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Abstract: Following previous work, a wavelet finite element method is devel-
oped for bending, free vibration and buckling analysis of functionally graded (FG)
plates based on Mindlin plate theory. The functionally graded material (FGM)
properties are assumed to vary smoothly and continuously throughout the thickness
of plate according to power law distribution of volume fraction of constituents. This
article adopts scaling functions of two-dimensional tensor product BSWI to form
shape functions. Then two-dimensional FGM BSWI element is constructed based
on Mindlin plate theory by means of two-dimensional tensor product BSWI. The
proposed two-dimensional FGM BSWI element possesses the advantages of high
convergence, high accuracy and reliability with fewer degrees of freedoms on ac-
count of the excellent approximation property of BSWI. Numerical examples con-
cerning various length-to-thickness ratios, volume fraction indexes, aspect ratios
and boundary conditions are carried out for bending, free vibration and buckling
problems of FG plates. These comparison examples demonstrate the accuracy and
reliability of the proposed WFEM method comparing with the exact and referential
solutions available in literatures.

Keywords: Functionally graded plates, Wavelet finite element method, Mindlin
plate theory, Bending, free vibration and buckling analysis.

1 Introduction

Over the past few decades, the science and technology mainly focus on homoge-
neous materials such as metal, alloy, ceramic and polymer, etc. However, the tradi-
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tional homogeneous materials are face with the challenge of ultrahigh temperature
resistance with the rapid development of aerospace industry. Functionally graded
materials (FGM) are new advanced composites firstly proposed as heat-shielding
structural materials in space applications by Japanese material scientists in 1984
[Koizumi (1997)]. Generally, FGM are comprised of ceramic and metal with ma-
terial properties varying smoothly and continuously throughout one surface to an-
other. The smooth and continuity of FGM properties are able to effectively reduce
the influence of interface and eliminate high interfacial stress. These excellent char-
acteristics make FGM be widely used in the areas of aircraft, space vehicle, nuclear,
mechanical, optical, chemical and biomechanical and other engineering structures.
Due to the increasing applications of FGM in engineering structures, the theoretical
research of FGM structures has attracted considerable researchers’ attention.

Functionally graded (FG) plate structures, as one of basic structures in engineering
areas, play a very important role in engineering practical and theoretical analysis
[Akgoz and Civalek (2013a)]. Hence, various plate theories are proposed for prob-
lems of FG plates. The classical plate theory (CPT), also named Kirchhoff plate
theory, neglects the transverse shear deformation and rotary inertia terms. Shen
[Yang and Shen (2001)] dealt with the dynamic response of initially stressed thin
FG plates subjected to impulsive lateral loads based on CPT. The elastic foun-
dation was considered in their research. Abrate [Abrate (2008)] adopted CPT to
investigate free vibration of FG plates with simply supported and clamped bound-
ary conditions. Eslami [Shariat et al. (2005)] investigated the buckling analysis of
FG plates based on CPT. Saidi [Mohammadi et al. (2010); Baferani et al. (2011)]
presented an analytical method for free vibration and buckling analysis of thin FG
plates based on CPT. It is observed that the CPT gives satisfactory solutions for
thin plates.

However, the effect of transverse shear deformation becomes remarkable with the
increasing thickness of plates. For this reason, the first order shear deformation
plate theory (FSDT) also named Mindlin plate theory was proposed for moderately
thick plates by Mindlin [Mindlin (1951); Mindlin et al. (1955); Civalek and Acar
(2007)]. The FSDT can be considered as an extension of the Timoshenko theory to
beam. Unlike Kirchhoff plate theory, this plate theory takes the effect of transverse
shear deformations and rotational inertia into account which greatly improves the
calculation accuracy of moderately thick plate (length/thickness < 10 or 20). Al-
though high efficiency and simplicity of FSDT, shear correction factors are required
to correct variation of transverse shear stress and shear strain through the thickness
[Akgoz and Civalek (2013b)]. Then various higher order shear deformation plate
theories (HSDTs) are proposed for the problems of thick FG plates. These HSDTs
also give satisfactory solutions for thick plates without requiring shear correction
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factors.

Kitipornchai [Yang et al. (2005)] studied the buckling analysis of FG plates rest-
ing on elastic foundations based on FSDT. Liew [Zhao et al. (2009b); Zhao et al.
(2009a)] employed FSDT to investigate the free vibration, mechanical and ther-
mal buckling analysis of FG plates using element-free kp-Ritz method. Then a
local Kriging meshless method was proposed for free vibration of FG plates based
on FSDT by Liew [Zhu and Liew (2011)]. A group of satisfactory solutions for
square, skew, quadrilateral plates and plates with holes are given in their literatures.
An analytical solution based on FSDT was proposed for free vibration of moder-
ately thick FG plates without or resting elastic foundations by Hashemi [Hosseini-
Hashemi et al. (2010); Hosseini-Hashemi et al. (2011a)]. The benchmark solutions
of FG plates with SSSS, SSSC, SCSC, SCSF, SSSF, SFSF are reported in their lit-
eratures. Singha [Singha et al. (2011)] formulated a four-node high precision plate
bending element to analyze the deflections and stresses of FG plates subjected to a
sinusoidal or uniformly distributed loads. Choi [Thai and Choi (2013)] developed
a simple FSDT for the bending and free vibration analysis of FG plates. Zenkour
[Zenkour (2005b); Zenkour (2005a)] proposed sinusoidal shear deformation plate
theory (SSDT) for bending, buckling and free vibration analysis of FG plates. Af-
ter then Tounsi [Ameur et al. (2011); Merdaci et al. (2011); Tounsi et al. (2013)]
and Thai [Thai and Vo (2013)] developed SSDT for similar problems of FG plates.
Wu [Wu and Li (2010)] employed third order shear deformation theory (TSDT) to
investigate the static behaviors of FG plates. A new exact closed-form procedure
based on Reddy’s TSDT was proposed for free vibration of FG plates by Hashemi
[Hosseini-Hashemi et al. (2011b)]. The buckling analysis of FG plates are stud-
ied by Eslami [Shariat and Eslami (2007)] and Cheng [Cheng and Batra (2000)]
based on TSDT. Liew [Liew et al. (2003)] employed Reddy’s high order shear de-
formation plate theory (HSDT) to study the postbuckling response of piezoelectric
FG plates. The thermal, mechanical and electrical buckling are considered in their
study. An analytical solution based on HSDT was proposed for nonlinear vibration
and dynamic response of FG plates in thermal environments by Shen [Huang and
Shen (2004)]. Ferreira and his co-workers employed SSDT [Neves et al. (2012)],
TSDT [Ferreira et al. (2007); Ferreira et al. (2005)] and HSDT [Neves et al.
(2013)] for static, free vibrations and buckling analysis of isotropic and sandwich
FG plates. These literatures pointed that the effect of thickness stretching showed
significance in thicker plates. Natural frequencies and buckling loads of FG plates
were obtained by Matsunaga [Matsunaga (2008)] and Tzou [Chen et al. (2009)] us-
ing 2D HSDT and HSDT, respectively. Saidi [Bodaghi and Saidi (2010)] just con-
sidered the buckling problems of FG plates in the framework of HSDT. However, it
is the first time to consider the buckling analysis of FG plates with various bound-
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ary conditions. The FG plates resting on a Winkler-Pasternak elastic foundation
were considered by Tounsi [Benyoucef et al. (2010)] and Atmane [Atmane et al.
(2010)]. They employed HSDT for static response and free vibration of FG plates,
respectively. Singh [Talha and Singh (2010)] employed HSDT for static response
and free vibration of FG plate. The same work has also been done by Natarajan
[Natarajan and Manickam (2012)]. They constructed a C0 8-noded quadrilateral
plates element with 13 degrees of freedom per node for the problems of FG plates.
A higher order shear and normal deformable plates theory (HOSNDPT) has been
proposed for static analysis of FG plates by Xiao [Gilhooley et al. (2007)] and
Batra [Qian et al. (2004)]. Recently, Dong [Dong et al. (2014a)] developed a sim-
ple locking-alleviated 3D 8-node mixed-collocation C0 finite element for FG plates
and shells based on [Dong et al. (2014b)]. The widely-available theories of elastic-
ity were employed for modeling FG structures without using HSDT in their works
which solved the over-integration problem for FGM structures.

Although various numerical methods have already been proposed for bending, free
vibration and buckling analysis of FG plates, the analytical solutions for problems
of FG plates are rarely reported. In addition, traditional numerical methods, such
as finite element method, often require more computing grids due to the continu-
ous variation of material properties in FGM. According to the literatures mentioned
before, literatures concerning bending problems, free vibration problems and buck-
ling problems of FG plates at the same time are very few. Their attentions mainly
focus on one or two of these problems. Hence, it is very meaningful and useful to
propose an accurate and effective numerical method for deriving exact and com-
prehensive closed form solutions of FG plates.

