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Finite Deflection of Slender Cantilever with Predefined
Load Application Locus using an Incremental Formulation
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Abstract: In this paper, a class of problems involving space constrained loading
on thin beams with large deflections is considered. The loading is such that, the
locus of the force application point moves along an arbitrarily predefined path,
fixed in space. Both linear elastic as well as elastic-perfectly plastic materials are
considered. A simplification is realized using the moment-curvature relationship
directly. The governing equation obtained is highly non-linear owing to inclusion of
both material and geometric non-linearity. A general algorithm is described to solve
the governing equation using an incremental formulation coupled with Runge Kutta
4th order initial value explicit solver. Additionally, the presented method is capable
of handling unloading and reverse loading conditions. An example problem where
the load application point locus is an inclined straight line is solved to demonstrate
the performance of the method. It is found that, the force response due to the
inclined locus is stiffer than the vertical locus. This response is akin to dry friction
condition on a vertical locus case.

Keywords: Large deflections, Beam bending, Material non-linearity, Geometric
non-linearity, plasticity, incremental formulation.

Nomenclature

FAP force application point: applied force acts at this intermediate point
on the deformed beam (Fig. 1)

TPBVP two point boundary value problem
IVP initial value problem
x the horizontal coordinate
w vertical displacement of beam at any x
w′,w′′ first and second partial derivatives of w with respect to x respectively
E Young’s modulus

1 IIT, Madras, Chennai, India
2 Texas A & M University, College Station, Texas, USA.



128 Copyright © 2015 Tech Science Press CMC, vol.45, no.2, pp.127-144, 2015

I area moment of inertia of beam c/s about neutral axis
l horizontal distance between fixed support and FAP of cantilever
l0 horizontal distance between fixed support and the intersection of FAP

locus with x axis
δ vertical displacement at FAP
ψ angle the tangent to the deformed beam makes with horizontal at FAP
κ curvature of deformed beam
κy maximum elastic curvature of deformed beam
M bending moment
My maximum elastic resistive bending moment of beam section
D tangent modulus of moment-curvature relationship
L horizontal span in three point bend case of non zero bending moment
R central vertical force on simply supported three point bending beam
F resultant force on cantilever at FAP
RK4 Runge Kutta 4th order method for solving initial value problems

1 Introduction

The subject of the large deflection of linear elastic thin beams has always been of
great historical interest for many researchers in the field of applied mathematics and
mechanics. This problem is popularly known as the "elastica". The elastica and its
variations attracted great minds like Galileo, James Bernoulli, Euler just to name a
few, as documented by Levien (2008). In the past few decades the requirement of
minimum weight criteria in aerospace industry has led to a renewed interest in the
study of flexible structures as noted by Fertis (2006). The simplest flexible struc-
ture popular among researchers is that of an elastic cantilever beam undergoing
large deflection. Large deflection of a flexible cantilever beam is essentially a two
point boundary value problem (TPBVP) whose closed form analytical solutions
are limited to evaluation of elliptic integrals. From mathematical point of view
the problem solving approach has changed from analytical to semi-analytical and
more recently to efficient numerical techniques. To incorporate various engineer-
ing constraints like plasticity or frictional contact etc, numerical methods are more
easily implementable and hence we see an upsurge in this field of research. How-
ever for validation of non-exact procedures, the elliptic integral solutions, wherever
possible, remain crucial.

Working to obtain an analytical solution to the elastica, Bisshopp and Drucker
(1945) obtained the solution for the large deflection of linear elastic horizontal can-
tilever beam under a concentrated vertical load at the free end, in terms of elliptic
integrals. A comprehensive account of elliptic integral techniques pertaining to
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elastica may be found in the work of Frisch-Fay (1962). Theocaris, Paipetis and
Paolinelis (1977) investigated large deflection of three point bending considering
axial stress and expressed the solutions in the form of elliptic integrals. More re-
cently Zakharov and Okhotkin (2002) solved the elastica for various end conditions
using elliptic integrals.

