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On Improving the Celebrated Paris’ Power Law for
Fatigue, by Using Moving Least Squares

Leiting Dong1,2, Robert Haynes3 and Satya N. Atluri2

Abstract: In this study, we propose to approximate the a− n relation as well as
the da/dn−∆K relation, in fatigue crack propagation, by using the Moving Least
Squares (MLS) method. This simple approach can avoid the internal inconsisten-
cies caused by the celebrated Paris’ power law approximation of the da/dn−∆K
relation, as well as the error caused by a simple numerical differentiation of the
noisy data for a−n measurements in standard fatigue tests. Efficient, accurate and
automatic simulations of fatigue crack propagation can, in general, be realized by
using the currently developed MLS law as the “fatigue engine” [da/dn versus ∆K],
and using a high-performance “fracture engine” [computing the K-factors] such as
the Finite Element Alternating Method.
In the present paper, the “fatigue engine” based on the present MLS law, and the
“fracture engine” based on the SafeFlaw computer program developed earlier by
the authors, in conjunction with the COTS software ANSYS, were used for pre-
dicting the total life of arbitrarily cracked structures.
By comparing the numerical simulations with experimental tests, it is demonstrated
that the current approach can give excellent predictions of the total fatigue life of
a cracked structure, while the celebrated Paris’ Power Law may miscalculate the
total fatigue life by a very large amount.
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1 Introduction

Modeling the fatigue behavior of cracked built-up structures is among the most im-
portant tasks for the structural integrity assessment of aircraft [Atluri (1998)]. In
the past several decades, the development of high-performance computer model-
ing techniques has enabled the highly accurate computations of fracture mechanics
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Figure 1: Typical fatigue crack growth behavior for metals.

parameters of cracks, and efficient automatic simulations of non-collinear and non-
planar mixed-mode crack growth in complex 2D & 3D structures. Among the best
“fracture engines” which compute K-factors are the alternating methods developed
by Atluri and co-workers, see [Nishioka and Atluri (1983); Wang and Atluri (1996);
Park and Atluri (1998); Nikishkov, Park and Atluri (2001); Han and Atluri (2002);
Dong and Aluri (2013a, 2013b)]. Such alternating methods have been embedded by
the authors in software named SafeFlaw 2D & SafeFlaw 3D, which also simulate
quite efficiently the non-planar mixed-mode crack propagation.

On the other hand, the development of fatigue crack growth laws, which relate
the crack growth rate to fracture mechanics parameters (such as Stress Intensity
Factors), is more likely to be an empirical art than a strict science. Having observed
the linear dependence of log(da/dn) with respect to ∆K in a certain range of crack
propagation, Paris et al. (1961) were the first to propose a power law relation
between the crack growth rate and the range of SIF:

da/dn =C∆Km. (1)

As shown in Fig. 1, although the celebrated Paris’ Law can give an acceptable
approximation of the crack-growth-rates in the intermediate-SIF-range (region 2),
it mostly overestimates da/dn in region 1 and underestimates da/dn in region 3.
Forman et al. (1967) proposed to modify Paris’ Law by further considering the
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rapid crack growth near the fracture toughness KIc:

da/dn =
C∆Km

(1−R)KIc−∆K
, (2)

where R is the stress ratio.

And Donahue et al. (1972) proposed to replace ∆K with ∆K−∆Kth in Paris Law,
in order to give a better prediction of da/dn near the threshold SIF (∆Kth):

da/dn =C (∆K−∆Kth)
m . (3)

While both the Forman and Donahue’s formulations in Eqs. (2)-(3) apply thresh-
olds to characterize the asymptotic behavior of da/dn−∆K, other studies also take
into account the underlying mechanisms of plasticity, crack-closure, and even mi-
crostructure, see the review by [Newman (1998)]. For example, Elber (1970) pro-
posed to use ∆Ke f f instead of ∆K to account for the effect of the crack closure. And
crack growth rates can also be related to elastic-plastic fracture parameters such as
J and T ∗ integrals instead of linear elastic SIFs, see [Rice (1968); Atluri (1982);
Nishioka and Atluri (1982); Dowling and Begley (1976); El Haddad, Dowling,
Topper and Smith (1980)].