Nowadays, High performance numerical computer methods, such as boundary
element method (BEM) [Hall (1994)], meshless local Petrov-Galerkin (MLPG)
method [Atluri and Zhu (1998)], local boundary integral equation (LBIE) method
[Atluri et al. (2000)], the discontinuous Galerkin method [Hartmann and Houston
(2002)] and hybrid/mixed finite element method [Dong and Atluri (2011)], play a
crucial role for numerical simulation problems. The wavelet finite element method
(WFEM) is another powerful analysis tool developed in recently [Chen and Wu
(1995); Chen and Wu (1996); Zhong and Xiang (2011)]. The WFEM employs
a series of scaling functions as approximating functions. Compared with other
wavelets, B-spline wavelet on the interval (BSWI) basis has the excellent charac-
teristics of compact support, smoothness and symmetry in addition to the multi-
resolution analysis. Moreover, BSWI element, as a type of generalized spline finite
element method, inherits the superiority of spline for structural analysis. Above
all, it has explicit expressions so the coefficient integration and differentiation can
be calculated conveniently. Hence, the WFEM employing BSWI as approximat-
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ing functions is the best choice for solving bending, free vibration and buckling
problems of FG plates. In previous studies about BSWI elements, the main inves-
tigations are focused on the elements with uniform density and Young’s modulus
on the out of plane direction, which induces the decoupling of the displacements
between in plane and out of plane [Xiang et al. (2006); Jiawei et al. (2008); Yang et
al. (2013)]. Following previous work [Zuo et al. (in press)], the WFEM is extended
to solve the FG plate problems in this paper.

Due to the excellent characteristics of BSWI, this paper adopts BSWI to investigate
the bending, free vibration and buckling analysis of FG plates. The outline of
this paper is organized as follows. The introduction of FGM is briefly presented
in section 2. The formulation of FGM BSWI plate element and the equations of
bending, free vibration and buckling of FG plate are derived in section 3. Various
numerical examples and comparisons are provided to demonstrate the accuracy and
efficiency of the constructed FGM BSWI element for FG plates in section 4.

2 Functionally graded material

A flat and moderately thick rectangular FG plate of length a, width b and thickness
h is considered and depicted in Fig.1. The Cartesian coordinate system is defined
on the neutral surface of plate where x-axis is taken along the length direction,
y-axis in the width direction and z-axis in the thickness direction.

Figure 1: Geometry and coordinates of rectangular FG plate.

Generally, the FG plate is always made of ceramic and metal and the material prop-
erties of FG plate, such as Young’s modulus E, mass density ρ and Poisson’s ratio
µ , are assumed to vary continuously throughout the thickness of plate according to
the power law distribution of volume fraction of constituents. According to the rule
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of mixture, the effective material properties P can be expressed as

P = PmVm +PcVc (1)

where Pm, Pc, Vm and Vc are defined as the material properties and volume frac-
tions of metal and ceramic, respectively. The volume fractions of two constituent
materials are assumed as

Vm +Vc = 1 (2)

In this paper, the volume fraction for a plate with referential surface at its neutral
surface can be written as

Vc =

(
z
h
+

1
2

)n

(3)

where n is a non-negative exponent named volume fraction index. The volume frac-
tion index n dictates the material variation profile thickness of FG plate. Then the
effective material properties of FG plate which consists of two constituent materials
can be expressed as

E(z) = (Ec−Em)

(
z
h
+

1
2

)n

+Em

ρ(z) = (ρc−ρm)

(
z
h
+

1
2

)n

+ρm

µ(z) = (µc−µm)

(
z
h
+

1
2

)n

+µm

(4)

where the subscripts c and m represent ceramic and metal, respectively. The mate-
rial properties of metal and ceramic used in FG plates are listed in Table 1.

The effective Young’s modulus through the thickness of Al/Al2O3 plate with vari-
ous volume fraction indexes is shown in Fig. 2. to clarify the behavior of FG plate.
It is clearly that the bottom surface (z = -h/2) of FG plate is metal rich while the top
surface (z = h/2) material of FG plate is ceramic rich. And the material properties
vary continuously and smoothly from metal rich to ceramic rich with different vol-
ume fraction indexes. Moreover, the FG plate is fully ceramic (Al2O3) and metal
(Al) for n = 0 and n = ∞, respectively.

3 Formulation of B-spline wavelet on the interval Mindlin plate element

3.1 Two-dimensional tensor product BSWI on the interval [0, 1]

The mth order B-spline functions need to be construed on the interval [0, 1] due
to any one-dimensional function f (x) on the interval [a, b] can be transformed to
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Table 1: Material properties of metal and ceramic used in FG plates.

Material
Properties

E(Pa) µ ρ (kg/m3)

Aluminum (Al) 70×109 0.30 2707
Stainless Steel(SUS304) 207.78×109 0.3177 8166

Alumina (Al2O3) 380×109 0.30 3800
Zirconia (ZrO2) 151×109 0.30 3000

Silicon Nitride (Si3N4) 322.21×109 0.24 2370
Silicon Carbide (SiC) 420×109 0.17 3210
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Figure 2: The effective Young’ modulus through the thickness of Al/Al2O3 plate
with various volume fraction indexes.

the standard interval [0, 1] by means of a linear mapping ξ = (x− a)/(b− a). In
order to meet at least one inner wavelet on the interval [0, 1], the condition should
be satisfied as

2 j ≥ 2m−1 (5)

where j is the scale number of BSWI.

For any j scale mth order BSWI, which can be written as BSWI m j, the scaling
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functions φ
j

m,k(ξ ) can be calculated by the following formula [Xiang et al. (2007)]

φ
j

m,k(ξ )=


φ

l
m,k(2

j−l
ξ ), k =−m+1, · · · ,−1 (0 boundary scaling functions)

φ
l

m,2 j−m−k(1−2 j−l
ξ ), k = 2 j−m+1, · · · ,2 j−1 (1 boundary scaling functions)

φ
l

m,0(2
j−l

ξ −2−lk), k = 0, · · · ,2 j−m (inner scaling functions)

(6)

Let j0 be the scale as the condition Eq. (5) is satisfied. Then for each j > j0, let l
= 0, the scaling functions can be obtacined through Eq. (6). Therefore, the scaling
functions on the interval [0, 1] can be written in vector form as

ΦΦΦ1 = [φ j
m,−m+1(ξ ),φ

j
m,−m+2(ξ ), · · · ,φ

j
m,2 j−1(ξ )]

ΦΦΦ2 = [φ j
m,−m+1(η),φ j

m,−m+2(η), · · · ,φ j
m,2 j−1(η)]

(7)

where ξ and η depict the normalized x and y coordinates, respectively.

Tensor product is the best way to construct two-dimensional BSWI from one-
dimensional BSWI. It is assumed that two-dimensional tensor product of BSWI
at scale j of L2 (R2) can be constructed by multi-resolution approximation space
F j = V1

j⊗ V2
j and the scaling functions of two-dimensional BSWI are

ΦΦΦ = ΦΦΦ1⊗ΦΦΦ2 (8)

where ΦΦΦ1 and ΦΦΦ2 are two different variations in scaling functions given by Eq.
(7), the symbol ⊗ denotes the kronecker function. Some selected BSWI43 scaling
functions are presented in Fig.3 to clarify the BSWI shape function.

3.2 The theory formulation of Mindlin plate

According to Mindlin plate theory, normal to the undeformed middle plane of the
plate remains straight, but not normal to the deformed middle surface. In Cartesian
coordinate system, the assumed displacement field is defined as follows

u(x,y,z, t) = u0(x,y, t)− zθx(x,y, t) (9)

v(x,y,z, t) = v0(x,y, t)− zθy(x,y, t) (10)

w(x,y,z, t) = w0(x,y, t) (11)

where u0, v0, w0 are the x-direction, y-direction and z-direction displacements of the
plate on the neutral plane, respectively, θ x and θ y are the rotations of a transverse
normal about axis y and x, and t denotes time.
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Fig. 3. (a-d) some typical two-dimensional BSWI43 scaling functions. 

 
Figure 3: (a-d) some typical two-dimensional BSWI43 scaling functions.