Elliptic integral based analytic solutions are explicit in the end slope of the elastica
curve and implicit for load or displacements. This causes iterations to be involved
when load or displacement solutions are sought. In order to primarily overcome
the inconvenience of implementation caused due to this implicitness of the elliptic
integral solutions, various semi analytical techniques are devised. Wang, Chen and
Liao (2008) employed a semi-analytical technique called the homotopy analysis
method to solve the elastica. Elgohary, Dong, Junkins and Atluri (2014) recently
presented scalar homotopy method and applied it to solve the William’s toggle
which involves geometric non-linearity. Similar to homotopy perturbation method
there exists another one called the Adomian decomposition technique and this was
used by Banerjee, Bhattacharya and Mallik (2008) to solve the elastica. Ghosh and
Roy (2007) employed the method to solve large deflection elastic and monotonic
plastic deformation cases. The semi-analytical techniques primarily solves elas-
tic problems. The methods need extensive use of symbolic operation softwares.
Hence, though the methods does provide explicit solutions they suffer from the
short comings of providing solutions in the form of long expressions with a scope
only for relatively simpler problems.

In order to overcome the shortcomings of the analytical techniques, numerical ap-
proaches are adopted. Among various numerical methods, though FEM is a very
versatile tool in solving structural problems, sometimes other non-FEM based com-
putational techniques do appear to be economical and easier. This is quite ap-
parent while dealing with beam problems involving both geometric and material
non-linearity. Some of the non-FEM based numerical research work are indicated
here . For a comprehensive review and performance of various pertinent numerical
methods, the seminal work of Dong, Alotaibi, Mohiuddine and Atluri (2014) may
be consulted. Wang (1969) solved the flexible beam problem under uniformly dis-
tributed load by employing the Newton Raphson root finding scheme and numerical
integration. Holden (1972) used RK4 method coupled with iterative numerical inte-
gration scheme of Simpson to solve for finite deflection profile and critical buckling
load of flexible beam-columns, under uniformly distributed lateral and axial loads.
Lewis and Monasa (1981) considered Ludwick type material property for a can-
tilever undergoing large deflection when acted upon by a vertical concentrated load
at its free end. They solved the problem by using RK4 method and iterative nu-
merical integration. Lee, Wilson and Oh (1993) investigated the elastica problem
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by considering the cantilever to be non-prismatic under combined loading. They
solved the problem by coupling Runge-Kutta and Regula-Falsi methods. Wang
(1987) solved the flexible inclined cantilever under end load by utilizing perturba-
tion and numerical integration scheme. Nallathambi, Rao and Srinivasan (2010)
solved the large deflection of elastic curved beam under tip concentrated follower
load problem by iterative shooting method.

Since plastic deformation is common in various engineering applications when a
beam bends by a finite amount, a study towards its understanding and implemen-
tation is important. Yu and Johnson (1982) coined the terminology ’plastica’ in-
dicating an extension of the closed form elastica theory to incorporate plasticity.
He solved the plastica: a cantilever under conservative compressive force using
the perturbation technique and numerical integration. Subsequent to this, Xiao-
qiang and Tongxi (1986) analyzed the entire process of plastic deformation using
the plastica theory. For a horizontal beam under vertical tip force they presented
numerical solution to unloading process in plastically deformed region.

Using the plastica theory Feng and Tong-xi (1991) studied the influence of end
angle of tip load under the assumption of monotonic plastic loading conditions.
Huang, Yu, Lu and Lippmann (2003) approached the air bending problem of sheet
metal forming by using a completely numerical technique coined as mass spring fi-
nite difference model. It is an efficient incremental method based on iterative finite
difference scheme. They incorporated the unloading process also in the plastically
deformed domain in the formulation. The authors prescribed the end movement
and end rotation of the elasto-plastic beam. However, the problem of predefined
load application path at an intermediate point of a beam instead of at its ends, may
also be of interest. For example, in metal forming process a punch descends down
centrally on a symmetrically placed metal sheet over a die. The overhang region of
the sheet is drawn into the die region as the deformation process progresses. The
cantilever idealization of this problem leads to vertical predefined locus of force
application point. Depending on this predefined path, numerous potentially im-
portant results may be obtained for complete elasto plastic deformation process.
Large deflection, elasto-plastic deformation and contact; all bring in non-linearity
to a beam deflection problem. In contact problems involving a beam and a rigid
surface, the point of application of contact force on the beam keeps changing in an
implicit manner. In order to simplify the analysis, a guess curve in space instead of
the locus of actual point of contact, may serve the purpose of explicit approximate
solution. A guess curve rendered solution may also be used as the trial solution
for a fully implicit algorithm which may reduce the computational cost in terms of
number of iterations. In structural softening non-linear problems, implicit formula-
tion becomes complicated owing to requirement of sophisticated strategy of tracing
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the equilibrium path. Results from explicit methodology such as the one described
here, may serve as fair approximate solution in those cases.

