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Impact Response of Stiffened Cylindrical Shells
With/without Holes Based on Equivalent Model of Isogrid

Structures
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Abstract: An equivalent continuum model of an isogrid structure is utilized to
analyze the impact response of isogrid structures and stiffened structures. The pa-
rameters of the equivalent model are determined, and the comparison between the
equivalent continuous structure and the real grid structure are examined to validate
the reliability of the equivalent model. Then, the impact responses of stiffened
cylindrical shells with and without an elliptical hole are investigated by using the
equivalent model of grid structures. For a different location and geometry of the el-
liptical hole, the deformation and load-bearing capacity of the grid-stiffened cylin-
drical shells are studied. The numerical results indicate that the present equivalent
model can be applied effectively in simulation for the impact behavior of the grid
and stiffened structures. This work provides a comprehensive understanding for
the impact performance of the complicated stiffened cylindrical shells.

Keywords: impact response, isogrid structures, equivalent model, stiffened cylin-
der, load-bearing capability.

1 Introduction

Lightweight grid-stiffened structures have a good energy absorption capacity, high
load-bearing capacity, high specific strength and specific stiffness. These struc-
tures can be applied in many engineering fields, such as rocket interstages, pay-
load adapters for spacecraft launchers, fuselage components for aerial vehicles,
and components of the deployable space antennas [Vasiliev and Razin (2006);
Bakhvalov, Petrokovsky, Polynovsky and Rasin (2009)]. A review on the design
and fabrication techniques of the grid structures has been given by Vasiliev, Barynin

1 Department of Engineering Mechanics, Beijing University of Technology, Beijing 100124, China.
2 Corresponding author. Tel & Fax: 86-10-67396333; E-mail: qsyang@bjut.edu.cn
3 College of Civil Engineering and Architecture, Hebei University, Baoding 071002, China.
4 Equipment Department, Army Aviation Institute of PLA, Beijing 101123, China.



58 Copyright © 2015 Tech Science Press CMC, vol.45, no.1, pp.57-74, 2015

and Razin (2012, 2001) Commercial and military aircraft usually undergo impact
load in a specific situation, and may produce important safety issues. To understand
the buckling phenomena and energy absorption capability of these structures under
an impact load, many researchers have been devoting themselves to the study of
impact performance. Han, Liu and Li (2004) presented an efficient hybrid numer-
ical method for investigating transient response of crossply laminated axisymmet-
ric cylinders subjected to an impact load. Adachi, Tomiyama, Araki and Yamaji
(2008) found that the rib stiffness appropriately spaced in a cylinder can absorb
a large amount of energy with a short crushing deformation. Morozov, Lopatin
and Nesterov (2011) developed analytical and numerical methods to investigate the
buckling behavior of anisogrid cylindrical shells under axial compression, trans-
verse bending, pure bending and torsion. Totaro (2012) presented a refined analyt-
ical model for the local buckling modes of anisogrid cylindrical shells with regular
triangular cells. Rahimi, Zandi and Rasouli (2013) showed that the rib stiffening of
the shells could generally enhance the buckling load.

Moreover, the application of various stringers and rings in composite cylindrical
shells and their impact behavior has been studied by Poorveis (2006). The ef-
fects of helical ribs and grid types on the buckling of thin-walled GFRP stiffened
cylindrical shells under axial load were studied by Yazdani and Rahimi (2010).
Using new development of multi-material formulation and fluid structure interac-
tion developed in LSDYNA, Souli and Gabrys (2012) presented an experimental
and numerical investigation of bird impact on radome. The dynamic response,
energy absorption capability, deformation and failure of clamped aluminum face-
sheet cylindrical sandwich shells with closed-cell aluminum foam cores were in-
vestigated by Jing, Xi, Wang and Zhao (2013) In particular, several examples of the
local buckling model for periodic lattice structures without skin were presented by
Fan, Jin and Fang (2009); Totaro (2013).

Furthermore, Rajendran and Grove (2002) presented detailed computational analy-
ses investigating the ability of constitutive relationships to describe the response of
a 99.5% pure alumina (AD995) subjected to a wide range of stress/strain loading
states. Ghavami and Khedmati (2006) investigated the compression behavior and
the dynamic response of stiffened plates. Oshiro and Alves (2007) simulated the re-
sponses of a cylindrical shell under axial impact to explore the correction procedure
for scaled models. Zhang, Xue, Chen and Fang (2009) studied the deformation and
failure mechanisms of lattice cylindrical shells under axial load by using the finite
element software ABAQUS. Djeukou and von Estorff (2009) used a third-order
shear deformation theory to deal the response of rectangular composite plates with
low-velocity impact. Yazdani, Rahimi, Khatibi and Hamzeh (2009) conducted a
series of experiments to study the buckling behavior of composite stiffened cylin-
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drical shells under axial load. Teter (2011) developed the finite element method
and experimental method to examine the dynamic buckling behavior of a stiffened
plate structure.

