius and increases on the outer radius for increasing temperature
gradient. The radial displacement increases for increasing temperature gradient.
Note that for Fig 7, the dimensionless parameters are σr

P , σθ

P , ur
ro

respectively.
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of n . For increasing values of n , radial displacement decreases for disc A, while 

increases for disc B.  

 

Figure 5: Radial displacement component distribution in disc A (a), and in disc B (b) 
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Figure 5: Radial displacement component distribution in disc A (a), and in disc B
(b).

 

 

Figure 6: The effects of angular velocity on radial stress (a), and circumferential stress 

(b) components and radial displacement (c) for disc A
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Figure 6: The effects of angular velocity on radial stress (a), and circumferential
stress (b) components and radial displacement (c) for disc A.
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Figure 7: The effects of temperature gradient on radial (a), and circumferential stress 

distribution (b) and radial displacement (c) for disc A 

4 Conclusion 

An analytical exact solution for functionally graded rotating discs under thermo-
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property variation and in disc B, outer radius is the base.  
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Figure 7: The effects of temperature gradient on radial (a), and circumferential
stress distribution (b) and radial displacement (c) for disc A.

4 Conclusion

An analytical exact solution for functionally graded rotating discs under thermo-
mechanical loads is obtained in this paper. The discs are assumed to have constant
thickness and the grading is on the radial direction. A power grading function is
chosen so that a closed form elasticity solution can be obtained. Since the grading
is on the radial direction, with the chosen function, mechanical properties on either
inner or outer radius are set exactly and on the other side is tuned by the power
value. To study the effect of this choice, two discs are considered. In disc A, inner
radius is the base for mechanical property variation and in disc B, outer radius is
the base.

Stress and strain component variations throughout the radius of the discs are stud-
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ied. The variation of n changes the stress components behavior, from ascending
to descending in some cases, while retain the general behavior for strain compo-
nents. If an optimal design based on stress distribution is desired, it is possible to
determine the proper grading of the base materials throughout the grading direction
using the proposed method in this paper.
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