Based on the small deformations assumption, the bending strains εxx, εyy and γxy

can be written as

εxx =
∂u
∂x

=
∂u0(x,y, t)

∂x
− z

∂θx(x,y, t)
∂x

(12)

εyy =
∂v
∂y

=
∂v0(x,y, t)

∂y
− z

∂θy(x,y, t)
∂y

(13)

γxy =
∂u
∂y

+
∂v
∂x

=
∂u0(x,y, t)

∂y
+

∂v0(x,y, t)
∂x

− z
∂θx(x,y, t)

∂y
− z

∂θy(x,y, t)
∂x

(14)

while the transverse shear strains γxz and γyz can be written as

γxz =
∂w
∂x

+
∂u
∂ z

=
∂w0(x,y, t)

∂x
−θx(x,y, t) (15)

γyz =
∂w
∂y

+
∂v
∂ z

=
∂w0(x,y, t)

∂y
−θy(x,y, t) (16)
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According to the Mindlin plate theory, the total strain energy of Mindlin plate con-
sists of two parts

U =Uε +Uγ (17)

where

Uε =
1
2

∫
V

σεdV (18)

Uγ =
1
2

∫
V

τγdV (19)

where ε represents the bending strain which can be written as ε =[εxx, εyy, γxy]T

and γ represents the transverse shear strain which can be written as γ =[γxz, γyz]T .
According to the Hooke’s law, the bending stress σ and transverse shear stress τ

are obtained as

σ = Dbε (20)

τ = Dsγ (21)

where Db and Ds are corresponding elasticity matrixes which can be defined as

Db =
E(z)

1−µ2

 1 µ 0
µ 1 0
0 0 1−µ

2

 (22)

Ds =
kE(z)

2(1+µ)

[
1 0
0 1

]
(23)

where E(z) is the Young’s modulus varying continuously throughout the thickness
direction, µ is the Poisson’s ratio and the variable k is known as the shear correction
factor.

The kinetic energy for Mindlin plate consists of two parts. One of them is related
with translations and the other is related with rotations. Then the kinetic energy can
be obtained as

T =
1
2

∫
V

ρ(z)

{(
∂u
∂ t

)2

+

(
∂v
∂ t

)2

+

(
∂w
∂ t

)2
}

dV (24)

in which ρ(z) denotes the mass density varying continuously throughout the thick-
ness direction. Then the variational energy function can be defined as the difference
between the strain energy and the kinetic energy

Π =U−T (25)
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3.3 The formulation of FGM BSWI plate elements

In Mindlin plate element, the displacements and rotations can be interpolated by
tensor product of BSWI scaling functions, respectively. The displacement fields
can been derived as follow

u = ΦΦΦTuuu v = ΦΦΦTvvv w = ΦΦΦTwww θx = ΦΦΦTθθθ x θy = ΦΦΦTθθθ y (26)

where u, v, w, θ x, θ y are the displacement vectors in BSWI scaling space, respec-
tively, and T is the BSWI element transform matrix. T is obtained by the tensor
product as T = T1⊗T2 which can be written as

T1 = [ΦΦΦT (ξ1) ΦΦΦ
T (ξ2) · · · ΦΦΦ

T (ξn+1)]
-T (27)

T2 = [ΦΦΦT (η1) ΦΦΦ
T (η2) · · · ΦΦΦ

T (ηn+1)]
-T (28)

Substitute the displacement field Eqs. (26) into Eqs. (12-16) and the results are

εεε = Bbddd =


∂

∂x 0 0 −z ∂

∂x 0
0 ∂

∂y 0 0 −z ∂

∂y
∂

∂y
∂

∂x 0 −z ∂

∂y −z ∂

∂x

ddd (29)

γγγ = Bsddd =

[
0 0 ∂

∂x −1 0
0 0 ∂

∂y 0 −1

]
ddd (30)

where d can be expressed as d=[u v w θx θy]
T .

3.3.1 Bending analysis of BSWI Mindlin plate

In this section, the bending analysis of Mindlin plate is formulated and imple-
mented. According to Hamilton’s principle, the equation of motions for bending
analysis of Mindlin plate can be expressed as

δΠ =
∫ t2

t1
(δU−δW )dt = 0 (31)

Substituting Eqs. (29-30) into Eq. 31, the basic governing equation of bending
problem is obtained as

Kddd = FFF (32)

where K is stiffness matrix, FFF is force vector.

The stiffness matrix K is defined by the summation of two parts

K = Kε +Kγ (33)
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Kε =


K11

ε K12
ε 0 K14

ε K15
ε

K21
ε K22

ε 0 K24
ε K25

ε

0 0 0 0 0
K41

ε K42
ε 0 K44

ε K45
ε

K51
ε K52

ε 0 K54
ε K55

ε

 (34)

where

K11
ε = A11× (ΓΓΓ1,1

x ⊗ΓΓΓ
0,0
y )+A33× (ΓΓΓ0,0

x ⊗ΓΓΓ
1,1
y );

K12
ε = A12× (ΓΓΓ1,0

x ⊗ΓΓΓ
0,1
y )+A33× (ΓΓΓ0,1

x ⊗ΓΓΓ
1,0
y );

K14
ε =−B11× (ΓΓΓ1,1

x ⊗ΓΓΓ
0,0
y )−B33× (ΓΓΓ0,0

x ⊗ΓΓΓ
1,1
y );

K15
ε =−B12× (ΓΓΓ1,0

x ⊗ΓΓΓ
0,1
y )−B33× (ΓΓΓ0,1

x ⊗ΓΓΓ
1,0
y );

K21
ε = (K12

ε )T ; K22
ε = A11× (ΓΓΓ0,0

x ⊗ΓΓΓ
1,1
y )+A33× (ΓΓΓ1,1

x ⊗ΓΓΓ
0,0
y );

K24
ε = (K15

ε )T ; K25
ε =−B11× (ΓΓΓ0,0

x ⊗ΓΓΓ
1,1
y )+B33× (ΓΓΓ1,1

x ⊗ΓΓΓ
0,0
y );

K41
ε = (K14

ε )
T

; K42
ε = (K24

ε )
T

; K51
ε = (K15

ε )
T

; K52
ε = (K25

ε )
T

;

K44
ε =C11× (ΓΓΓ1,1

x ⊗ΓΓΓ
0,0
y )+C33× (ΓΓΓ0,0

x ⊗ΓΓΓ
1,1
y );

K45
ε =C12× (ΓΓΓ1,0

x ⊗ΓΓΓ
0,1
y )+C33× (ΓΓΓ0,1

x ⊗ΓΓΓ
1,0
y );

K54
ε = (K45

ε )T ; K55
ε =C11× (ΓΓΓ0,0

x ⊗ΓΓΓ
1,1
y )+C33× (ΓΓΓ1,1

x ⊗ΓΓΓ
0,0
y );

with

{A11,A12,A33}=
∫ h/2

−h/2

bE(z)
1−µ2 { 1, µ, (1−µ)/2 }dz

{B11,B12,B33}=
∫ h/2

−h/2

zbE(z)
1−µ2 { 1, µ, (1−µ)/2 }dz

{C11,C12,C33}=
∫ h/2

−h/2

z2bE(z)
1−µ2 { 1, µ, (1−µ)/2 }dz

where the details of integration matrixes ΓΓΓ can be found in Appendix.

Kγ =


0 0 0 0 0
0 0 0 0 0
0 0 K33

γ K34
γ K35

γ

0 0 K43
γ K44

γ 0
0 0 K53

γ 0 K55
γ

 (35)
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where

K33
γ = N× (ΓΓΓ1,1

x ⊗ΓΓΓ
0,0
y )+N× (ΓΓΓ0,0

x ⊗ΓΓΓ
1,1
y ); K34

γ =−N× (ΓΓΓ1,0
x ⊗ΓΓΓ

0,0
y );

K35
γ =−N× (ΓΓΓ0,0

x ⊗ΓΓΓ
1,0
y ); K43

γ = (K34
γ )T ; K44

γ = N× (ΓΓΓ0,0
x ⊗ΓΓΓ

0,0
y );

K53
γ = (K35

γ )T ; K55
γ = N× (ΓΓΓ0,0

x ⊗ΓΓΓ
0,0
y )

with N =
∫ h/2
−h/2

kbE(z)
2(1+µ)dz.

The force vector F can be expressed as

FFF = (T)T lexley

∫ 1

0

∫ 1

0
q(ξ , η)ΦΦΦT dξ dη (36)

where lex and ley are the element lengths, respectively, and q(ξ , η) is uniform dis-
tributed load.