In addition, based on the experimental method and numerical simulation, the me-
chanical properties of the cylindrical shells with defects have been studied. Rahimi
and Rasouli (2011) used a finite element method to study the effect of hole de-
fects on the buckling of composite isogrid stiffened shells under axial load. Cheng,
Altenhof and Li (2006) experimentally investigated the crush characteristics and
energy absorption capacity of AA6061-T6 aluminum alloy extrusions with cen-
trally located through-hole discontinuities. Chen and Ozaki (2009) proposed an
approximate method for the tensile and bending stress concentrations of the hexag-
onal honeycomb with a single defect and examined the interaction between the two
defects.

The discrete model and equivalent model are usually adopted for the design and
mechanical analysis of grid structures. Although the discrete method has been
widely used for modeling the mechanical behavior of the large grid structure, the
ribs are commonly modeled by using beam elements, thus the complexity of the
structure requires large computation consumption. As an alternative approach, the
equivalent continuum model is a relatively simple and efficient analytical method.
Many studies have been performed to develop the equivalent model of the grid
structures. In this case, the grid structure is equivalent to a continuous solid struc-
ture with a homogenized stiffness. Many studies have been performed to assess the
buckling strength of lattice shells by using equivalent models [Buragohain and Vel-
murugan (2009); Velmurugan and Buragohain (2007)]. Based on the assessment
of static equilibrium and deformation relations of the representative unit cell, the
elastic constitutive relations and failure criterion of planar lattice composites were
established [Zhang, Fan and Fang (2008)]. Totaro and Gurdal (2009) conducted
the optimal design of lattice shells subjected to axial compressive loads by using
the continuum model. Cui, Zhang, Zhao, Lu and Fang (2010) developed an equiv-
alent model to analytically calculate the specific stress fields of the triangular and
Kagome lattices with a single-bar defect by using the principle of superposition and
a stripe method. Taking into account the geometric and mechanical properties of
the coated corrugated panel, an analytical homogenization model was proposed by
Dayyani, Friswell, Ziaei-Rad and Flores (2013). An equivalent monocoque shell
theory was developed by Sun, Fan, Zhou and Fang (2013) to predict the mechanical
behavior of the quasi-isotropic sandwich cylinder, including the deformation and
the multi-mode failure criterion.

In this paper, an equivalent method is presented to study the impact response of iso-
grid cylinders and isogrid-stiffened cylinders. The isogrid cylinder is modeled as an
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equivalent continuous cylinder with the effective density, modulus and thickness.
To investigate the effective properties, different aspects of the isogrid structure that
include impact speed, relative density and relative thickness are examined in this
paper. Through the analysis of the equivalent performance of the grid structure, a
stiffened cylindrical structure can be treated as a continuum shell. The effects of
shell thickness and the cross section shape of the ribs on the equivalent performance
are discussed. Then, the equivalent model is used to analyze the load-bearing ca-
pacity of the isogrid-stiffened cylindrical shells with and without an elliptical hole.
Based on the equivalent model, the load-bearing capacity of cylindrical shell struc-
tures is numerically studied by using the finite element method. The numerical
results show that a reasonable equivalence of the grid structure can reduce the com-
putational cost and provide a convenient approach to study the mechanical proper-
ties and impact behavior of more complicated grid-stiffened structures.

2 Equivalent model of isogrid structure

The equilateral triangle grid (isogrid) structure can be treated as a transversely
isotropic elastic body. Based on the equivalence model, the effective material pa-
rameters such as effective density, elastic modulus and Poisson’s ratio can be de-
termined. These material parameters were used to build the equivalent continuum
cylinder model. For an equilateral triangle grid (isogrid) structure, the transversely
isotropic constitutive relation can be written as:
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where σi j and εi j are the stress and strain, respectively; E∗i and G∗i j are the effective
elastic modulus and shear modulus in the principal axis direction, respectively; and
ν∗i j is the effective Poisson’s ratio.