However, considering the computational capabilities of even a present-day laptop
computer, and the vast number of numerical methods available today, it is proba-
bly unnecessary to confine the development of fatigue laws to within the limited
scope of power laws or very simple formulas, no matter what fracture mechanics
parameters are used (∆K,∆Ke f f ,∆J,∆T ∗,etc.). Moreover, with given discrete mea-
surements and the attendant noisy data for the crack length (a) versus the number
of cycles (n), computing da/dn using a secant method or a piecewise polynomial
method may also cause discretization errors, see ASTM E647-13a.

In this study, we propose to approximate the a−n relation as well as the da/dn−
∆K relation using Moving Least Squares (MLS) [Atluri (2004)] instead of power
laws. This simple approach can avoid the internal inconsistencies caused by the
power law approximation of da/dn−∆K relation as well as the errors caused by
simple numerical differentiation of the noisy discrete a−n data. By applying this
method for fatigue life prediction of cracked structures, it is found that the current
MLS law can give highly accurate estimates of the total fatigue life, while the
Paris’ Law may miscalculate the total fatigue life by several multiples or even an
order of magnitude. Although the current study only considers ∆K as the driving
parameter with the assumption of perfect linear elasticity, other effects such as
plasticity and crack closure can also be included by using ∆Ke f f as the driving
parameter with numerical techniques developed by [Newman et al. (1992,1999)].
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With further development, it is expected that the currently developed MLS fatigue
law can serve as a high-performance “fatigue engine”, which can be combined the
high-performance “fracture engine” of the alternating methods, to greatly improve
the state-of-the-art of structural integrity assessment and damage tolerance of fixed
as well as rotary-wing aircraft.

2 A Simple Moving Least Squares Fatigue Law

2.1 Fundamentals of Moving Least Squares

The Moving Least Squares (MLS) is generally considered to be one of the best
methods to interpolate random data with a high accuracy, because of its complete-
ness, smoothness, and locality. Its formulation is briefly reviewed here, while more
detailed discussions on the MLS can be found in [Atluri (2004, 2005)].

Considering a one-dimensional space with n being the independent variable and a
being the dependent variable, the MLS method starts by expressing a(n) as poly-
nomials:

a(n) = pT (n)b(n), (4)

where pT (n) represents the monomial basis. In this study, we use a second-order
interpolation, so that pT (n) = [1,n,n2]. b(n) is a vector containing the coefficient
functions of each monomial basis, which can be determined by minimizing the
following weighted least squares objective function:

J [b(n)] =
m

∑
I=1

wI(n)[pT (nI)b(n)− âI]2

= [Pb(n)− â]T W(n)[Pb(n)− â],
(5)

where nI, I = 1,2, · · · ,m is a group of discrete nodes with âI being the fictitious
nodal value at node I. Differing from the traditional Least Squares Method, the
MLS weight function wI(n) is a local function which vanishes outside the support
size (rI) of node I. In this study, a fourth order spline weight function is used:

wI(n) =
{

1−6r2 +8r3−3r4

0
r ≤ 1
r > 1

, r =

∣∣n−nI
∣∣

rI . (6)

Substituting b(n) into Eq. (4), we can obtain the approximate expression of a(n)
as:

a(n) = pT (n)A−1(n)B(n)â = ααα
T (n)B(n)â

= ΦΦΦ
T (n)â =

m

∑
I=1

Φ
I(n)âI,

(7)
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where matrices A(n) and B(n) are defined by:

A(n) = P(n)T W(n)P(n), B(n) = PT (n)W(n). (8)

ΦI(n) is named as the MLS basis function for node I.

The derivatives of the basis functions can be computed using the following equa-
tions:

ΦΦΦ,n = ααα
T
,nB+ααα

T B,n,

ααα
T
,n = A−1 (pT

,n−A,nααα
)
.

(9)

To give an example, we consider 21 uniformly distributed nodes (n = 0,500,1000,
. . . ,10000), with 2000 being the support size of each node. Fig. 2 plots the MLS
basis function for the node at n = 5000 as well as its first order derivative. As can
be seen, both the basis function and its first-order derivative are smooth functions
which vanish outside the support range of each node.
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Figure 2: MLS basis function and its first order derivative.