3.3.2 Free vibration analysis of BSWI Mindlin plate

In this section, the free vibration analysis of Mindlin plate is formulated and im-
plemented. According to Hamilton’s principle, the equation of motions for free
vibration analysis of Mindlin plate can be expressed as

δΠ =
∫ t2

t1
(δU−δT )dt = 0 (37)

Substituting Eqs. (29-30) into Eq. 37, the basic governing equation of free vibration
problem is obtained as

(K−ω
2M)X = 0 (38)

where ω is natural frequency and X is the mode shape of Mindlin plate. The stiff-
ness matrix K has been obtained in previous section. Similarly, the corresponding
mass matrix M can be obtained as

M =


M11 0 0 M14 0

0 M22 0 0 M25
0 0 M33 0 0

M41 0 0 M44 0
0 M52 0 0 M55

 (39)

where M11 = R11× (ΓΓΓ0,0
x ⊗ ΓΓΓ

0,0
y ); M11= M22= M33; M14 = R22× (ΓΓΓ0,0

x ⊗ ΓΓΓ
0,0
y );

M14= M25= M41= M25, M44 = R33× (ΓΓΓ0,0
x ⊗ΓΓΓ

0,0
y ); M44= M55

with {R11, R22, R33}=
∫ h/2
−h/2 bρ(z){ 1, -z, z2}dz.
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3.3.3 Buckling analysis of BSWI Mindlin plate

In this section, the buckling analysis of Mindlin plate is formulated and imple-
mented. The buckling analysis of Mindlin plate involves the solution of eigenvalue
problem

(K−λKG)X = 0 (40)

where K is the stiffness matrix, KG is the geometric matrix, λ is the critical load
and X is the corresponding buckling mode shape of Mindlin plate. The critical load
λ can be obtained by solving Eq. 40. The geometric stiffness matrix KG can be
written as [Hinton (1988)]

KG =
∫

V
GT

u σ
0gd

uV +
∫

V
GT

v σ
0gd

vV +
∫

V
GT

wσ
0gd

wV (41)

with

gu =

[
∂u
∂x 0 0
∂u
∂y 0 0

]
gv =

[
0 ∂v

∂x 0
0 ∂v

∂y 0

]
gw =

[
0 0 ∂w

∂x
0 0 ∂w

∂y

]
(42)

where σ0 =

[
σ0

x τ0
xy

τ0
xy σ0

y

]
indicates the initial stress of Mindlin plate.

Substituting Eq. 26 and Eq. 42 into Eq. 41, the geometric matrix KG formulation
via BSWI can be obtained

KG =
(
σ

0
x ΓΓΓ

1,1
x ⊗ΓΓΓ

0,0
y +2τ

0
xyΓΓΓ

0,1
x ⊗ΓΓΓ

1,0
y +σ

0
y ΓΓΓ

0,0
x ⊗ΓΓΓ

1,1
y
)


h 0 0 0 0
0 h 0 0 0
0 0 h 0 0
0 0 0 h3

12 0
0 0 0 0 h3

12


(43)

4 Numerical examples and discussion

In this section, various numerical examples and comparisons are presented and
discussed to validate the accuracy and reliability of the proposed BSWI method
for bending, free vibration and buckling analysis of FG plates. The shear correct
factor k is taken as 5/6 for all comparison studies. For convenience, the boundary
conditions such as clamped supported, simply supported and free are indicated as
C, S and F, respectively. The non-dimensional parameters used in this paper are
defined as follows

ŵ = w
(

a
2
,
b
2

)
/h w̄ =

10Ech3

q0a4 w
(

a
2
,

b
2

)
w∗ =

25Euh3

3q0a4(1− v2)
w
(

a
2
,

b
2

)
(44)
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ω̂ = ωh
√

ρc/Ec ω̄ =

√
12(1− v2)ρcω2a2b2

π4Ech2 ω
∗ = ωa2

√
ρc/Ec/h (45)

λ̂ =
b2FcrEuh3

12π2(1− v2)
λ̄ =

b2Fcr
π2Em

λ
∗ =

a2Fcr
Emh3 (46)

4.1 Bending problem

4.1.1 Accuracy and efficient of BSWI method for bending analysis of FG plate

Example 1: The first comparison study is considered to verify the accuracy and
efficient of proposed BSWI method for bending analysis of SSSS FG square plate
(a/b = 1). The FG plate is made of aluminum (Al) and zirconia (ZrO2), and the
length-to-thickness ratio is taken as a/h= 5 with volume fraction indexes n= 0, 0.5,
1, 2 and ∞. The Al/ZrO2 plate is subjected to uniform distributed load. Ferreira
[Ferreira et al. (2005)] has given referential solutions for this problem based on the
collocation multi-quadric radial basis functions by TSDT. Moreover, Singh [Talha
and Singh (2010)] has conducted the convergence of this problem based on HSDT.
By aid of one BSWI Mindlin plate element, the calculated non-dimensional deflec-
tions ŵ are in good agreement with results given by Singh (5× 5) [Talha and Singh
(2010)] mesh and also almost identical with results given by Ferreira [Ferreira et
al. (2005)] shown in Table 2. This example demonstrates that the proposed BSWI
method is highly accuracy and efficient for bending analysis of FG plate. It should
be noted that the proposed method adopts just one BSWI element. Hence, one
BSWI element is adopted in the following examples if no explanation is given.

Table 2: The deflections ŵ of SSSS Al/ZrO2 square plate with various volume
fraction indexes (a/h= 5).

Method
volume fraction indexes n

0 0.5 1 2 ∞

HSDT (2×2) 0.0285 0.0357 0.0394 0.0430 0.0596
HSDT (3×3) 0.0352 0.0439 0.0487 0.0536 0.0738
HSDT (4×4) 0.0269 0.0336 0.0373 0.0409 0.0564
HSDT (5×5) 0.0250 0.0319 0.0358 0.0393 0.0541

TSDT 0.0247 0.0313 0.0351 0.0388 0.0534
Present 0.0248 0.0314 0.0351 0.0386 0.0535
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4.1.2 Effect of volume fraction indexes

Example 2: Another comparison study is employed to investigate a moderately
thick Al/Al2O3 square plate (a/h= 10) with various volume fraction indexes. The
Al/Al2O3 is also subjected to uniform distributed load. The Al/Al2O3 plate is fully
simply supported (SSSS) and the volume fraction index varies from 0 to ∞. The ob-
tained non-dimensional deflections w̄ tabulated in Table 3 are compared with those
referential solutions given by Zenkour [Zenkour (2006)] based on the generalized
shear deformation theory (GSDT), Thai [Thai and Choi (2013)] based on FSDT.
It can be observed that the proposed method achieves an excellent agreement with
Thai [Thai and Choi (2013)] for Al/Al2O3 plates with all volume fraction indexes.
For ceramic rich (n = 0) and metal rich (n = ∞), the results are almost identical.
However, the other obtained results are slightly small compared with results given
by Zenkour [Zenkour (2006)]. These differences may be caused by shear correct
factor used in FSDT while this factor is not needed in GSDT. The differences is so
slight that the BSWI method still gives satisfactory solutions for Al/Al2O3 plates
subjected to uniform distributed load. It is also observed that the non-dimensional
deflection increases as volume fraction index increases. The full ceramic plate (n =
0) has the maximum bending stiffness and the bending stiffness reduces gradually
as volume fraction index increases. The variation of non-dimensional stresses σ xx

and τxy through the thickness of Al/Al2O3 plate under uniform distributed load are
presented in Fig. 4. The stresses also vary continuously and smoothly through-
out the thickness of Al/Al2O3 plate which can effectively reduce the influence of
interface and eliminate high interfacial stress.
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Fig. 4. The stresses xx and τxy through the thickness of SSSS Al/ Al2O3 square plate subjected to uniform 779 
distributed load (a/h = 10). 780 
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Figure 4: The stresses σ xx and τxy through the thickness of SSSS Al/ Al2O3 square
plate subjected to uniform distributed load (a/h= 10).
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Table 3: The deflections w̄ of SSSS Al/ Al2O3 square plate subjected to uniform
distributed load (a/h= 10).