As shown in Fig. 1, because two unit cells share one rib, the mass of the triangle
frame can be expressed as 3ρsT bL

/
2. After equivalence, the mass of the triangle

plate can be expressed as ρ∗bLLsin60o
/

2. After equivalence the mass remains
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Fig. 1 Schematic of a triangle unit cell, (a) rib diagram, (b) force diagram, (c) deformation diagram 
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where 
is the effective density of the triangle; s is the density of the wall material; T is the width of 

the rib; b is the height of the rib; and L is the side length of the triangle. 
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The geometric compatibility of the deformed configuration of the unit cell, as shown in Fig. 1 (c), leads to 
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Ignoring the high-order terms, Eq. (6) can be rewritten as 
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Figure 1: Schematic of a triangle unit cell, (a) rib diagram, (b) force diagram, (c)
deformation diagram.

where ρ∗ is the effective density of the triangle; ρs is the density of the wall mate-
rial; T is the width of the rib; b is the height of the rib; and L is the side length of
the triangle.

Because the triangle grid is a stretching-dominated structure, each bar of the unit
cell can be simplified as a two-force bar subjected to tension or compression. As
shown in Figure 1 (b), the equilibrium equations of internal forces Ni (i = 1,2,3)
of the bar of the cell is

sin60◦N1 + sin60◦N2 = σ22Lb (3)

cos60◦N1 +N3 = cos60◦N2 +N3 = 0 (4)

where σ22 is the traction of the triangle unit cell in the x2 direction. Thus,
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The geometric compatibility of the deformed configuration of the unit cell, as
shown in Fig. 1 (c), leads to(
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Ignoring the high-order terms, Eq. (6) can be rewritten as

−∆L3 +2
√

3∆H = 4∆L1 (7)



62 Copyright © 2015 Tech Science Press CMC, vol.45, no.1, pp.57-74, 2015

The effective strain of the unit cell is defined by

ε11 =−
∆L3

L
, ε22 =

2∆H√
3L

(8)

where ∆L1 and ∆L3 are the deformation of bar 1 and bar 3 and ∆H is the dimen-
sional change in the x2 direction. The extension of each bar is readily given as

∆Li =
NiL

EsT b
(9)

Substituting Eqs. (5) and (7) into (9), the effective elastic modulus E∗2 and Poisson’s
ratio ν∗21 of the unit cell can be derived as
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The triangle unit cell is assumed to be transversely isotropic material, and the in-
plane elastic parameters have the relations E∗1 = E∗2 and ν∗12 = ν∗21. The in-plane
shear modulus can be obtained as

G∗12
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8
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To determine the elastic stiffness matrix, E∗3 , ν∗13, and G∗13 need to be solved. It is as-
sumed that along the x3 (out-of-plane) direction, the stress is uniformly distributed
within the cell wall. Thus,

E∗3 = ρEs (12)

In the x3 direction, because the internal stress of the cell wall is uniform and equal,
the effective Poisson’s ratio ν∗13 is identical to that of the solid material of the unit
cell, i.e.,

ν
∗
13 = νs (13)

According to the reciprocal relations, we have

ν
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Based on the principle of minimum potential energy, the upper and lower bounds
of the shear modulus in the out-of-plane region are identical, and the shear modulus
can be obtained as:

G∗13 =
1
2

ρGs (15)
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3 Model validation: impact response of isogrid structure

To verify the validity of the equivalent continuum model, the impact response of an
isogrid cylinder subjected to lateral impact load is considered in this section. The
finite element model of an isogrid cylinder and its equivalent continuous model are
shown in Fig. 2. The cylinder has a height L1=272 mm, radius R=100 mm and
radial thickness T1. The equilateral triangles unit cell has a side length L2=15.7
mm, height H=13.6 mm and cell wall thickness T2. The number of triangles that
are circumferential and axial is 40 and 20, respectively. The cylinder was fully
fixed at the upper and lower ends and was subjected to a local side impact by a
rigid sphere. The radius of the sphere is 30 mm. The sphere’s initial position in the
radium direction away from the cylinder center is X1=200 mm and Y1 = L1/2.

In the finite element simulation, the bar of the triangle unit cell of the grid cylinder
was modeled by a beam element. Each bar of the triangle unit cell was divided into
10 beam elements. The whole isogrid cylinder has 24,400 elements. The equivalent
continuous solid cylinder was modeled by a shell element. The rigid sphere was
modeled by a solid element. The material density of the grid is 2700 kg/m3. The
elastic modulus and Poisson’s ratio of the grid are 69 GPa and 0.3, respectively.
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Fig. 2 Isogrid cylinder and its equivalent continuous model 
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Figure 2: Isogrid cylinder and its equivalent continuous model.