2.2 Numerical Differentiation of Discrete a−n Data Using MLS

Fatigue tests generally give discrete pairs of a− n data which can often be noisy.
Suppose one has measured crack sizes a1,a2, . . . ,am at cycles n1,n2, . . . ,nm, then
by using n1,n2, . . . ,nm as MLS nodes, the a−n relation can be approximated as a
continuous function:

a(n) =
m

∑
I=1

Φ
I (n) âI, (10)
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where the fictitious nodal values â1, â2, . . . , âm and measured crack sizes a1,a2, . . . ,am

are related by1:

aJ =
m

∑
I=1

Φ
I (nJ) âI. (11)

The crack growth rates can thus be computed by directly differentiating Eq. (10)
with the aid of Eq. (9):

da
dn

(n) =
m

∑
I=1

Φ
I
,n (n) âI. (12)

In this study, we consider 7075-T6 aluminum alloy, and use the fatigue test data
given in NASA/TM-2005-213907 report. Three test specimens were prepared fol-
lowing the ASTM E647-00 standard, i.e. AL-7-21, AL-7-22 and AL-7-23. A
schematic plot of a middle tension M(T) specimen is given in Fig. 3, where
W = 102 mm,B = 3.18 mm. Each specimen had different initial crack sizes, and
was loaded with different magnitudes of forces, while having the same stress ratio
(R = 0.1). Any data that satisfies W −2a≥ 1.25Pmax/(BσY S) were rejected to rule
out the effects of inelastic material response. Fig. 4 gives the fitted a−n curve as
well as the thereafter derived crack growth rates da/dn.

2.3 An Empirical da/dn−∆K Relation by MLS Approximation

In this study, ∆K is computed using the Finite Element Alternating Method, see
[Park and Atluri (1998)]. It is found that computed SIFs almost exactly agree with
the empirical formula suggested by ASTM E647-13a. The computed da/dn and
∆K at each crack increment from all the 3 tests are plotted in Fig. 5, which clearly
demonstrates the same fatigue crack growth behavior as schematically shown in
Fig. 1. A linear curve fitting in the intermediate-∆K-range yields the celebrated
Paris’ Law, which however deviates from the measured crack growth rates as ∆K
is near the threshold or near the fracture toughness values. In order to have a better
prediction of da/dn, MLS is used to relate log(da/dn) to log(∆K). A log-log rela-
tion is retained in order to ensure that the predicted crack growth rates are positive.

However, a direct usage of all the measurements as nodal values for MLS is found
to be undesirable. Firstly, the same ∆K from different tests may correspond to dif-
ferent da/dn. Secondly, because of the scattering of measured data, using a large
number of MLS nodes leads to a local oscillatory behavior of da/dn−∆K rela-
tion. Thus, it is proposed to use only a few nodes, and to have the fictitious nodal

1 Based on our experience, using measured crack sizes aI , I = 1,2, . . . ,m directly, instead of âI , in
Eq. (10) is simpler and makes very little difference in the fitted a−n curve, because the values of
aI and âI are very close.
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Figure 3: Schematic of a middle tension M(T) specimen by [Forth, Wright, and
Johnson (2005)].

values determined by curve fitting. We consider that there are M set of measured
data

(
∆K1, da

dn
1
)
,
(

∆K2, da
dn

2
)
, ...,

(
∆KM, da

dn
M
)

gathered from all the fatigue tests,

and N MLS nodes log(∆K∗1), log(∆K∗2), ... log(∆K∗N) are selected whose ficti-

tious nodal values log
(

d̂a
dn

∗1
)
, log

(
d̂a
dn

∗2
)
, ..., log

(
d̂a
dn

∗N
)

are to be determined.

The crack growth rate is thus related to the range of SIF by:

log
(

da
dn

)
=

N

∑
I=1

Φ
I [log(∆K)] log

(
d̂a
dn

∗I)
. (13)

And the fictitious nodal values can be determined by minimizing the following
simple quadratic objective function:

J

[
log

(
d̂a
dn

∗I)]
=

M

∑
J=1

[
N

∑
I=1

Φ
I [log(∆KJ)

]
log

(
d̂a
dn

∗I)
− log

(
da
dn

J)]2

(14)

In this study, 10 uniformly distributed (in the log scale) MLS nodes are used for
demonstration, and the approximated da/dn−∆K relation is plotted in Fig. 5. As
can be seen, a very accurate prediction of crack-growth rates is obtained by using
only a few MLS nodes, in contrast to the simple deviation of the Paris’ Law.
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Figure 5: Approximating the da/dn−∆K relation using Paris’ Law as well as the
Moving Least Squares (MLS).