The objective of the current work is to present a general approach to solve explicitly
problems in which force is applied along an arbitrarily defined path. For example in
three point bending case when support radius is of considerable dimension, the con-
tact point moves towards the loading agency along the roller surface in an implicit
manner. This has a stiffening effect in the force v.s. central deflection response.
A simple guess path simulating this effect is clearly of interest from simplicity in
formulation point of view.

The problem involves both material and geometric non-linearity. Such a problem
is referred to, in this paper, as space constrained force problem (SCFP), see Fig.
1. The method formulated is such that one should be able to use it to handle non-
monotonic loading directly.

F2

F0

F1

Pre-defined Force 

Application Point Locus

x

y 

Figure 1: A typical space constrained force problem depiction

The approach is based on an incremental formulation coupled with RK4 solver.
The discussed formulation is a direct and easily implementable method of solving
non-linear structural problems which renders explicit solution, Bathe and Bolourchi
(1979). In SCFP we obtain non-linear differential equation governing the response
of the structure. This equation is solved for the incremental kinetic and kinematic
quantities at each such time steps for a given increment of load or displacement. In
this incremental formulation, the reference configuration for a given step is taken
to be that of the equilibrated configuration of the previous step. Based on this
approach an example problem is explicitly solved , see Fig. 2. Here, we considered
a horizontal cantilever with load acting on it at an intermediate point in such a
way that the locus of point of application of the force remained at an inclination
of θ with the vertical while the force direction was kept normal to the deformed
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axis of the beam. One of the practical applications of SCFP when θ = 0 can be
found in sheet metal forming processes as can be seen in Kalpakjian, Schmid and
Kok (2008) where a vertically descending punch is positioned symmetrically with
respect to a die on which the sheet is placed horizontally. The method is simple
to formulate, easy to implement in computationally less intensive facility. This is
what is desirable in a press brake control system where faster results are sought
with minimal iterations .

The general formulation of SCFP is explained in section 2. In section 3, the nu-
merical technique for the governing differential equation with appropriate bound-
ary conditions for the example SCFP is described. The validation of results with
published literature and three point bend experiment is presented in section 4.1.
The effect of inclination (clockwise and anti-clockwise) of FAP loci in force re-
sponse is discussed in section 4.2. In section 4.3, the origin and significance of a
non-dimensional parameter is described. The non-monotonic loading response for
various inclinations of FAP loci is presented in section 4.4.

2 Problem Formulation

A straight prismatic cantilever beam under an arbitrarily defined locus of force
application point (FAP) is shown in Fig. 1. In a particular SCFP, see Fig. 2, the
locus is an inclined straight line making an angle θ with the vertical. The follower
force is kept perpendicular to the deformed axis of the beam. This force in general
could be conservative or follower in other ways too.

For an Euler-Bernoulli1 beam the kinematic condition is given by :

κ = κ(x, t) =
w′′

{1+(w′)2} 3
2

w = w(x, t)
(1)

A general rate independent constitutive law, governing the moment and curvature
relationship may be expressed as:

D =
dM
dκ

(2)

In Eq. (2), D is the flexural rigidity of the structure. Clearly in the linear elastic case
it is a constant and is given by EI. In a non-linear elastic case it could be a function
of curvature (κ) given by the slope of moment curvature relationship. However in
the elasto-plastic case, for plastic loading, it is the slope of moment curvature curve

1 thin beam formulation within small strain framework leading to moderately large curvature is
considered
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Figure 2: Cantilever for linear inclined FAP locus

and in all other cases of linear elastic loading or unloading, it is a constant and is
given by EI. The kinetic relationship in a general case is given by :