Method
volume fraction indexes n

0 1 2 3 4 5 10 ∞

GSDT 0.4665 0.9287 1.1940 1.3200 1.3890 1.4356 1.5876 2.5327
FSDT 0.4666 0.9288 1.1909 1.3123 1.3770 1.4205 1.5697 2.5329
Present 0.4666 0.9288 1.1910 1.3124 1.3770 1.4205 1.5697 2.5330

4.1.3 Effect of length-to-thickness ratios

Example 3: The next comparison study is employed to discuss a Al/Al2O3 square
plate subjected to sinusoidal distributed load (q = q0sin(πx/a)×sin(πy/b)) with dif-
ferent length-to-thickness ratios. The length-to-thickness ratios are chosen as a/h=
4, 10 and 100 for thick plate, moderately thick plate and thin plate. The non-
dimensional deflections w̄ with volume fraction indexes n = 1, 4 and 10 are calcu-
lated and presented in Table 4. The similar problem has been investigated by Car-
rera [Carrera et al. (2008)] using unified formulation method (UFM), Brischetto
[Carrera et al. (2011)] based on HSDT, and Ferreira [Neves et al. (2013)] based
on 3D HSDT. These literatures also give solutions based on CPT and FSDT. Com-
pared with other methods, the obtained results are satisfactory especially for thin
plate (a/h= 100). With the decreasing of length-to-thickness ratio, the plate be-
comes thicker while the differences among the Carrera [Carrera et al. (2008)],
Brischetto [Carrera et al. (2011)] and Ferreira [Neves et al. (2013)] become obvi-
ous, especially for lager volume fraction index. Considering the higher terms, the
HSDT method can obtain more accurate results than FSDT for thick plate. The
differences between the HSDT and FSDT method become smaller since the effect
of transverse shear deformation becomes weak with the increasing length-to-height
ratio. Although the HSDT method gives better solutions for thick and thin plate,
their equations are much more complicated than those of FSDT. And solutions in
Table 4. show that the BSWI element formulated by FSDT could give satisfactory
results and it is very effective to investigate behavior of FG plate. Fig. 5. shows the
non-dimensional deflections of plates along y = b/2 with various volume fraction
indexes.

4.1.4 Effect of boundary conditions

Example 4: In addition, a comparison study is presented to investigate a Al/Al2O3
square thin plate (a/h= 100) subjected to uniformly distributed load with simply
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Figure 5: The deformations of Al/Al2O3 plates along y = b/2 with various volume
fraction indexes (a) a/h = 4 (b) a/h = 10 (c) a/h = 100.

Table 4: The deflections w̄ of SSSS Al/Al2O3 square plate subjected to sinusoidal
distributed load.

Method
n=1 n=4 n=10

a/h=4 a/h=10 a/h=100 a/h=4 a/h=10 a/h=100 a/h=4 a/h=10 a/h=100
UFM 0.7171 0.5875 0.5625 1.1585 0.8821 0.8286 1.3745 1.0072 0.9361
HSDT 0.7289 0.5890 0.5625 1.1673 0.8828 0.8286 1.3925 1.0090 0.9361

3D HSDT 0.7308 0.5913 0.5648 1.1552 0.8770 0.8241 1.3760 0.9952 0.9228
CPT 0.5623 0.5623 0.5623 0.8281 0.8281 0.8281 0.9354 0.9354 0.9354

FSDT 0.7291 0.5889 0.5625 1.1125 0.8736 0.8280 1.3178 0.9966 0.9360
Present 0.7292 0.5891 0.5625 1.1127 0.8738 0.8285 1.3180 0.9968 0.9359

supported (SSSS) and clamped supported (CCCC). The non-dimensional deflec-
tions w∗ are tabulated in Table 5 for different volume fraction indexes. The ob-
tained results are compared with those solutions given by Singha [Singha et al.
(2011)] based on FSDT. It is clearly that the solutions obtained by the proposed
BSWI method get a great agreement with Singha’s [Singha et al. (2011)] solutions
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for all volume fraction indexes in SSSS and CCCC cases. It is also found that the
non-dimensional deflection decreases as the constrain increase. The variations of
non-dimensional deflections w∗ of Al/Al2O3 plates for different length-to-thickness
ratios are illustrated in Fig. 6. for SSSS and CCCC cases. In order to clarify the
deflections of Al/Al2O3 plates, the non-dimensional deflection maps of the whole
Al/Al2O3 plates with n = 10 are shown in Fig. 7. The solutions of the whole
Al/Al2O3 plate can be directly observed in Fig. 7.
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Figure 6: The deflections w∗ of Al/Al2O3 plates for different length-to-thickness
ratios (a) SSSS (b) CCCC.

 21 

     (a)                                              (b) 790 

   791 
Fig. 6. The deflections *w  of Al/Al2O3 plates for different length-to-thickness ratios (a) SSSS (b) CCCC. 792 

 793 

 794 

     (a)                                             (b) 795 

     796 
Fig. 7. The deflection maps of the whole Al/Al2O3 plates with n = 10 (a) SSSS (b) CCCC. 797 

 798 

 799 

 800 

 801 
Fig. 8. The first six mode shapes of SSSS square Al/Al2O3 plates (a/h = 10 and n = 10). 802 

 803 

 804 

n=5
n=10
n=20
n=100

n=5
n=10
n=20
n=100

Figure 7: The deflection maps of the whole Al/Al2O3 plates with n = 10 (a) SSSS
(b) CCCC.
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Table 5: The deflections w∗ of SSSS and CCCC square Al/Al2O3 plate subjected
to uniformly distributed load (a/h= 100).

n 0 0.5 1 2 3 4 5 10 20 ∞

SSSS
FSDT 0.4064 0.6269 0.8154 1.0449 1.1482 1.2011 1.2359 1.3569 1.5362 2.2064
Present 0.4066 0.6272 0.8159 1.0455 1.1487 1.2016 1.2362 1.3572 1.5368 2.2076
CCCC
FSDT 0.1267 0.1955 0.2542 0.3258 0.3580 0.3746 0.3854 0.4233 0.4792 0.6881
Present 0.1269 0.1957 0.2546 0.3262 0.3584 0.3749 0.3857 0.4235 0.4795 0.6887

4.2 Free vibration problem

4.2.1 Accuracy and efficient of BSWI method for free vibration analysis of FG
plate

Example 5: Firstly, a comparison study is employed to verify the accuracy and
efficient of the proposed BSWI method for free vibration analysis of Al/Al2O3
square plate. The length-to-thickness ratios are taken as a/h= 5 and 10 and vol-
ume fraction indexes are chosen as n= 0, 0.5, 1, 4, 10. The fundamental non-
dimensional frequency parameters ω̂ obtained using the BSWI element are com-
pared with element-free kp-Ritz method solutions of Liew [Zhao et al. (2009a)], the
FSDT solutions of Thai [Thai and Choi (2013)] and Hashemi [Hosseini-Hashemi
et al. (2010)] in Table 6 for SSSS case. Obviously, the solutions given by the
proposed BSWI method are in excellent agreement with the referential solutions
given by Liew [Zhao et al. (2009a)], Thai [Thai and Choi (2013)] and Hashemi
[Hosseini-Hashemi et al. (2010)], especially for moderately thick ones (a/h = 10).
This comparison study shows that the accuracy and efficiency of the present method
are valid and effective for free vibration analysis of FG plates.

Example 6: Another comparison study is considered to validate the accuracy and
efficiency of proposed BSWI method for square FG plate with different boundary
conditions (BCS). In this study, the length-to-thickness ratio of square Al/ZrO2
plate is taken as a/h= 5. The Al/ZrO2 plate material properties are assumed to vary
continuously throughout the thickness of plate with volume fraction index n = 5.
The non-dimensional frequency parameters ω̄ are calculated and shown in Table 7
for SSSS, CCCC and SCSC cases. The comparison results have also been given
by Singh [Talha and Singh (2010)] based on HSDT and Aydogdu [Uymaz and
Aydogdu (2007)] based on small strain linear elasticity theory. It is obviously that
the BSWI method achieves a high accuracy compared with Aydogdu [Uymaz and
Aydogdu (2007)]. Due to excellent characteristics of BSWI, the proposed BSWI
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method with adopting just one BSWI element can get excellent results for various
boundary conditions.

Table 6: The frequency parameters ω̂ of SSSS square Al/Al2O3 plate.

a/h Method
volume fraction indexes n

0 0.5 1 4 10

5

Liew (9×9) 0.2018 0.1726 0.1559 0.1332 0.1261
Liew (13×13) 0.2045 0.1748 0.1579 0.1349 0.1277
Liew (17×17) 0.2055 0.1757 0.1587 0.1356 0.1284

Thai 0.2112 0.1805 0.1631 0.1397 0.1324
Hashemi 0.2112 0.1806 0.1650 0.1371 0.1304
Present 0.2112 0.1804 0.1630 0.1396 0.1323

10

Liew (9×9) 0.0561 0.0476 0.0430 0.0371 0.0355
Liew (13×13) 0.0565 0.0480 0.0433 0.0374 0.0358
Liew (17×17) 0.0567 0.0482 0.0435 0.0376 0.0359

Thai 0.0577 0.0490 0.0442 0.0382 0.0366
Hashemi 0.0578 0.0492 0.0445 0.0383 0.0363
Present 0.0577 0.0490 0.0442 0.0382 0.0366

Table 7: The frequency parameters ω̄ of Al/ZrO2 square plate for various boundary
conditions (a/h=5, n=5).