The comparison of internal energy and hourglass energy between the grid cylinder
and the equivalent continuous cylinder is shown in Fig. 3, where C denotes the
continuous cylinder and G denotes the grid cylinder. It is shown that the result of
the equivalent continuous model agrees well with that of the original grid cylin-
der. In entire process of impact, the total energy maintains conservation, and the
proportion of hourglass energy is smaller than the required 5% of the total energy.

The deformation and energy absorption are the main factors to evaluate the impact
resistance capacity of a structure. For different impact velocities, the displacements
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of the grid structures and the equivalent continuous cylinders are shown in Fig. 4.
The deformation of the continuous cylinder is slightly larger than that of the isogrid
cylinder for different impact velocities.

A comparison of the energy absorption for the two structures is shown in Fig. 5,
where I is internal energy, K is kinetic energy, and T is total energy. I/T denotes
the ratio of internal energy and total energy, K/T denotes the ratio of kinetic en-
ergy and total energy. The energy absorption ratios are consistent with each other
for two types of structures. In the two structures, I/T increases and K/T decreases
as the impact progresses. At last, all of the impact energy is absorbed. However,
the energy absorption of the equivalent continuous cylinder is greater than that of
the grid cylinder. For a strain of less than 50%, the internal energy conversion rate
of the equivalent structure is smaller than that of the grid structure. For a strain that
is larger than 50%, the internal energy conversion rate of the grid structure is sig-
nificantly lower. In this case, the internal energy conversion rate of the equivalent
structure remains unchanged.

 8 

continuous cylinders are shown in Fig. 4. The deformation of the continuous cylinder is slightly larger than 

that of the isogrid cylinder for different impact velocities.  

A comparison of the energy absorption for the two structures is shown in Fig. 5, where I is internal energy, 

K is kinetic energy, and T is total energy. I/T denotes the ratio of internal energy and total energy, K/T 

denotes the ratio of kinetic energy and total energy. The energy absorption ratios are consistent with each 

other for two types of structures. In the two structures, I/T increases and K/T decreases as the impact 

progresses. At last, all of the impact energy is absorbed. However, the energy absorption of the equivalent 

continuous cylinder is greater than that of the grid cylinder. For a strain of less than 50%, the internal 

energy conversion rate of the equivalent structure is smaller than that of the grid structure. For a strain that 

is larger than 50%, the internal energy conversion rate of the grid structure is significantly lower. In this 

case, the internal energy conversion rate of the equivalent structure remains unchanged.  

-1 0 1 2 3 4 5 6 7 8 9 10 11
-20

0

20

40

60

80

100

120

140

E
n
er

g
y
 (

J)

Time (ms)

  G- internal energy 

  G- hourglass energ

  C- internal energy

  C- hourglass energ

 

Fig. 3 Variations of internal energy and hourglass energy versus time Figure 3: Variations of internal energy and hourglass energy versus time.

4 Impact behavior of grid-stiffened cylindrical shells

Stiffened cylindrical shells consist of the skin and ribs. The equivalent continuous
structure of the isogrid structure is used to study the impact performance of the
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Figure 4: Displacement of isogrid and continuous structures under different veloc-
ities.

Figure 5: Energy absorption of isogrid and continuous structures (V =30 m/s).
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stiffened cylindrical shell. The ribs are transformed to a solid continuous shell.
Thus, the stiffened cylindrical shell is transformed to a laminated solid shell, as
shown in Fig. 6. The cylinder has a height L1=200 mm and diameter R=58 mm.
The skin and ribs are an elastoplastic material with a density of 2700 kg/m3, an
elastic modulus of 69 GPa, a Poisson’s ratio of 0.3 and a yield stress of 76 MPa. For
the comparison, the stiffened shell and equivalent shell are analyzed, respectively.
The element Shell163 for the smooth shell and element Beam161 for the ribs are
used.
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Fig. 6 Equivalency of stiffened cylindrical shell 
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Fig. 7 Deformation of the real and equivalent structures 
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Figure 6: Equivalency of stiffened cylindrical shell.

The impact deformation is shown in Fig. 7. As seen here, the deformation trends of
the equivalent model and real shell structure are basically the same. However, the
deformation of the equivalent model is greater than that of the real stiffened shell
structure.