M = M(x, t) (3)

Combining the kinematic condition, constitutive law and the kinetics and then com-
paring the coefficient of dt, the governing non-linear differential equation for beam
deflection is obtained as :

∂M
∂ t

= D
∂κ

∂ t
(4)

When the deformation process is quasi static under end displacement controlled
loading, the quantities at any time t may be equivalently considered to be functions
of δ (t) instead. Hence the temporal integration of Eq. 4 over a small time step of
∆t can be conveniently written as :

∆M = D∆κ (5)

In which: ∆(.)t =
∂ (.)
∂ t |t∆t = ∂ (.)

∂δ
|δ (t)∆δ .

Eq. 5 is the linear incremental governing differential equation with increment in
displacement w at any x as the primary dependent variable, for the step from time
instant t to t +∆t.
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3 Methodology for Numerical Solution

The solution methodology can be efficiently explained with the help of an example
problem as shown in Fig. 2. In this particular case the eq. 3 is given by:

M = Fcosψ (l− x)+Fsinψ (δ −w) (6)

In which l = l0−δ tanθ

Subsequently, the governing incremental differential equation after non-dimensiona-
lization is given by:

α∆w̄′′−β∆w̄′+ γ∆w̄ = A∆F̄ +B∆ψ +C∆δ̄ (7)

Where

∆((.)′′) = (∆(.))′′, ∆((.)′) = (∆(.))′, α =
1

{1+(w̄′)2} 3
2
, β =

3w̄′′ w̄′

{1+(w̄′)2} 5
2

γ =
F̄
D̄

sinψ, A =
1
D̄
{(x̄max− x̄)cosψ +(δ̄ − w̄)sinψ}

B =
F̄
D̄
{(δ̄ − w̄)cosψ− (x̄max− x̄)sinψ}, C =

F̄
D̄
(sinψ− cosψ tanθ)

x̄max = 1− δ̄ tanθ , w̄′ = w′, w̄′′ = l0w′′, F̄ =
Fl2

0
EI

, D̄ =
D
EI

,

δ̄ =
δ

l0
, x̄ =

x
l0
, w̄ =

w
l0

The boundary conditions for the equation is given by:

∆w̄|x̄=0 = 0, ∆w̄′|x̄=0 = 0, ∆w̄|x̄=x̄max = ∆δ̄ , ∆w̄′|x̄=x̄max = sec2
ψ∆ψ (8)

In order to efficiently solve Eq. 7, it is decomposed into three IVPs, defined as:

∆w̄ = v1 ∆F̄ + v2 ∆ψ + v3 ∆δ̄ (9)

In which

α v1
′′−β v1

′+ γ v1 = A (10)

α v2
′′−β v2

′+ γ v2 = B (11)

α v3
′′−β v3

′+ γ v3 =C (12)
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With the initial conditions given by:

vi|x̄=0 = 0, v′i|x̄=0 = 0; i = 1,2,3 (13)

Eq.s 10-12 are solved by using RK4 method in which α , β , γ , A, B and C are
evaluated based on previous step. Clearly for the very first step, the displacement
field is considered to be trivial and the entire beam is assumed to be in linear elastic
state . The conditions specified at x̄ = x̄max, in the Eq. (8) is invoked to evaluate
increment in end angle ∆ψ and increment in non-dimensional force ∆F̄ from Eqs.
(14) and (15) which are obtained from (9) and its space derivative:

v1|x̄max∆F̄ + v2|x̄max∆ψ = (1− v3|x̄max)∆δ̄ (14)

v′1|x̄max∆F̄ +(v′2|x̄max− sec2
ψ)∆ψ =−v′3|x̄max∆δ̄ (15)

Subsequently, the increment in displacement (Eq. 9) and its derivatives are evalu-
ated. Followed by this , the displacement field is updated and α and β evaluated.
Then the increment in curvature (normalized w.r.t l0) is computed from:

∆κ̄ = α∆w̄′′−β∆w̄′ (16)

With increment in curvature as basic input to a constitutive module along with
known state variables pertaining to the previous step, the tangent flexural rigidity
D̄ is obtained. In the present paper we discuss an elasto-perfectly plastic uniaxial
stress strain case with isotropic hardening moment curvature law for a rectangular
beam section as shown in Fig.3. The state variables are bending moment, yield mo-
ment, curvature and plastic curvature. The yield moment can increase and plastic
curvature change possible only when plastic deformation takes place. Employing
return mapping algorithm , increment in state variables are computed along with
the D̄. Subsequent to invocation of constitutive module, γ , A, B and C are evaluated
and the process is continued till the final displacement δ̄ |tmax is reached.