Method
BCS

SSSS CCCC SCSC
Singh (3×3) 1.4321 2.2669 2.0260
Singh (4×4) 1.4222 2.1944 1.9287
Singh (5×5) 1.4165 2.1540 1.8161

Aydogdu 1.4106 2.1447 1.8055
Present 1.4102 2.1429 1.7990

4.2.2 Effect of the thickness-to-width ratios

Example 7: The influence of thickness-to-width ratios on the free vibration of
Al/Al2O3 plate is considered in this comparison. The aim of this example is to
verify the obtained results with the SSDT solutions of Thai [Thai and Vo (2013)],
the Reddy’s TSDT solutions of Hashemi [Hosseini-Hashemi et al. (2011b)] and
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HSDT solutions of Matsunaga [Matsunaga (2008)]. The square Al/Al2O3 plate is
full simply support (SSSS) and the first three non-dimensional frequency param-
eters ω̂ for a/h= 5, 10 and fundamental non-dimensional frequency parameters ω̂

for a/h= 20 with volume fraction indexes varying from 0 to ∞ are tabulated in Ta-
ble 8. It can be observed that the results obtained by present BSWI method are
good in agreement with almost solutions of Thai [Thai and Vo (2013)], Hashemi
[Hosseini-Hashemi et al. (2011b)] and Matsunaga [Matsunaga (2008)], especially
for moderately plate (a/h = 10) or thin plate (a/h = 20). This example verifies the
proposed BSWI method has an excellent accuracy for free vibration problem of
Al/Al2O3 plates. It is also found that the non-dimensional frequency parameter de-
creases as the volume fraction index increases. This phenomenon may be caused
by larger volume fraction index leads to metal rich of Al/Al2O3 plate which will
result in decrease of stiffness. In order to verify the correctness of the proposed
BSWI method, the fist six mode shapes of SSSS square Al/Al2O3 plates with a/h =
10 and n = 10 are shown in Fig. 8. It is observed that the solving mode shapes are
very consistent with the real vibration of square plate which verifies the correctness
of the proposed BSWI method once more.
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Figure 8: The first six mode shapes of SSSS square Al/Al2O3 plates (a/h =10 and
n =10).

Example 8: The next example is considered for Al/Al2O3 rectangular plate with
different thickness-to-width ratios. The other corresponding parameters are the
same with the example 7. The first four non-dimensional frequency parameters ω̃

of Al/Al2O3 rectangular plate (b/a = 2) are calculated and shown in Table 9. The
comparison solutions are given by Choi [Thai et al. (2013)] based on an efficient
shear deformation theory and Hashemi [Hosseini-Hashemi et al. (2011a)] based
on the Reissner-Mindlin plate theory (FSDT). A good agreement between the ref-
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Table 8: The frequency parameters ω̂ of SSSS square Al/Al2O3 plate.

a/h (m,n) Method
volume fraction indexes n

0 0.5 1 4 10 ∞

5

(1,1)

TSDT 0.2113 0.1807 0.1631 0.1378 0.1301 0.1076
HSDT 0.2121 0.1819 0.1640 0.1383 0.1306 0.1077
SSDT 0.2112 0.1805 0.1631 0.1397 0.1324 0.1076
Present 0.2112 0.1802 0.1625 0.1384 0.1315 0.1075

(1,2)

TSDT 0.4623 0.3989 0.3607 0.2980 0.2771 0.2355
HSDT 0.4658 0.4040 0.3644 0.3000 0.2790 0.2365
SSDT 0.4618 0.3978 0.3604 0.3049 0.2856 0.2352
Present 0.4618 0.3986 0.3625 0.3107 0.2865 0.2351

(2,2)

TSDT 0.6688 0.5803 0.5254 0.4284 0.3948 0.3404
HSDT 0.6753 0.5891 0.5444 0.4362 0.3981 0.3429
SSDT 0.6676 0.5779 0.5245 0.4405 0.4097 0.3399
Present 0.6676 0.5779 0.5248 0.4401 0.4090 0.3398

10

(1,1)

TSDT 0.0577 0.0490 0.0442 0.0381 0.0364 0.0293
HSDT 0.0578 0.0492 0.0443 0.0381 0.0364 0.0293
SSDT 0.0577 0.0490 0.0442 0.0382 0.0366 0.0293
Present 0.0577 0.0491 0.0443 0.0384 0.0367 0.0294

(1,2)

TSDT 0.1377 0.1174 0.1059 0.0903 0.0856 0.0701
HSDT 0.1381 0.1180 0.1063 0.0904 0.0859 0.0701
SSDT 0.1376 0.1173 0.1059 0.0911 0.0867 0.0701
Present 0.1376 0.1171 0.1055 0.0903 0.0864 0.0701

(2,2)

TSDT 0.2113 0.1807 0.1631 0.1378 0.1301 0.1076
HSDT 0.2121 0.1819 0.1640 0.1383 0.1306 0.1077
SSDT 0.2112 0.1805 0.1631 0.1397 0.1324 0.1076
Present 0.2112 0.1808 0.1638 0.1405 0.1327 0.1075

20 (1,1)
TSDT 0.0148 0.0125 0.0113 0.0098 0.0094 -
SSDT 0.0148 0.0125 0.0113 0.0098 0.0094 -
Present 0.0148 0.0126 0.0114 0.0099 0.0095 0.0075

erential solutions and results obtained by proposed BSWI method is observed for
almost all the vibration mode shapes of Al/Al2O3 plates. However, the differences
between the results for the forth vibration modes of thick plate (a/h = 5) increase
slightly with the increase of volume fraction indexes. These differences may be
caused by the fewer degrees of freedom used in BSWI for estimating frequencies.
The fist six mode shapes of SSSS Al/Al2O3 rectangular plates with a/h =10 and
n =10 are shown in Fig. 9. These mode shapes are also very consistent with the
real vibration of rectangular plate which verifies the correctness of the proposed
BSWI method once more. So the proposed BSWI method is not only suitable for
solving the free vibration problem of Al/Al2O3 square plate but also for those of
Al/Al2O3 rectangular plate.



190 Copyright © 2014 Tech Science Press CMC, vol.44, no.3, pp.167-204, 2014

Table 9: The frequency parameters ω∗ of SSSS rectangular Al/Al2O3 plate (b/a =
2).

a/h Mode Method
volume fraction indexes n

0 0.5 1 2 5 8 10

5

(1,1) Choi 3.4412 2.9347 2.6475 2.3949 2.2272 2.1697 2.1407
Hashemi 3.4409 2.9322 2.6473 2.4017 2.2528 2.1985 2.1677
Present 3.4409 2.9315 2.6462 2.4003 2.2510 2.1967 2.1658

(1,2) Choi 5.2813 4.5180 4.0781 3.6805 3.3938 3.2964 3.2514
Hashemi 5.2802 4.5122 4.0773 3.6953 3.4492 3.3587 3.3094
Present 5.2803 4.5111 4.0757 3.6931 3.4465 3.3558 3.3066

(1,3) Choi 8.0749 6.9366 6.2663 5.6390 5.1425 4.9758 4.9055
Hashemi 8.0710 6.9231 6.2636 5.6695 5.2579 5.1045 5.0253
Present 8.0733 6.9233 6.2628 5.6675 5.2547 5.1012 5.0219

(2,1) Choi 10.1164 8.7138 7.8762 7.0751 6.4074 6.1846 6.0954
Hashemi 9.7416 8.6926 7.8711 7.1189 6.5749 5.9062 5.7518
Present 10.1091 8.6905 7.8681 7.1150 6.5699 6.3656 6.2631

10

(1,1) Choi 3.6518 3.0990 2.7937 2.5364 2.3916 2.3411 2.3110
Hashemi 3.6518 3.0983 2.7937 2.5386 2.3998 2.3504 2.3197
Present 3.6518 3.0976 2.7926 2.5372 2.3980 2.3485 2.3178

(1,2) Choi 5.7694 4.9014 4.4192 4.0090 3.7682 3.6846 3.6368
Hashemi 5.7693 4.8997 4.4192 4.0142 3.7881 3.7072 3.6580
Present 5.7697 4.8988 4.4177 4.0123 3.7855 3.7044 3.6552

(1,3) Choi 9.1880 7.8189 7.0515 6.3886 5.9765 5.8341 5.7575
Hashemi 9.1876 7.8145 7.0512 6.4015 6.0247 5.8887 5.8086
Present 9.1957 7.8201 7.0556 6.4043 6.0253 5.8886 5.8083