3 Fatigue Crack Growth Simulation by the Currently Developed MLS Law

In this section, we verify the capability of a highly-accurate fatigue life assessment
using the currently developed MLS fatigue law. This is done by implementing the
MLS law into the well-established Finite Element Alternating Method [Park and
Atluri (1998)]. The FEAM enables a fast and accurate computation of ∆K, as well
as an automatic simulation of crack growth. With the newly developed MLS law,
the fatigue life of a cracked structure can be computed by numerically evaluating:

n(a) =
∫ a

a0

dn
da

da =
∫ a

a0

EXP

{
−

M

∑
J=1

Φ
I [log(∆K)] log

(
d̂a
dn

∗I)}
da, (15)

where EXP{·} is the exponential function and a0 is the initial crack size. Similarly,
FEAM can also be combined with Paris’ Law to simulate fatigue crack growth, the
results of which are used for comparison in this study.

The present approach is firstly applied to model the fatigue behavior of M(T) spec-
imens of NASA/TM-2005-213907 report used in section 2. As shown in Fig. 6-7,
Paris’ Law greatly underestimates the fatigue life of AL-7-23, this is because ∆K
for this specimen is relatively small (near threshold region). Paris’ Law also un-
derestimates the crack growth rates of AL-7-22, where ∆K for this specimen is



10 Copyright © 2015 Tech Science Press CMC, vol.45, no.1, pp.1-15, 2015

relatively large (near fracture toughness region). In contrast, the MLS law can al-
most give an exact estimation of the fatigue behavior of both of these 2 specimens.
Because ∆K of AL-72-21 stays in the intermediate power law range, both Paris’
Law and MLS give good predictions of fatigue crack growth, and thus the results
for AL-72-21 are not plotted here.
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Figure 6: Predicted a−n relation using Paris’ Law and MLS Law, as compared to
experimental results for specimen AL-7-23 in [Forth, Wright, and Johnson (2005)].

We further consider the open-hole crack experiment by [Stuart, Hill and Newman
(2011)]. As shown in Fig. 8, each of the 3 dog-bone coupons is made of 2.03 mm
thick 7075-T6 sheet. It has 381 mm in total length and is 88.9 mm wide at the
gripped ends. The gripped ends taper to a central gage section (44.5 mm wide and
88.9 mm long) with a centrally located open hole which is 7.09 mm in diameter.
The initial crack is 0.381 mm in size (including the notch & the pre-crack). The
applied maximum gross tress is 47.2 MPa, with a stress ratio of 0.1.

This problem is solved by using the FEAM combined with Paris’ as well as the
present MLS fatigue law. As shown in Fig. 9, the Paris’ Law underestimates the
fatigue life by a factor of 3, while the MLS law can accurately simulate the fatigue
growth of the crack near the open hole. Again, this is because the Paris’ Law over-
estimates the crack growth rates in the near threshold region, while the currently
developed MLS fatigue law gives very accurate predictions of crack growth rates
in the threshold, intermediate, as well as the near fracture toughness regions.
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Figure 7: Predicted a−n relation using Paris’ Law and MLS Law, as compared to
experimental results for specimen AL-7-22 in [Forth, Wright, and Johnson (2005)].

Figure 8: Open-hole Al 7075-T6 coupons used in [Stuart, Hill and Newman (2011)]
with one single mode-1 crack at the right side of the hole.
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Figure 9: Predicted a−n relation using Paris’ Law and MLS Law, as compared to
experimental results of 3 specimens in [Stuart, Hill and Newman (2011)].
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Figure 10: Predicted da/dn−∆K relation using Paris’s Law and MLS Law for the
open-hole crack problem as given in [Stuart, Hill and Newman (2011)].
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4 Conclusions

Using power laws such as the celebrated Paris’ Law or other simple formulas to ap-
proximate the fatigue crack growth behavior was advantageous in the 1960s-1980s,
which was the time when most of these fatigue laws were developed. However,
with the rapid development of computers and numerical methods in the past half
of a century, much better fatigue crack growth relations can be postulated today.
This paper presents a preliminary demonstration of how much better predictions
of crack growth rates and the total remaining fatigue life can be achieved by using
the Moving Least Squares approximations. Other high-performance meshless ap-
proximating methods using Partitions of Unity, Shephard Functions, Radial Basis
Functions, etc. [Atluri (2004)] will also be explored in the very near future. More-
over, effects of plasticity and crack closure can also be taken into account by simple
corrections of K−factors, which will be considered in our future studies.

In the present paper, the “fatigue engine” based on the present MLS law, and the
“fracture engine” based on the SafeFlaw computer program developed earlier by
the authors, in conjunction with the COTS software ANSYS, were used for pre-
dicting the total life of arbitrarily cracked structures.
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