The solution of this methodology reduces to the three point bending problem by
considering θ = 0 and assuming negligible roller diameter. In the three point bend-
ing problem, the normalized central force R̄ is given by:

R̄ =
RL2

EI
= 8F̄cosψ (17)

Where L = 2l0 is the total span of beam under non zero bending moment.
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Figure 3: Normalized moment vs. curvature relationship for rectangular cross-
section elasto-perfectly plastic beam

4 Results and Discussions

In section 4.1, the validation of the incremental formulation is tested against pub-
lished literature and experimental outcomes is presented. In section 4.2, the role of
inclination angle θ on the reactive force response is discussed. A non-dimensional
quantity governing and influencing the responses of SCFP is defined in section 4.3.
The unloading response for plastically deformed cases with different inclinations
is discussed in the following section.

4.1 Validation

To validate the accuracy of the method in prediction of the deformed profile of
a thin beam, the linear elastic cantilever result is compared with published result
of Nallathambi, Rao and Srinivasan (2010). In the present way of analysis (in-
cremental) the following inputs are supplied: the end vertical displacement of the
cantilever and the horizontal projection of the deformed beam. The outputs are the
profile as shown in Fig. 4.1 and the reactive force. The reactive force is found to
be 7.6 kN and the profiles are seen to be in excellent agreement.

In quasi static structural problems, instability onset may be defined as the point
beyond which the slope of load-displacement curve becomes negative. In this spirit
the capability of the method in predicting the onset of instability and beyond is
tested by comparing its result with experimental outcome of a three point bend test.
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Figure 4: Validation of the incremental method with literature Nallathambi, Rao
and Srinivasan (2010)

A three point bend test under displacement control loading (see Fig. 5) is performed
on a thin tempered steel sheet on a Servo Hydraulic testing machine from BISS with
a maximum capacity of 15 kN and least count of 0.01 N. The support rollers used
have diameter of 10 mm. Samples in the form of rectangular strips are used for the
bending test. The dimensions of the samples used are 300 mm in length and 20 mm
in width with 0.25 mm and 0.3 mm in thickness (for two kinds of samples). Two
samples each of 0.25 mm and 0.3 mm thicknesses are tested. The center to center
distance between the support rollers is maintained at 98.87 mm. The punch is used
to apply load centrally to the samples.

The samples are tested at two cross-head speeds: 1 and 2 mm/min and the responses
are found to be independent of loading rates. After complete removal of the load
the samples came back to their original shapes and sizes that concluded elastic
loading process. The output of the experiment is obtained in the form of load vs.
displacement plots. Since the samples slipped between the support rollers as the
central deflection increased, the distance between the points of contact of sample to
the roller decreased from 98.87 mm to the limiting minimum of 88.87 mm (10 mm
is the roller diameter which is deducted from 98.87 mm) when the overhangs could
have become almost vertical. These two extreme lengths are considered for nor-
malization of the load-displacement data. The averaged normalized experimental
data is presented in Fig. 6 along with the current incremental formulation predic-
tion, for validation. In the equations, friction is not considered and hence it may be
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Figure 5: Schematic diagram of the experimental set up

postulated the reason for experimental result to show more stiffness as compared
to the incremental results, see Theocaris et al Theocaris, Paipetis and Paolinelis
(1977) for details.

4.2 Role of inclination of FAP locus

Depending on the clockwise or anticlockwise sense of θ , the force response varies
significantly. If the sense is clockwise then it has a stiffening effect much akin
to that of presence of friction see Theocaris, Paipetis and Paolinelis (1977) and is
shown in Fig. 7, for elastic deformation. The corresponding bend profiles along
with the FAP loci are presented in Fig. 8. Beyond the intersection points of the
beams with the corresponding dotted FAP line, the beams may be assumed to be
straight with the slope as that at the respective intersections.