(2,1) Choi 11.8315 10.0810 9.0933 8.2309 7.6731 7.4813 7.3821
Hashemi 11.8310 10.0740 9.0928 8.2515 7.7505 7.5688 7.4639
Present 11.8313 10.0719 9.0903 8.2483 7.7457 7.5635 7.4584

20

(1,1) Choi 3.7123 3.1458 2.8352 2.5771 2.4403 2.3923 2.3619
Hashemi 3.7123 3.1456 2.8352 2.5777 2.4425 2.3948 2.3642
Present 3.7123 3.1451 2.8342 2.5763 2.4407 2.3929 2.3623

(1,2) Choi 5.9199 5.0180 4.5228 4.1100 3.8884 3.8107 3.7622
Hashemi 5.9198 5.0175 4.5228 4.1115 3.8939 3.8170 3.7681
Present 5.9211 5.0174 4.5222 4.1103 3.8919 3.8148 3.7658

(1,3) Choi 9.5669 8.1133 7.3132 6.6433 6.2760 6.1476 6.0690
Hashemi 9.5669 8.1121 7.3132 6.6471 6.2903 6.1639 6.0843
Present 9.5963 8.1380 7.3368 6.6671 6.3046 6.1760 6.0957

(2,1) Choi 12.4562 10.5677 9.5261 8.6509 8.1636 7.9934 7.8909
Hashemi 12.456 10.566 9.5261 8.6572 8.1875 8.0207 7.9166
Present 12.4586 10.5654 9.5244 8.6547 8.1831 8.0158 7.9114
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Figure 9: The first six mode shapes of SSSS rectangular Al/Al2O3 plates (a/h =10
and n =10).

4.2.3 Effect of boundary conditions

Example 9: The boundary conditions also play a very important role in estimat-
ing the frequencies of Al/Al2O3 plate. Hence, the following example is employed
to verify the validity of proposed BSWI method for free vibration analysis of
Al/Al2O3 square plate with different boundary conditions. The fundamental non-
dimensional frequency parameters ω∗ for thickness-to-width ratios a/h= 5, 10 with
SSSS, CCCC, CFFF, SCSC boundary conditions are calculated and presented in
Table 10. The identical problem has been discussed by Liew [Zhu and Liew (2011);
Zhao et al. (2009a)] using the local Kriging meshless method and element-free kp-
Ritz method, and Hashemi [Hosseini-Hashemi et al. (2011a)] using FSDT. Com-
pared with those referential solutions, the proposed BSWI method gives satisfac-
tory solutions for different boundary conditions. The variations of non-dimensional
frequency parameters ω∗ with volume fraction indexes are illustrated in Fig. 10.
for SSSS, CCCC, CFFF, SCSC boundary conditions. The constraints of boundary
conditions affect stiffness. So the non-dimensional frequency parameter is higher
in CCCC cases than other cases. This comparison shows that the formulated FGM
BSWI element is very suitable for analyzing free vibration of FG plate with various
boundary conditions.

4.3 Buckling problem

4.3.1 Accuracy and stability of BSWI method for buckling analysis of FG plate

Example 10: The first comparison study is employed to verify the accuracy and sta-
bility of BSWI method for buckling analysis of FG plate. Since the exact buckling



192 Copyright © 2014 Tech Science Press CMC, vol.44, no.3, pp.167-204, 2014

 22 

 805 

 806 
Fig. 9. The first six mode shapes of SSSS rectangular Al/Al2O3 plates (a/h = 10 and n = 10). 807 

 808 

        (a)                                           (b) 809 

     810 
Fig. 10. The frequency parameters *  of square Al/Al2O3 plates with volume fraction index (a) a/h = 5 (b) 811 

a/h= 10. 812 

 813 

814 

SSSS
CCCC
CFFF
SCSC

SSSS
CCCC
CFFF
SCSC

Figure 10: The frequency parameters ω∗ of square Al/Al2O3 plates with volume
fraction index (a) a/h = 5 (b) a/h= 10.

solutions of FG plate are not available in literatures, a homogenous material plate is
used here for verification. The homogenous material plate represents a special FG
plate with volume fraction index n = 0 or ∞. The thin plate (a/h= 100) subjected
to uniaxial compression with SSSS and CCCC cases is considered in this example.
The exact buckling factors λ̂ have been given by Timoshenko [Timoshenko and
Gere (2012)] and other referential results have also been given by Cheung [Cheung
et al. (2000)], Aliabadi [Purbolaksono and Aliabadi (2005)], Liew [Liew and Chen
(2004)], Civalek [Ersoy et al. (2009)] and Xuan [Nguyen-Xuan et al. (2010)]. The
obtained results listed in Table 11 has an excellent agreement with the exact solu-
tion given by Timoshenko [Timoshenko and Gere (2012)] in SSSS case compared
with other methods. Although Cheung’s method seems to show a better agreement
with exact solutions for CCCC case, the proposed BSWI method also still perfor-
mances well. This comparison study validates the accuracy of the proposed BSWI
method for buckling analysis of FG plate.

4.3.2 A FG square plate subjected to uniaxial compression

Example 11: The buckling factors λ̄ of FG square plate subjected to uniaxial com-
pression with SSSS boundary condition are considered in this comparison. The
FG plate consists of SUS304 and Si3N4. The buckling factors are calculated and
presented in Table 12. And the present results are compared with the referential so-
lutions given by Tzou [Chen et al. (2009)] based on HSDT with thickness-to-width
ratios a/h= 10, 20, 100. Compared with the referential solutions, the present method
obtains excellent solutions for different thickness-to-width ratios. Fig. 11. presents
the contour plots of the first six buckling mode shapes of square SUS304/Si3N4
plate subjected to uniaxial compression on x axis (a/h= 100, n = 10). Obviously,
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Table 10: The frequency parameters ω∗ of square Al/Al2O3 plates with different
boundary conditions.

a/h BCS
volume fraction indexes n

0 0.5 1 2 5 8 10 10000

5

SSSS
5.2791a 4.5101 4.0746 3.6923 3.4461 3.3555 3.3062 2.6857
5.2802d 4.5110 4.0756 3.6930 3.4464 3.3557 3.3065 2.6851

CCCC
8.0374a 6.9609 6.3314 5.7332 5.2395 5.0429 4.9501 4.0887
8.0267d 6.9526 6.3246 5.7280 5.2363 5.0405 4.9480 4.0855

CFFF
1.0106a 0.8580 0.7738 0.7028 0.6631 0.6489 0.6403 0.5142
1.0106d 0.8584 0.7742 0.7033 0.6636 0.6494 0.6408 0.5144

SCSC
6.7722a 5.8451 5.3069 4.8052 4.4133 4.2605 4.1864 3.4451
6.7663c 5.8409 5.3039 4.8032 4.4127 4.2604 4.1865 -
6.7663d 5.8395 5.3018 4.8005 4.4094 4.2569 4.1830 3.4440

10

SSSS
5.7619a 4.8914 4.4106 4.0059 3.7806 3.7001 3.6510 2.9313
5.6763b 4.8209 4.3474 3.9474 3.7218 3.6410 3.5923 -
5.7693d 4.8985 4.4174 4.0120 3.7853 3.7043 3.6550 2.9365

CCCC
9.8710a 8.4344 7.6280 6.9233 6.4667 6.2934 6.1988 5.0215
9.6329b 8.2388 7.4533 6.7629 6.3060 6.1314 6.0375 -
9.8429d 8.4107 7.6069 6.9055 6.4533 6.2817 6.1876 5.0099

CFFF
1.0361a 0.8777 0.7910 0.7190 0.6811 0.6677 0.6591 0.5272
1.0298b 0.8728 0.7867 0.7150 0.6768 0.6633 0.6547 -
1.0382d 0.8801 0.7935 0.7213 0.6829 0.6694 0.6608 0.5285

SCSC
8.0849a 6.8964 6.2321 5.6574 5.2987 5.1642 5.0889 4.1129
8.0702c 6.8847 6.2222 5.6494 5.2930 5.1594 5.0844 -
8.0705d 6.8834 6.2201 5.6466 5.2894 5.1555 5.0805 4.1078

a solutions presented by Liew [Zhu and Liew (2011)] using local Kriging meshless method.
b solutions presented by Liew [Zhao et al. (2009a)] using element-free kp-Ritz method.
c solutions presented by Hosseini-Hashemi [Hosseini-Hashemi et al. (2011a)] based on FSDT.
d solutions presented using BSWI method.

Table 11: The buckling factors λ̂ of square FG plate subjected to uniaxial compres-
sion (a/h= 100, n = 0).