The relations between the deformation and thickness ratio H1/H2 is shown in Fig.
8, where H1 is the thickness of the skin and H2 is the thickness of the ribs. It can be
seen that for the large thickness of the skin, the deformation of the equivalent model
is closer to that of the real structure. For the large thickness ratio, the relatively
small differences can be induced by the equivalency. In fact, the large thickness
ratio of the shell means the skins dominates the mechanical behavior of the stiffened
shell. It is noted that the deformation of the shell with a large thickness ratio will
trend to a constant value, i.e., the deformation of a smooth shell.

The energy absorption capability of the structure is shown in Fig. 9. Because of
the equivalency of the rib, a slight difference in the energy absorption capability
between the equivalent and real structures can be found. The energy absorption
capacity of the rib option in an equivalent model is less than that in a real shell
structure. It is shown that the deformation of the equivalent model is greater than
the deformation of the real shell structure. This implies that the equivalency leads
to a decrease in the energy absorption ability of the ribs and an increase in the
energy absorption ability of the skin option.
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Figure 7: Deformation of the real and equivalent structures.

Figure 8: Relations between deformation and relative thickness.
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Figure 9: Energy absorption capability of stiffened shell.

5 Impact resistance of grid-stiffened cylindrical shell with a hole

The grid-stiffened cylindrical shell with holes has been widely used in many prac-
tical engineering fields. When the structure is subjected to external loads, the exis-
tence of the hole results in serious stress concentration, which leads to a reduction
in the load-carrying capacity of the structure. As a result, the impact resistance and
stability of the cylindrical shell are also greatly affected. To simplify the study, the
equivalent model is used to investigate the mechanical behavior of the cylindrical
shell with an elliptical hole. The dimensions of the cylindrical shell are the same as
the previous example. As shown in Fig. 10, the distance of the elliptical hole from
the bottom of the shell is L0, and the length of the major axis and minor axis is a
and b, respectively.

The relations between the mean impact force and deformation for L0
/

L=0.5 of the
structure with an elliptical hole for different a/b (0.285, 1, 4.422) are shown in Fig.
11. Under axial impact load, no matter how the holes shape changes, the mean
impact force of the shell with a hole is less than that of the shell without a hole.

The relations between the load-bearing capacity and shape of the elliptical hole are
shown in Fig. 12. With an increase in the ratio of major axis to minor axis, the
maximum load-bearing capacity and the mean load-bearing capacity of the cylin-
drical shell are approximately linear. Under the axial impact load, axial buckling of
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Fig. 11 Relations between mean impact force and deformation for different shapes of hole 
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Figure 10: Schematic of stiffened cylindrical shell with an elliptical hole.
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shapes of hole.
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the cylindrical shell is the main factor that influences the load-bearing capacity. For
the smaller ratio of major to minor axes, the buckling of the stiffened cylindrical
shell is impeded by an elongated hole along the direction of impact. Therefore, the
impact resistance and load-bearing capacity of the structure is enhanced.

Figure 12: Relations between load-bearing capacity and hole shape.

Figure 13: Relations between mean impact force and deformation for different
locations of the hole.
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For an a/bof 0.285 and different locations of an elliptical hole, the curves of mean
impact force and deformation are shown in Fig. 13. In the initial stage, the peak of
the curves is slightly different. With an increase in L0, the mean forces are closer
to the result of the cylinder without the hole. This means that there is a limited
influence of the hole because the hole is located near the impacted end.

6 Conclusions

In this paper, the isogrid structure is modeled as a continuous solid with a ho-
mogenized stiffness. The equivalent continuum model provides a relatively simple
and efficient analytical method. The accuracy of the equivalent model was veri-
fied by using numerical examples. The impact response of the grid structure has
been reflected well. Then, the equivalent model was utilized to analyze the impact
response of the isogrid-stiffened cylindrical shell.

The impact resistance of the isogrid structures is influenced by the impact velocity
and relative density of the isogrid. It is found that for the same impact load, the
deformation of the grid structure is smaller than that of the equivalent continuous
structure, while the energy absorption ability of the grid structure is stronger than
that of the equivalent continuous structure. The relative density is a key factor that
affects the equivalent performance of the grid structures.

The grid-stiffened cylindrical shell is equivalent to the smooth laminated shell. Be-
cause of the equivalence, the energy absorption ability of the ribs is slightly under-
estimated, and the energy absorption ability of the skin is overestimated. Overall,
the equivalent model can provide a satisfied result for the impact resistance and
energy absorption of the grid-stiffened shell. The location and shape of the hole on
the shell can considerably influence the load-bearing capacity of the cylinder
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