4.3 Role of Elastica Parameter: ζ

2 The bending moment in the beam may be normalized in two ways, viz. with
respect to EI

l0
and My.

2 ζ is very much the same quantity as first pointed out by Yu et al Yu and Johnson (1982) in describ-
ing the elastic parameter
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Figure 6: Validity of instability prediction in three point bending of elastic beam
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Figure 7: Normalized force vs. free end displacement in elastic case

Let :

M̄ =
Ml0
EI

; M∗ =
M
My

(18)

The relation between these two normalized bending moments for the case is given
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Figure 8: Deflected beam profile for various FAP loci

by:

M̄ = (
Myl0
EI

)M∗ (19)

And hence the elastica parameter is defined as:

ζ =
Myl0
EI

(20)

In the Fig. 9, for θ = 0 the bending moment response for various ζ is presented.
In a completely elastic bending process the maximum M̄ is seen to be 1.43. This
is obtained by solving the elastica SCFP with θ = 0. On the other hand, maximum
M∗ within elastic limit is 1. Hence, the limiting ζl = 1.43 when both the maximums
are reached simultaneously. When ζ > ζl the bending will entirely be elastic, and
the response will be that of elastica. However when ζ < ζl , the response curve
will separate out from the elastica response at M̄ = ζ , which follows from Eq. 19.
It may be noted here that ζl is the maximum bending moment (M̄) of the SCFP
elastica solution and hence will be a function of θ or in a more general situation,
on the path of FAP locus. This limiting elastica parameter subsequently may be
used for design optimization.

4.4 Non-monotonic Loading Response

In Fig. 10 the force displacement response for identical final displacement and ζ

is presented for three different inclination of FAP locus. The ζ (= 0.67) is chosen
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arbitrarily which ensured plastic deformation for all the three cases of θ .

In order to understand the influence of path of FAP (here θ ) in inducing plastic
deformation, a quantity η is defined as :

η(θ) =
ζl(θ)−ζ

ζl(θ)
(21)

Where 0≤ ζ ≤ ζl(θ)
As increasing θ has a stiffening effect to F̄ as seen from Fig. 7, similar trend can
be expected for M̄. And since ζl is equal to the maximum of M̄ for a given θ , it is
intuitive to perceive that ζl(θ) increases with increase in θ .

From this understanding and considering Eq. 21, it may be postulated that an higher
η will lead to larger plastic deformation as can be confirmed from Fig. 10. It can
be seen that for θ = −0.3 the plastic deformation is least. And for the most stiff
case i.e. when θ = 0.3, tensile or normally outward force is developed at the FAP.

5 Conclusion

A class of problems where the FAP is constrained to move in an arbitrarily pre-
defined locus may be solved efficiently using the method proposed in this paper.
The condition of FAP locus being a straight line, but inclined with the vertical, is
solved here. The complexity of this problem arises from the inclusion of material
and geometric non-linearity. Analytical solution to such problems when the ma-
terial is elasto-plastic is difficult to obtain. In this paper, an incremental method
is employed to solve the governing differential equation. Local elastic unloading
which may occur in large deflection problems is naturally incorporated in the for-
mulation. A non-dimensional parameter depending on both material and geometry
is obtained here via the process of normalization of bending moment by two dif-
ferent ways. This parameter is seen to govern the fixed end moment versus end
displacement response in an elasto-plastic case. It precisely defines the point on
the elastic response curve where the elasto-plastic curve branches out.

The algorithm presented here, is based on displacement controlled loading. How-
ever, owing to the versatile structure of the algorithm, the controlling exciter may
easily be interchanged to load or end angle (ψ). It is suitable for problems involv-
ing material and/or structural softening. While elliptic integral solutions are always
end slope controlled, the method proposed in this paper may be used to explic-
itly obtain the responses based on other exciter as well. The effect of friction can
also be incorporated easily into the governing equation without changing the basic
algorithm structure.
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