BCS Cheung[54] FEM[55] Liew[56] DSC[57] DSG3[58] ES-
DSG3[58]

Exact[53] Present

SSSS 4.002 4.011 4.017 4.011 4.1590 4.0170 4.00 3.9982
CCCC 10.075 10.392 10.308 10.310 11.0446 10.2106 10.07 10.1842

more wrinkles may arise on x axis with the increase of mode shape. The com-
pression load is mainly subjected on x axial, so the plates are most likely to lose
stability in x axial direction.
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Figure 11: The contour plots of the first six buckling mode shapes of square
SUS304/Si3N4 plate subjected to uniaxial compression on x axis (a/h= 100, n =
10).

Table 12: The buckling factors λ̄ of SSSS square SUS304/Si3N4 plate subjected to
uniaxial compression.

a/h Method
volume fraction indexes n

0 0.1 0.5 1 2 5 10 ∞

10
HSDT 0.5148 0.4957 0.4525 0.4299 0.4115 0.3907 0.3753 0.3426
Present 0.5140 0.4942 0.4484 0.4247 0.4079 0.3918 0.3784 0.3454

20
HSDT 0.5396 0.5194 0.4743 0.4512 0.4329 0.4118 0.3955 0.3600
Present 0.5396 0.5188 0.4709 0.4465 0.4296 0.4134 0.3994 0.3640

100
HSDT 0.5482 0.5276 0.4818 0.4585 0.4403 0.4192 0.4026 0.3660
Present 0.5485 0.5274 0.4788 0.4546 0.4374 0.4209 0.4067 0.3702

Example 12: The thin Al/SiC plate (a/h = 100) with SCSC, SSSC, SSSS, SCSF,
SSSF, SFSF cases are employed to verify the accuracy and applicability of pro-
posed BSWI method for buckling analysis of Al/SiC square plate subjected to uni-
axial compression. Table 13 presents the comparisons of BSWI method with Levy-
type solutions based on HSDT. It can be seen that the obtained results are found
to be in excellent agreement with Levy-type solutions given by Saidi [Bodaghi and



Bending, Free Vibration and Buckling Analysis of Functionally Graded Plates 195

Saidi (2010)] for different boundary conditions. The variations of non-dimensional
buckling factors λ ∗ of Al/SiC plates subjected to uniaxial compression with vol-
ume fraction indexes are illustrated in Fig. 12. for SCSC, SSSC, SSSS, SCSF,
SSSF, SFSF cases. It can be observed that the critical buckling factor decreases
as the volume fraction index increases. However, the influence of volume fraction
index becomes weaker as the volume fraction index increases. This is due to the
fact that the larger volume fraction index may lead to metal rich. The constraint of
boundary conditions directly affects the buckling load of Al/SiC plates. Thus, the
boundary conditions play a very important role for buckling analysis of FG plates.
It is meaningful to investigate the buckling analysis of FG plates with different
boundary conditions which can be used to guide the practical engineering design.
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Figure 12: The buckling factors λ ∗ of SiC plates subjected uniaxial compression
with volume fraction indexes (a/h = 100).

4.3.3 A FG square plate subjected to biaxial compression

Example 13: Another comparison of SSSS square Al/Al2O3 plate subjected to bi-
axial compression is considered. Table 14 lists the buckling factors λ ∗ of Al/Al2O3
plate with thickness-to-width ratios a/h= 10, 20, 100. The obtained results are com-
pared with similar solutions given by Choi [Thai et al. (2013)] based on the refined
theory of Shimpi. It is observed that the present BSWI method gives satisfactory
solutions compared with referential solutions given by Choi [Thai et al. (2013)].
These results get closer with the increase of a/h. The difference may be caused
by the influence of transverse shear deformation. The first six buckling modes of
SSSS square Al/Al2O3 plate subjected to biaxial compression with a/h= 100 and
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Table 13: The buckling factors λ ∗ of square Al/SiC plate subjected to uniaxial
compression with different boundary conditions (a/h = 100).

n Method
BCS

SCSC SSSC SSSS SCSF SSSF SFSF

0
HSDT 37.7364 28.1637 19.6255 8.1078 6.8767 4.6724
Present 37.8846 28.1537 19.6131 8.1045 6.8748 4.6781

1
HSDT 18.8094 14.0380 9.7821 4.0412 3.4277 2.3288
Present 18.9122 14.0402 9.7825 4.0399 3.4164 2.3262

2
HSDT 14.6772 10.9540 7.6331 3.1534 2.6747 1.8172
Present 14.7517 10.9539 7.7333 3.1515 2.6748 1.8158

Table 14: The buckling factors λ ∗ of SSSS square Al/Al2O3 plate subjected to
biaxial compression.

a/h Method
volume fraction indexes n

0 0.5 1 2 5 10 20 100

10
Choi 9.2893 6.0615 4.6696 3.6315 3.0177 2.7264 2.4173 1.9099

Present 9.1539 5.9889 4.6406 3.6386 3.0408 2.7366 2.4056 1.8837

20
Choi 9.6764 6.2834 4.8337 3.7686 3.1724 2.8834 2.5494 1.9961

Present 9.6380 6.2555 4.8114 3.7522 3.1654 2.8792 2.5433 1.9885

100
Choi 9.8073 6.3579 4.8888 3.8147 3.2254 2.9376 2.5948 2.0254

Present 9.8067 6.3587 4.8892 3.8153 3.2277 2.9383 2.5949 2.0254

n = 10 are identical with vibration mode shapes of SSSS square Al/Al2O3. Obvi-
ously, the wrinkles may arise on x axis or y axis with the increase of mode shape.
The compression load is mainly subjected on x axial and y axial at the same time,
so the plates may lose stability in x or y axial direction with the same probability.

Example 14: Table 15 presents the buckling factors λ ∗ of a square Al/SiC FG plate
(a/h = 100) subjected to biaxial compression for SCSC, SSSC, SSSS, SCSF, SSSF,
SFSF cases. Saidi [Bodaghi and Saidi (2010)] has also given the similar solutions
for this problem. The present solutions show a good approximation with the results
given by Saidi [Bodaghi and Saidi (2010)]. The variations of non-dimensional
buckling factors λ ∗ of SiC plates subjected to biaxial compression with volume
fraction indexes are illustrated in Fig. 13. for SCSC, SSSC, SSSS, SCSF, SSSF,
SFSF cases. The similar phenomenon has been explained in example 12. The
buckling factors subjected to biaxial compression are smaller than those subjected
to uniaxial compression.
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29. Line 422 in Page 29, the "increasing" should be corrected as "increase". 

30. Page 31, the figure 13 should not be enlarged, the right figure 13 should be 
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Figure 13: The buckling factors λ ∗ of Al/SiC plates subjected to biaxial compres-
sion with volume fraction indexes (a/h = 100).

Table 15: The buckling factors λ ∗ of square Al/SiC plate subjected to biaxial com-
pression with different boundary conditions (a/h = 100).

n Method
BCS

SCSC SSSC SSSS SCSF SSSF SFSF

0
Saidi 18.7910 13.0643 9.8127 5.6107 5.1768 4.5737

Present 18.8044 13.0564 9.8067 5.6057 5.1726 4.5714

1
Saidi 9.3661 6.5117 4.8911 2.7965 2.5804 2.4455

Present 9.3847 6.5098 4.8892 2.7825 2.5846 2.3083

2
Saidi 7.3086 5.0812 3.8165 2.1822 2.0135 1.7788

Present 7.3330 5.0786 3.8153 2.1741 2.0116 1.7926

5 Conclusion

The objective of this paper is to present an accurate and effective numerical method
for the comprehensive study of bending, free vibration and buckling analysis of FG
plates. For this purpose, a wavelet finite element, which employs scaling functions
of two-dimensional tensor product BSWI as shape functions, is proposed for theo-
retical analysis of FG plates. The governing motion equations are derived by using
the Mindlin plate theory and Hamilton’s principle. Then two-dimensional FGM
BSWI element is formulated for bending, free vibration and buckling analysis of
FG plates. Different numerical examples concerning various length-to-thickness
ratios, volume fraction indexes, aspect ratios and boundary conditions are provided
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to validate the accuracy, efficiency and the reliability of FGM BSWI element com-
pared with available analytical and numerical solutions in literatures. Satisfactory
solutions for bending, free vibration and buckling analysis of FG plates can be
achieved using fewer degrees of freedoms. These excellent solutions can be at-
tributed to the excellent characteristics of BSWI. This paper reveals that the pro-
posed wavelet based BSWI finite element method is an efficient numerical tool
for the bending, free vibration and buckling problems of FGM structures. What’s
more, the proposed wavelet-based BSWI finite element method will be promising
to be an effective and accurate tool for analyses of FGM structures.
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